期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Antisimple Radical of Hopf Module Algebras
1
作者 姚忠平 王顶国 《Journal of Mathematical Research with Applications》 CSCD 1999年第S1期14-19,共6页
Let H be a Hopf algebra over a field. The antisimple H radical A s(A) for a H module algebra A is defined. A s( ) is shown to be a special H radical and varies characterizations of an... Let H be a Hopf algebra over a field. The antisimple H radical A s(A) for a H module algebra A is defined. A s( ) is shown to be a special H radical and varies characterizations of antisimple H module algebras are given. 展开更多
关键词 HOPF ALGEBRA RADICAL THEORY SPECIAL H RADICAL antisimple H radical.
在线阅读 下载PDF
Graded Antisimple Primitive Radical
2
作者 Jun Chao WEI Li Bin LI Department of Mathematics, College of Science. Yangzhou University. Yangzhon 225002, P. R. China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第3期505-512,共8页
We introduce the graded version of the antisimple primitive radical SJ, the graded an- tisimple prinfitive radical SJ_G. We show that SJ_G=SJ_(ref)=SJ^G when |G|<∞. where SJ_(ref) denotes the reflected antisimple ... We introduce the graded version of the antisimple primitive radical SJ, the graded an- tisimple prinfitive radical SJ_G. We show that SJ_G=SJ_(ref)=SJ^G when |G|<∞. where SJ_(ref) denotes the reflected antisimple primitive radical and SJ^G denotes the restricted antisimple primitive radical. Furthermore, we discuss the graded supplementing radical of SJ^G. 展开更多
关键词 Graded antisimple primitive radical Graded subdirectly irreducible graded primitive ring Graded supplementing radical
原文传递
The Upper Radical Determined by the Class of all J-Semisimple Subdirectly Irreducible Rings
3
作者 杨宗文 王俊民 《Journal of Mathematical Research and Exposition》 CSCD 2000年第4期503-506,共4页
F.A.Szasz has put forward the open problem 55 in [1]: Let K be the class of all subdirectly irreducible rings, whose Jacobson radical is (0). Examine the upper radical determined by the class K. In this paper, the pro... F.A.Szasz has put forward the open problem 55 in [1]: Let K be the class of all subdirectly irreducible rings, whose Jacobson radical is (0). Examine the upper radical determined by the class K. In this paper, the problem has been examined. (1) It has been proved that the upper radical R determined by the class K is a special radical,which lies between Jacobson radical and Brown-McCoy radical. (2) It has been given some necessary and sufficient condition of ring A to be an R-radical ring. 展开更多
关键词 subdirectly irreducible ring special radical antisimple radical MHR-ring Jacobson radical.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部