期刊文献+
共找到598篇文章
< 1 2 30 >
每页显示 20 50 100
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:21
1
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
在线阅读 下载PDF
Design of PID controller with incomplete derivation based on ant system algorithm 被引量:6
2
作者 Guanzheng TAN Qingdong ZENG Wenbin LI 《控制理论与应用(英文版)》 EI 2004年第3期246-252,共7页
A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal ... A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal PID controller parameters K p * , T i * , and T d * can be obtained by taking the overshoot, settling time, and steady-state error of the system's unit step response as the performance indexes and by use of our improved ant system algorithm. K p * , T i * , and T d * can be used in real-time control. This kind of controller is called the ASA-PID controller with incomplete derivation. To verify the performance of the ASA-PID controller, three different typical transfer functions were tested, and three existing typical tuning methods of PID controller parameters, including the Ziegler-Nichols method (ZN),the genetic algorithm (GA),and the simulated annealing (SA), were adopted for comparison. The simulation results showed that the ASA-PID controller can be used to control different objects and has better performance compared with the ZN-PID and GA-PID controllers, and comparable performance compared with the SA-PID controller. 展开更多
关键词 PID controller Incomplete derivation Parameter tuning ant system algorithm Genetic algorithm Simulated annealing
在线阅读 下载PDF
Intelligent PID controller based on ant system algorithm and fuzzy inference and its application to bionic artificial leg 被引量:2
3
作者 谭冠政 曾庆冬 李文斌 《Journal of Central South University of Technology》 2004年第3期316-322,共7页
A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller... A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time. 展开更多
关键词 ant system algorithm fuzzy inference PID controller Fuzzy-ant system PID controller intelligent bionic artificial leg
在线阅读 下载PDF
Satellite Constellation Design with Adaptively Continuous Ant System Algorithm 被引量:5
4
作者 He Quan Han Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期297-303,共7页
The ant system algorithm (ASA) has proved to be a novel meta-heuristic algorithm to solve many multivariable problems. In this paper, the earth coverage of satellite constellation is analyzed and a n + 1^ -fold cov... The ant system algorithm (ASA) has proved to be a novel meta-heuristic algorithm to solve many multivariable problems. In this paper, the earth coverage of satellite constellation is analyzed and a n + 1^ -fold coverage rate is put forward to evaluate the coverage performance of a satellite constellation. An optimization model of constellation parameters is established on the basis of the coverage performance. As a newly developed method, ASA can be applied to optimize the constellation parameters. In order to improve the ASA, a rule for adaptive number of ants is proposed, by which the search range is obviously enlarged and the convergence speed increased. Simulation results have shown that the ASA is more quick and efficient than other methodV211.71s. 展开更多
