期刊文献+
共找到401篇文章
< 1 2 21 >
每页显示 20 50 100
A Short Review of Classification Algorithms Accuracy for Data Prediction in Data Mining Applications 被引量:1
1
作者 Ibrahim Ba’abbad Thamer Althubiti +2 位作者 Abdulmohsen Alharbi Khalid Alfarsi Saim Rasheed 《Journal of Data Analysis and Information Processing》 2021年第3期162-174,共13页
Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of informatio... Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of information that help</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> to market the appropriate products at the appropriate time. Moreover, services are considered recently as products. The development of education and health services </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span><span style="font-family:Verdana;"> depending on historical data. For the more, reducing online social media networks problems and crimes need a significant source of information. Data analysts need to use an efficient classification algorithm to predict the future of such businesses. However, dealing with a huge quantity of data requires great time to process. Data mining involves many useful techniques that are used to predict statistical data in a variety of business applications. The classification technique is one of the most widely used with a variety of algorithms. In this paper, various classification algorithms are revised in terms of accuracy in different areas of data mining applications. A comprehensive analysis is made after delegated reading of 20 papers in the literature. This paper aims to help data analysts to choose the most suitable classification algorithm for different business applications including business in general, online social media networks, agriculture, health, and education. Results show FFBPN is the most accurate algorithm in the business domain. The Random Forest algorithm is the most accurate in classifying online social networks (OSN) activities. Na<span style="white-space:nowrap;">&#239</span>ve Bayes algorithm is the most accurate to classify agriculture datasets. OneR is the most accurate algorithm to classify instances within the health domain. The C4.5 Decision Tree algorithm is the most accurate to classify students’ records to predict degree completion time. 展开更多
关键词 data Prediction Techniques ACCURACY classification algorithms data mining Applications
在线阅读 下载PDF
Research on the Multimedia Data Mining and Classification Algorithm based on the Database Optimization Techniques
2
作者 Hu Xiu 《International Journal of Technology Management》 2015年第11期58-60,共3页
In this research article, we analyze the multimedia data mining and classification algorithm based on database optimization techniques. Of high performance application requirements of various kinds are springing up co... In this research article, we analyze the multimedia data mining and classification algorithm based on database optimization techniques. Of high performance application requirements of various kinds are springing up constantly makes parallel computer system structure is valued by more and more common but the corresponding software system development lags far behind the development of the hardware system, it is more obvious in the field of database technology application. Multimedia mining is different from the low level of computer multimedia processing technology and the former focuses on the extracted from huge multimedia collection mode which focused on specific features of understanding or extraction from a single multimedia objects. Our research provides new paradigm for the methodology which will be meaningful and necessary. 展开更多
关键词 data mining classification algorithm database Optimization Multimedia Source.
在线阅读 下载PDF
Using Data Mining to Find Patterns in Ant Colony Algorithm Solutions to the Travelling Salesman Problem
3
作者 阎世梁 王银玲 《现代电子技术》 2007年第5期117-119,共3页
Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by ... Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation. 展开更多
关键词 数据挖掘 数据管理系统 数据库 数据分析
在线阅读 下载PDF
Study and Implementation of Web Mining Classification Algorithm Based on Building Tree of Detection Class Threshold
4
作者 陈俊杰 宋瀚涛 陆玉昌 《Journal of Beijing Institute of Technology》 EI CAS 2005年第2期126-129,共4页
A new classification algorithm for web mining is proposed on the basis of general classification algorithm for data mining in order to implement personalized information services. The building tree method of detecting... A new classification algorithm for web mining is proposed on the basis of general classification algorithm for data mining in order to implement personalized information services. The building tree method of detecting class threshold is used for construction of decision tree according to the concept of user expectation so as to find classification rules in different layers. Compared with the traditional C4.5 algorithm, the disadvantage of excessive adaptation in C4.5 has been improved so that classification results not only have much higher accuracy but also statistic meaning. 展开更多
