Advanced oxidation processes(AOPs)governed by peroxide activation to produce highly oxidative active species have been extensively explored for environmental remediation.Nevertheless,the low diffusion rates,inadequate...Advanced oxidation processes(AOPs)governed by peroxide activation to produce highly oxidative active species have been extensively explored for environmental remediation.Nevertheless,the low diffusion rates,inadequate interactions of the reactants,and limited active site exposure hinder treatment efficiency.Porous carbocatalysts with high specific surface area,tunable pore size,and programmable active sites demonstrate outstanding performance in activating diverse types of peroxides to generate active species for treatment of aqueous organic pollutants.The pore-rich structures enhance reaction kinetics for peroxide activation by facilitating diffusion of the reactants and their interactions.Additionally,the structural flexibility of porous structures favors the accommodation of highly dispersed metal species and allows for precise tuning of the microenvironment around the active sites,which further enhances the catalytic activity.This review critically summarizes the recent research progress in the applications of engineered porous carbocatalysts for peroxide activation and outlines the prevailing pore construction methods in carbocatalysts.Moreover,engineering strategies to regulate the mass transfer efficiency and fine-tune the microenvironment around the active sites are systematically addressed to enhance their catalytic peroxide activation performances.Challenges and future research opportunities pertaining to the design,optimization,mechanistic investigation,and practical application of porous carbocatalysts in peroxide activation are also proposed.展开更多
ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high...ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate.The formation of the N-CNTs-PDS*complex significantly enhanced BPA degradation and mineralisation,thereby optimising PDS consumption.These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater,offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.展开更多
In this study,cobalt-incorporated polydopamine coating onto Mn-modified mesoporous silica and successive graphitization treatment make the resulting composite afford abundant porosity,multiple metal active species,pol...In this study,cobalt-incorporated polydopamine coating onto Mn-modified mesoporous silica and successive graphitization treatment make the resulting composite afford abundant porosity,multiple metal active species,polar N sites,and excellent light-to-heat conversion ability.The controlled graphitization temperature was optimized to improve the activity state of metal species.The results reveal that Co_(3)O_(4) nanoparticles incorporated thin-layer carbon formed onto the Mn-confined mesoporous silica,and more Co(Ⅱ)and Mn(Ⅲ)were generated in the MS-Co-500N_(2) compared to MS-Co-500Air,which could cause the accelerated reaction cycles in the potassium peroxymonosulfate complex salt(PMS)activation.The degradation experiments demonstrated that the catalyst almost completely degraded biphenol A within 10 min with the reaction rate constant of 0.56 min−1,nearly 205 times enhancement compared to the MS-Co-500Air.The free radicals trapping and quenching control demonstrated the dominant role of ^(1)O_(2) and·O_(2) in the degradation process.Due to the efficient incorporation of Co_(3)O_(4) nanoparticles and thin-layer carbon,the photothermal conversion properties were explored and utilized for solar-driving interface water evaporation and cleanwater recovery.To explore the practical application possibility in treating complicated polluted wastewater,the MS-Co-500N_(2) materials were fixed on the melamine sponge by Ca ions-trigger alginate crosslinking strategy,and the integrated monolith evaporator shows an excellent water evaporation performance(1.52 kg·m^(−2)·h^(−1))and synchronous pollutant removal in biphenol A(94%,10 min),carbamazepine(92%,10 min),oxytetracycline(84%,20 min)and norfloxacin(84%,20 min).展开更多
针对当前鞍钢鲅鱼圈焦化废水处理系统水质不稳的相关问题,在原有“A 2+O+混凝沉淀”和“臭氧催化氧化+B A F”工艺基础上,新增“A O P高级氧化”单元和“超滤+反渗透”膜单元,提升了出水水质。引入中水回用技术后废水回用率达到70%以上...针对当前鞍钢鲅鱼圈焦化废水处理系统水质不稳的相关问题,在原有“A 2+O+混凝沉淀”和“臭氧催化氧化+B A F”工艺基础上,新增“A O P高级氧化”单元和“超滤+反渗透”膜单元,提升了出水水质。引入中水回用技术后废水回用率达到70%以上,解决了焦化废水平衡问题。展开更多
Microcystin-LR attracts attention due to its high toxicity, high concentration and high frequency. The removal characteristics of UV/H2O2 and O3/H2O2 advanced oxidation processes and their individual process for MC-LR...Microcystin-LR attracts attention due to its high toxicity, high concentration and high frequency. The removal characteristics of UV/H2O2 and O3/H2O2 advanced oxidation processes and their individual process for MC-LR were investigated and compared in this study. Both the removal efficiencies and rates of MC-LR as well as the biotoxicity of degradation products was analyzed. Results showed that the UV/H2O2 process and O3/H2O2 were effective methods to remove MC-LR from water, and they two performed better than UV-, O3-, H2O2-alone processes under the same conditions. The effects of UV intensity, H2O2 concentration and O3 concentration on the removal perfomlance were explored. The synergistic effects between UV and H2O2, O3 and H2O2 were observed. UV dosage of 1800 mJ·cm^-2 was required to remove 90% of 100μg.L^-1 MC-LR, which amount significantly decreased to 500 mJ.cm^-2 when 1.7mg·L^-1 H2O2 was added. 0.25 mg.L^-1 O3, or 0.125 mg·L^-1 O9 with 1.7 mg·L^-1 H2O2 was needed to reach 90% removal efficiency. Furthermore, the biotoxicity results about these UV/H2O2, O3/H2O2 and O3-alone processes all present rising trends with oxidation degree of MC-LR. Biotoxicity of solution, equ valent to 0.01 mg·L^-1 Zn^2+,ratsed to 0.05 mg.L Zn after UV/H2O2 or O3/H2O2 reaction. This phenomenon may be attributed to the aldehydes and ketones with small molecular weight generated during reaction. Advice about the selection of MC-LR removal methods in real cases was provided.展开更多
基金supports from the National Natural Science Foundation of China(Nos.22478426 and 22278436)Young Elite Scientists Sponsorship Program by BAST(No.1101020370359)Science Foundation of China University of Petroleum,Beijing(No.2462021QNXZ009)。
文摘Advanced oxidation processes(AOPs)governed by peroxide activation to produce highly oxidative active species have been extensively explored for environmental remediation.Nevertheless,the low diffusion rates,inadequate interactions of the reactants,and limited active site exposure hinder treatment efficiency.Porous carbocatalysts with high specific surface area,tunable pore size,and programmable active sites demonstrate outstanding performance in activating diverse types of peroxides to generate active species for treatment of aqueous organic pollutants.The pore-rich structures enhance reaction kinetics for peroxide activation by facilitating diffusion of the reactants and their interactions.Additionally,the structural flexibility of porous structures favors the accommodation of highly dispersed metal species and allows for precise tuning of the microenvironment around the active sites,which further enhances the catalytic activity.This review critically summarizes the recent research progress in the applications of engineered porous carbocatalysts for peroxide activation and outlines the prevailing pore construction methods in carbocatalysts.Moreover,engineering strategies to regulate the mass transfer efficiency and fine-tune the microenvironment around the active sites are systematically addressed to enhance their catalytic peroxide activation performances.Challenges and future research opportunities pertaining to the design,optimization,mechanistic investigation,and practical application of porous carbocatalysts in peroxide activation are also proposed.