关键词 ant system algorithm satellite constellation optimization design coverage performance adaptive adjusting
在线阅读 下载PDF
Cost Control of the Transmission Congestion Management in Electricity Systems Based on Ant Colony Algorithm
5
作者 Bin Liu Jixin Kang +1 位作者 Nan Jiang Yuanwei Jing 《Energy and Power Engineering》 2011年第1期17-23,共7页
This paper investigates the cost control problem of congestion management model in the real-time power systems. An improved optimal congestion cost model is built by introducing the congestion factor in dealing with t... This paper investigates the cost control problem of congestion management model in the real-time power systems. An improved optimal congestion cost model is built by introducing the congestion factor in dealing with the cases: opening the generator side and load side simultaneously. The problem of real-time congestion management is transformed to a nonlinear programming problem. While the transmission congestion is maximum, the adjustment cost is minimum based on the ant colony algorithm, and the global optimal solu-tion is obtained. Simulation results show that the improved optimal model can obviously reduce the adjust-ment cost and the designed algorithm is safe and easy to implement. 展开更多
关键词 ELECTRICITY systems CONGESTION Management ant COLONY algorithm MINIMAX Adjustment COST
暂未订购
Novel Voltage Scaling Algorithm Through Ant Colony Optimization for Embedded Distributed Systems
6
作者 章立生 丁丹 《Journal of Beijing Institute of Technology》 EI CAS 2007年第4期430-436,共7页
Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some wi... Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results. However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algorithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don’t depend on the number of modes available. 展开更多
关键词 dynamic voltage algorithm distributed system ant colony optimization MULTI-PROCESSOR
在线阅读 下载PDF
Improved Multi-objective Ant Colony Optimization Algorithm and Its Application in Complex Reasoning 被引量:3
7
作者 WANG Xinqing ZHAO Yang +2 位作者 WANG Dong ZHU Huijie ZHANG Qing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1031-1040,共10页
The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become... The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints.So far,little research has been carried out in this field.This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes.Three optimization objectives are considered simultaneously: maximum probability of average fault,maximum average importance,and minimum average complexity of test.Under the constraints of both known symptoms and the causal relationship among different components,a multi-objective optimization mathematical model is set up,taking minimizing cost of fault reasoning as the target function.Since the problem is non-deterministic polynomial-hard(NP-hard),a modified multi-objective ant colony algorithm is proposed,in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives.At last,a Pareto optimal set is acquired.Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set,through which the final fault causes can be identified according to decision-making demands,thus realize fault reasoning of the multi-constraint and multi-objective complex system.Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model,which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system. 展开更多
关键词 fault reasoning ant colony algorithm Pareto set multi-objective optimization complex system
在线阅读 下载PDF
Ant colony optimization approach for test scheduling of system on chip 被引量:1
8
作者 CHEN Ling PAN Zhong-liang 《重庆邮电大学学报(自然科学版)》 北大核心 2009年第2期212-216,共5页
It is necessary to perform the test of system on chip,the test scheduling determines the test start and finishing time of every core in the system on chip such that the overall test time is minimized.A new test schedu... It is necessary to perform the test of system on chip,the test scheduling determines the test start and finishing time of every core in the system on chip such that the overall test time is minimized.A new test scheduling approach based on chaotic ant colony algorithm is presented in this paper.The optimization model of test scheduling was studied,the model uses the information such as the scale of test sets of both cores and user defined logic.An approach based on chaotic ant colony algorithm was proposed to solve the optimization model of test scheduling.The test of signal integrity faults such as crosstalk were also investigated when performing the test scheduling.Experimental results on many circuits show that the proposed approach can be used to solve test scheduling problems. 展开更多
关键词 测试时间 片上系统 调度方法 蚁群优化 日程安排 蚁群算法 优化模型 用户自定义
在线阅读 下载PDF
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design 被引量:11
9
作者 Zhao Baojiang Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期603-610,共8页
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s... An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully. 展开更多
关键词 neuro-fuzzy controller ant colony algorithm function optimization genetic algorithm inverted pen-dulum system.
在线阅读 下载PDF
Using Data Mining to Find Patterns in Ant Colony Algorithm Solutions to the Travelling Salesman Problem
10
作者 阎世梁 王银玲 《现代电子技术》 2007年第5期117-119,共3页
Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by ... Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation. 展开更多
关键词 数据挖掘 数据管理系统 数据库 数据分析
在线阅读 下载PDF
精细油藏描述中的人工智能技术及其应用
11
作者 陈欢庆 成顺新 《地球物理学进展》 北大核心 2025年第4期1717-1731,共15页