关键词 data mining classification algorithm class threshold induced concept
在线阅读 下载PDF
IWD-Miner: A Novel Metaheuristic Algorithm for Medical Data Classification
5
作者 Sarab AlMuhaideb Reem BinGhannam +3 位作者 Nourah Alhelal Shatha Alduheshi Fatimah Alkhamees Raghad Alsuhaibani 《Computers, Materials & Continua》 SCIE EI 2021年第2期1329-1346,共18页
Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to ... Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to predict the associated diagnosis or prognosis.To gain experts’trust,the prediction and the reasoning behind it are equally important.Accordingly,we confine our research to learn rule-based models because they are transparent and comprehensible.One approach to MDC involves the use of metaheuristic(MH)algorithms.Here we report on the development and testing of a novel MH algorithm:IWD-Miner.This algorithm can be viewed as a fusion of Intelligent Water Drops(IWDs)and AntMiner+.It was subjected to a four-stage sensitivity analysis to optimize its performance.For this purpose,21 publicly available medical datasets were used from the Machine Learning Repository at the University of California Irvine.Interestingly,there were only limited differences in performance between IWDMiner variants which is suggestive of its robustness.Finally,using the same 21 datasets,we compared the performance of the optimized IWD-Miner against two extant algorithms,AntMiner+and J48.The experiments showed that both rival algorithms are considered comparable in the effectiveness to IWD-Miner,as confirmed by the Wilcoxon nonparametric statistical test.Results suggest that IWD-Miner is more efficient than AntMiner+as measured by the average number of fitness evaluations to a solution(1,386,621.30 vs.2,827,283.88 fitness evaluations,respectively).J48 exhibited higher accuracy on average than IWD-Miner(79.58 vs.73.65,respectively)but produced larger models(32.82 leaves vs.8.38 terms,respectively). 展开更多
关键词 ant colony optimization antMiner+ IWDs IWD-Miner J48 medical data classification metaheuristic algorithms swarm intelligence
在线阅读 下载PDF
Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification
6
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman Walid El-Shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2791-2814,共24页
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri... Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning. 展开更多
关键词 Association rule mining data classification healthcare data machine learning parameter tuning data mining feature selection MLARMC-HDMS COA stochastic gradient descent Apriori algorithm
在线阅读 下载PDF
Designing a Model to Study Data Mining in Distributed Environment 被引量:2
7
作者 Md. Abadur Rahman Masud Karim 《Journal of Data Analysis and Information Processing》 2021年第1期23-29,共7页
To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using d... To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using data mining to perform such tasks. Data mining techniques are used to find hidden information from large data source. Data mining is using for various fields: Artificial intelligence, Bank, health and medical, corruption, legal issues, corporate business, marketing, etc. Special interest is given to associate rules, data mining algorithms, decision tree and distributed approach. Data is becoming larger and spreading geographically. So it is difficult to find better result from only a central data source. For knowledge discovery, we have to work with distributed database. On the other hand, security and privacy considerations are also another factor for de-motivation of working with centralized data. For this reason, distributed database is essential for future processing. In this paper, we have proposed a framework to study data mining in distributed environment. The paper presents a framework to bring out actionable knowledge. We have shown some level by which we can generate actionable knowledge. Possible tools and technique for these levels are discussed. 展开更多
关键词 data mining Distributed database Knowledge Discovery classification algorithm
在线阅读 下载PDF
A systematic review:Detecting phishing websites using data mining models
8
作者 Dina Jibat Sarah Jamjoom +1 位作者 Qasem Abu Al-Haija Abdallah Qusef 《Intelligent and Converged Networks》 EI 2023年第4期326-341,共16页