基金supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2024LHMS05048).
文摘ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate.The formation of the N-CNTs-PDS*complex significantly enhanced BPA degradation and mineralisation,thereby optimising PDS consumption.These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater,offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.
基金supported by the National Natural Science Foundation of China(No.21908085)the China Postdoctoral Science Foundation(No.2023M731422)+3 种基金and the Science and Technology Plan School-Enterprise Cooperation Industry-University-Research Forward-Looking Project of Zhangjiagang(No.ZKYY2341)Suzhou Hospital Association Infection Management Special Research(No.SZSYYXH-2023-ZY1)Suzhou Medical Key Discipline of Occupational Medicine(No.SZXK202115)Jiangsu Undergraduate Innovative Training Program(No.SJCX23_2163).
文摘In this study,cobalt-incorporated polydopamine coating onto Mn-modified mesoporous silica and successive graphitization treatment make the resulting composite afford abundant porosity,multiple metal active species,polar N sites,and excellent light-to-heat conversion ability.The controlled graphitization temperature was optimized to improve the activity state of metal species.The results reveal that Co_(3)O_(4) nanoparticles incorporated thin-layer carbon formed onto the Mn-confined mesoporous silica,and more Co(Ⅱ)and Mn(Ⅲ)were generated in the MS-Co-500N_(2) compared to MS-Co-500Air,which could cause the accelerated reaction cycles in the potassium peroxymonosulfate complex salt(PMS)activation.The degradation experiments demonstrated that the catalyst almost completely degraded biphenol A within 10 min with the reaction rate constant of 0.56 min−1,nearly 205 times enhancement compared to the MS-Co-500Air.The free radicals trapping and quenching control demonstrated the dominant role of ^(1)O_(2) and·O_(2) in the degradation process.Due to the efficient incorporation of Co_(3)O_(4) nanoparticles and thin-layer carbon,the photothermal conversion properties were explored and utilized for solar-driving interface water evaporation and cleanwater recovery.To explore the practical application possibility in treating complicated polluted wastewater,the MS-Co-500N_(2) materials were fixed on the melamine sponge by Ca ions-trigger alginate crosslinking strategy,and the integrated monolith evaporator shows an excellent water evaporation performance(1.52 kg·m^(−2)·h^(−1))and synchronous pollutant removal in biphenol A(94%,10 min),carbamazepine(92%,10 min),oxytetracycline(84%,20 min)and norfloxacin(84%,20 min).
文摘Microcystin-LR attracts attention due to its high toxicity, high concentration and high frequency. The removal characteristics of UV/H2O2 and O3/H2O2 advanced oxidation processes and their individual process for MC-LR were investigated and compared in this study. Both the removal efficiencies and rates of MC-LR as well as the biotoxicity of degradation products was analyzed. Results showed that the UV/H2O2 process and O3/H2O2 were effective methods to remove MC-LR from water, and they two performed better than UV-, O3-, H2O2-alone processes under the same conditions. The effects of UV intensity, H2O2 concentration and O3 concentration on the removal perfomlance were explored. The synergistic effects between UV and H2O2, O3 and H2O2 were observed. UV dosage of 1800 mJ·cm^-2 was required to remove 90% of 100μg.L^-1 MC-LR, which amount significantly decreased to 500 mJ.cm^-2 when 1.7mg·L^-1 H2O2 was added. 0.25 mg.L^-1 O3, or 0.125 mg·L^-1 O9 with 1.7 mg·L^-1 H2O2 was needed to reach 90% removal efficiency. Furthermore, the biotoxicity results about these UV/H2O2, O3/H2O2 and O3-alone processes all present rising trends with oxidation degree of MC-LR. Biotoxicity of solution, equ valent to 0.01 mg·L^-1 Zn^2+,ratsed to 0.05 mg.L Zn after UV/H2O2 or O3/H2O2 reaction. This phenomenon may be attributed to the aldehydes and ketones with small molecular weight generated during reaction. Advice about the selection of MC-LR removal methods in real cases was provided.