人工智能技术是未来精细油藏描述最重要的发展方向之一.精细油藏描述为人工智能技术的发展和应用提供了优质的平台和基础,而人工智能又为精细油藏描述从数字化向智能化方向发展提供了有力的工具和途径.本文对比了国内外精细油藏描述中... 人工智能技术是未来精细油藏描述最重要的发展方向之一.精细油藏描述为人工智能技术的发展和应用提供了优质的平台和基础,而人工智能又为精细油藏描述从数字化向智能化方向发展提供了有力的工具和途径.本文对比了国内外精细油藏描述中人工智能技术应用研究现状、优势及不足.人工智能技术的应用几乎涵盖精细油藏描述各个方面,主要包括基于类比学习的地层精细划分与对比、蚁群算法的火山岩油气藏构造精细解释、专家系统的沉积微相和储层构型划分识别、基于人工神经网络的测井精细二次解释、灰色系统理论的储层精细评价、基于机器学习的训练图像建立和多点地质统计学建模、知识发现和数据开采储层流动单元研究、基于知识系统的精细油藏描述成果管理平台等.最后指出了人工智能技术在精细油藏描述中应用存在的10方面问题和未来发展方向. 展开更多
关键词 精细油藏描述 人工智能技术 类比学习 蚁群算法 专家系统 人工神经网络 灰色系统理论 机器学习
原文传递
基于改进蚁群-贪婪算法的四向穿梭车仓储系统货位分配优化 被引量:2
12
作者 李丽 刘保国 +2 位作者 武照云 何学武 赵彬彬 《计算机集成制造系统》 北大核心 2025年第4期1446-1460,共15页
针对四向穿梭车仓储系统中多设备并行作业特点和高效作业的需求,建立了综合考虑出入库效率、货架稳定性、作业均衡度和货物关联性4个因素的货位分配优化模型,并提出一种改进蚁群-贪婪算法(IACGA)的两阶段混合算法对模型进行优化求解。... 针对四向穿梭车仓储系统中多设备并行作业特点和高效作业的需求,建立了综合考虑出入库效率、货架稳定性、作业均衡度和货物关联性4个因素的货位分配优化模型,并提出一种改进蚁群-贪婪算法(IACGA)的两阶段混合算法对模型进行优化求解。该算法综合了蚁群算法的全局寻优能力与贪婪算法的局部优化调整能力,改进了蚁群算法的启发式函数、状态转移策略以及信息素更新规则。通过仿真实验优化了算法的主要参数,验证了算法的有效性。与标准遗传算法、传统蚁群算法和混合蛙跳算法相比,提出的改进蚁群-贪婪算法求解结果更好,货位分配更加合理,且当货物数量越多时,算法优势越明显。 展开更多
关键词 四向穿梭车仓储系统 货位分配 蚁群算法 贪婪算法
在线阅读 下载PDF
基于ACO-ANFIS的多变量生产过程在线质量预测
13
作者 杨薪玉 刘玉敏 王宁 《统计与决策》 北大核心 2025年第13期70-75,共6页
数据的高维度和非线性是影响多变量生产过程在线质量预测的瓶颈。文章将自适应神经模糊推理系统(ANFIS)和蚁群优化算法(ACO)相结合,提出了一种基于ACO-ANFIS的多变量生产过程在线质量预测新方法。首先,对生产过程数据采用模糊C均值聚类... 数据的高维度和非线性是影响多变量生产过程在线质量预测的瓶颈。文章将自适应神经模糊推理系统(ANFIS)和蚁群优化算法(ACO)相结合,提出了一种基于ACO-ANFIS的多变量生产过程在线质量预测新方法。首先,对生产过程数据采用模糊C均值聚类进行数据降维,有效地减少了模糊推理系统的规则数,提高了ANFIS模型的泛化能力;其次,采用ACO算法对ANFIS模型参数进行优化,提高了模型的预测精度;最后,运用所提方法对青霉素发酵过程进行实证分析,并与GA-ANFIS和PSO-ANFIS预测模型进行对比,验证了所提方法的有效性与准确性。 展开更多
关键词 多变量生产过程 质量预测 自适应神经模糊推理系统 蚁群优化算法
在线阅读 下载PDF
Ant Lion Optimization Approach for Load Frequency Control of Multi-Area Interconnected Power Systems
14
作者 R. Satheeshkumar R. Shivakumar 《Circuits and Systems》 2016年第9期2357-2383,共27页
This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune ... This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices. 展开更多
关键词 Load Frequency Control (LFC) Multi-Area Power system Proportional-Integral (PI) Controller ant Lion Optimization (ALO) Bat algorithm (BAT) Genetic algorithm (GA) Particle Swarm Optimization (PSO)
在线阅读 下载PDF
可达集约束下的自主车辆路径规划势场蚁群算法研究 被引量:2
15
作者 杨海洋 胡辛 +1 位作者 郑福银 吕俊波 《黑龙江科学》 2025年第4期84-87,共4页
为了解决当前路径规划技术无法涵盖汽车全部未知状况导致降低其安全性能的问题,提出一种以后向可到达集合为限制条件的自动驾驶最佳路线优化方案,将后向可到达集合的变化范畴设为势场蚂蚁算法的制约因素,在多个车队行驶环境中应用此特性... 为了解决当前路径规划技术无法涵盖汽车全部未知状况导致降低其安全性能的问题,提出一种以后向可到达集合为限制条件的自动驾驶最佳路线优化方案,将后向可到达集合的变化范畴设为势场蚂蚁算法的制约因素,在多个车队行驶环境中应用此特性,通过观察后向可到达集合各安全子区域的信息素密度差异,发现距离风险区更近的地方信息素密度较低这一特点,构建出一种适合自动驾驶的最优路线模型。实验结果显示,此策略不但提升了传统的势场蚂蚁算法的安全保障能力,还能计算出自动驾驶车辆行进过程中的安全位置可能达到的范围,并对未来一定时间内自动驾驶车辆的安全情况做出预估,说明在复杂环境中可利用势场蚁群算法和混合系统来确定可达集,实现路径规划。 展开更多
关键词 智能交通 路径规划 可达集 复杂环境 势场蚁群算法 混合系统
在线阅读 下载PDF
基于动态自适应蚁群算法的大型无人机智能巡检路径规划系统设计
16
作者 谭明 赵薪 《计算机测量与控制》 2025年第5期337-350,共14页
无人机巡检作为电力、石油等领域高效安全的检测手段,其路径规划效率直接影响巡检效果;针对传统算法在动态避障和实时优化方面的不足,文章设计了一种无人机巡检路径规划系统;系统采用多频段信号融合技术和低功耗电路设计,优化了北斗导... 无人机巡检作为电力、石油等领域高效安全的检测手段,其路径规划效率直接影响巡检效果;针对传统算法在动态避障和实时优化方面的不足,文章设计了一种无人机巡检路径规划系统;系统采用多频段信号融合技术和低功耗电路设计,优化了北斗导航模块的抗干扰性能,同时构建智能电源管理系统以延长续航时间;通过引入障碍物排斥权重和新启发因子改进蚁群算法,结合动态障碍物斥力势场模型,显著提升了无人机在复杂环境中的避障能力与路径优化质量;实验结果表明,改进算法在路径安全性、收敛速度和能耗效率方面表现优异,最小避障距离达5.2 m,收敛迭代次数减少33.3%,单位里程能耗降低18%;该研究为无人机智能化巡检提供了高精度、强适应性的解决方案,具有显著的工程应用价值。 展开更多
关键词 无人机巡检 蚁群算法 北斗卫星导航 系统设计 最优路径长度
在线阅读 下载PDF
计及用户需求响应的电热综合能源系统博弈优化策略 被引量:1
17
作者 彭爽 杨仁增 何旺 《智能计算机与应用》 2025年第1期123-129,共7页
由于传统集中式优化方法难以揭示多主体之间的交互作用,电力企业和消费者间的利益博弈关系有待进一步研究,本文提出一种基于演化博弈的考虑需求响应电热综合能源系统双层协同优化模型。首先对含电热气综合能源系统的互动优化进行建模,... 由于传统集中式优化方法难以揭示多主体之间的交互作用,电力企业和消费者间的利益博弈关系有待进一步研究,本文提出一种基于演化博弈的考虑需求响应电热综合能源系统双层协同优化模型。首先对含电热气综合能源系统的互动优化进行建模,上层运营商将售能价格发给用户,下层用户群通过调节自身用能策略并提交给运营商,以及运营商针对用户响应程度的反馈,调节供能价格,两者都以自身收益的最大化为目标,直至双方实现博弈决策平衡。最后,以中国某实际工业园区为算例进行了研究,用双层协同优化模式——蚂蚁狮子优化算法和YALMIP+GUROBI优化包在MATLAB环境下实现求解,并论证了该运行方案,该方案将有助于改善综合能源体系中的社会福利。 展开更多
关键词 综合能源系统 需求响应 演化博弈 定价策略 蚁狮算法
在线阅读 下载PDF
基于自适应多态蚁群优化的智能体路径规划
18
作者 邢娜 邸昊天 +2 位作者 尹文杰 韩亚君 周洋 《北京航空航天大学学报》 北大核心 2025年第7期2330-2337,共8页
在智能体路径规划中,蚁群算法是较为流行的路径求解策略,且得到了广泛的应用。然而,传统蚁群算法存在局部最优和多余拐点问题。基于此,提出自适应多态蚁群优化算法,通过多群体划分和协作机制,极大的提高了搜索和收敛速度,有助于增强全... 在智能体路径规划中,蚁群算法是较为流行的路径求解策略,且得到了广泛的应用。然而,传统蚁群算法存在局部最优和多余拐点问题。基于此,提出自适应多态蚁群优化算法,通过多群体划分和协作机制,极大的提高了搜索和收敛速度,有助于增强全局搜索能力,避免陷入局部最优解。改进的信息素更新策略和路径选择记录表构造进一步提高路径规划的准确性。通过3次B样条平滑曲线对路径进行处理,有效减少拐点,实现路径的平滑化。经过MATLAB和机器人操作系统(ROS)-Gazebo仿真验证,结果表明:所提算法在复杂环境下具有良好的可行性。综上所述,所提算法为智能体全局搜索带来了显著的优化和改进。 展开更多
关键词 路径规划 自适应多态蚁群算法 B样条 机器人操作系统 Gazebo平台
原文传递
考虑多重不确定性的概率暂态稳定约束最优潮流 被引量:1
19
作者 李沉融 吴梓宁 《水利水电技术(中英文)》 北大核心 2025年第3期98-109,共12页
【目的】针对高比例可再生能源电力系统并网的多种不确定性,为维持系统运行稳定性和经济性,提出了一种考虑多重不确定性的概率暂态稳定约束最优潮流(Probabilistic Transient Stability Constrained Optimal Power Flow,PTSCOPF)方法。... 【目的】针对高比例可再生能源电力系统并网的多种不确定性,为维持系统运行稳定性和经济性,提出了一种考虑多重不确定性的概率暂态稳定约束最优潮流(Probabilistic Transient Stability Constrained Optimal Power Flow,PTSCOPF)方法。【方法】首先,在综合考虑多重不确定性的影响下,建立了风电出力、负荷、故障类型、故障位置及故障清除时间不确定性变量的概率模型;其次,基于机会约束优化理论构建了电力系统PTSCOPF模型;之后,结合基于Gauss-Hermite积分的多点估计法和Gram-Charlier级数对随机变量进行确定性处理,再联合粒子群优化(Particle Swarm Optimization,PSO)算法和蚁群优化(Ant Colony Optimization,ACO)算法以实现PTSCOPF模型的有效求解;最后,在改进后的IEEE 39节点算例系统上进行了仿真。【结果】采用基于Gauss-Hermite积分的多点估计法计算得到的输出随机变量标准差的相对误差和均值均小于2.0%,该方法以27.9 s的计算时间和62610$·h^(-1)的期望成本实现了对系统运行方式的优化,优化后系统暂态稳定系数值为62.4。【结论】结果表明:在故障发生后,该方法在综合考虑多重不确定性因素的情况下,可以在较好地兼顾系统经济性的同时,以较低计算时间成本实现系统暂态稳定性的可靠提升,使系统过渡到暂态稳定状态,保障了电力系统的安全稳定运行。 展开更多
关键词 暂态稳定约束最优潮流 Gauss-Hermite积分 多点估计 粒子群算法 蚁群算法 影响因素 可再生能源 电力系统
在线阅读 下载PDF
基于能耗均衡的智能变电站无线传感网分簇路由策略研究
20
作者 张炜 田洪迅 +2 位作者 孙杨 解晓东 李昂 《电测与仪表》 北大核心 2025年第11期176-181,共6页
针对目前智能变电站综合防误系统无线传感器网络分簇路由策略存在的网络能耗高和寿命短等问题,提出将改进蚁群算法和改进遗传算法相结合用于无线传感器网络分簇路由策略。通过改进(高斯分布函数、精英选择策略、单点交叉、变异操作等)... 针对目前智能变电站综合防误系统无线传感器网络分簇路由策略存在的网络能耗高和寿命短等问题,提出将改进蚁群算法和改进遗传算法相结合用于无线传感器网络分簇路由策略。通过改进(高斯分布函数、精英选择策略、单点交叉、变异操作等)遗传算法来优化簇位置并降低通信能耗,通过改进(传输概率和信息素更新等)蚁群算法来寻找各簇头节点的传输路径。通过仿真对网络中存活节点数、剩余能量和接收数据进行了对比分析。结果表明,与一些文献的方法相比,所提方法可以有效均衡网络中的能耗。在网络中的存活节点数、剩余能量、接收数据包三个方面均有一定的提升,网络存活节点数分别提高了75%和20%,剩余能量分别提高了23.06%和2.12%,接收数据能力分别提高了39.17%和14.24%,具有一定的应用价值。 展开更多
关键词 智能变电站 综合防误系统 无线传感器网络 蚁群算法 遗传算法
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部