As internet technology use is on the rise globally,phishing constitutes a considerable share of the threats that may attack individuals and organizations,leading to significant losses from personal and confidential in... As internet technology use is on the rise globally,phishing constitutes a considerable share of the threats that may attack individuals and organizations,leading to significant losses from personal and confidential information to substantial financial losses.Thus,much research has been dedicated in recent years to developing effective and robust mechanisms to enhance the ability to trace illegitimate web pages and to distinguish them from non-phishing sites as accurately as possible.Aiming to conclude whether a universally accepted model can detect phishing attempts with 100%accuracy,we conduct a systematic review of research carried out in 2018-2021 published in well-known journals published by Elsevier,IEEE,Springer,and Emerald.Those researchers studied different Data Mining(DM)algorithms,some of which created a whole new model,while others compared the performance of several algorithms.Some studies combined two or more algorithms to enhance the detection performance.Results reveal that while most algorithms achieve accuracies higher than 90%,only some specific models can achieve 100%accurate results. 展开更多
关键词 PHISHING data mining machine learning algorithm classification
原文传递
Unstructured Big Data Threat Intelligence Parallel Mining Algorithm
9
作者 Zhihua Li Xinye Yu +1 位作者 Tao Wei Junhao Qian 《Big Data Mining and Analytics》 EI CSCD 2024年第2期531-546,共16页
To efficiently mine threat intelligence from the vast array of open-source cybersecurity analysis reports on the web,we have developed the Parallel Deep Forest-based Multi-Label Classification(PDFMLC)algorithm.Initial... To efficiently mine threat intelligence from the vast array of open-source cybersecurity analysis reports on the web,we have developed the Parallel Deep Forest-based Multi-Label Classification(PDFMLC)algorithm.Initially,open-source cybersecurity analysis reports are collected and converted into a standardized text format.Subsequently,five tactics category labels are annotated,creating a multi-label dataset for tactics classification.Addressing the limitations of low execution efficiency and scalability in the sequential deep forest algorithm,our PDFMLC algorithm employs broadcast variables and the Lempel-Ziv-Welch(LZW)algorithm,significantly enhancing its acceleration ratio.Furthermore,our proposed PDFMLC algorithm incorporates label mutual information from the established dataset as input features.This captures latent label associations,significantly improving classification accuracy.Finally,we present the PDFMLC-based Threat Intelligence Mining(PDFMLC-TIM)method.Experimental results demonstrate that the PDFMLC algorithm exhibits exceptional node scalability and execution efficiency.Simultaneously,the PDFMLC-TIM method proficiently conducts text classification on cybersecurity analysis reports,extracting tactics entities to construct comprehensive threat intelligence.As a result,successfully formatted STIX2.1 threat intelligence is established. 展开更多
关键词 unstructured big data mining parallel deep forest multi-label classification algorithm threat intelligence
原文传递
基于阻塞栅格地图的煤矿救援机器人路径规划 被引量:1
10
作者 邵小强 刘明乾 +3 位作者 马博 李浩 吕植越 韩泽辉 《煤炭科学技术》 北大核心 2025年第7期249-261,共13页
针对矿难发生后,煤矿救援机器人面对井下复杂环境使用路径规划算法耗时太长,路径规划过程中产生冗余点过多且易陷入死锁的问题,提出一种基于类型匹配的栅格地图阻塞算法,该算法可通过迭代阻塞以减少栅格地图中无需探索的可通行节点数量... 针对矿难发生后,煤矿救援机器人面对井下复杂环境使用路径规划算法耗时太长,路径规划过程中产生冗余点过多且易陷入死锁的问题,提出一种基于类型匹配的栅格地图阻塞算法,该算法可通过迭代阻塞以减少栅格地图中无需探索的可通行节点数量。算法的阻塞过程利用定义的栅格节点和其邻节点构成的3×3子图类型与栅格地图进行匹配。首先根据路径规划算法的寻路特点定义可阻塞栅格类型和不可阻塞栅格类型;然后按照各种类型特征进行建模,为每种类型设置权重和偏置;最后将各类型子图与初始栅格地图通过二维卷积操作进行匹配以阻塞无需拓展节点,在使用基于栅格地图的路径规划算法之前对输入栅格地图进行阻塞处理。阻塞节点不会断开原始栅格地图中存在最小成本路径。结果表明:该算法可应用于各种栅格环境地图中,在真实煤矿井下栅格地图环境下,与单独使用路径规划算法相比,使用本文算法结合A*算法与仅使用A*算法相比,该算法结合A*算法路径规划总时间减少60.0%,拓展节点数量减少60.4%;结合蚁群算法与仅使用蚁群算法相比,该算法结合蚁群算法路径规划总时间减少55.8%,迭代次数减少53.7%。所提算法极大缩小了路径规划时间,解决了路径规划死锁问题,在复杂环境地图中优势明显,保证事故救援的及时性。 展开更多
关键词 煤矿救援机器人 栅格地图 阻塞栅格地图 A*算法 蚁群算法
在线阅读 下载PDF
矿井多人员定位轨迹的预警分类方法研究 被引量:1
11
作者 蔡安江 徐海涛 +1 位作者 程东波 刘锋伟 《金属矿山》 北大核心 2025年第1期243-249,共7页
为解决矿井综采操作区域多人员定位轨迹的预警分类问题,提出了一种基于超宽带(Ultra Wide Band,UWB)的多人员定位轨迹数据的预警分类方法。该方法首先对采集的UWB定位轨迹数据进行预处理;然后利用UWB定位轨迹数据中的人员ID、坐标、时... 为解决矿井综采操作区域多人员定位轨迹的预警分类问题,提出了一种基于超宽带(Ultra Wide Band,UWB)的多人员定位轨迹数据的预警分类方法。该方法首先对采集的UWB定位轨迹数据进行预处理;然后利用UWB定位轨迹数据中的人员ID、坐标、时间、求救信号等特征参数作为UWB人员定位轨迹预警分类模型的输入指标,以人员的预警行为类别作为输出指标,对预警分类模型进行拟合训练,基于人员4级违规预警机制与专家建议设置预警阈值;最后采用随机森林算法对多人员UWB定位轨迹数据进行人员行为预警识别和分类。研究表明:该方法能够对区域人员作业超员、工作超时、作业求救、定位轨迹缺失和作业越界等行为进行有效预警并准确分类,能够消除隐患,提高矿山人员管理效率和生产作业的安全性。 展开更多
关键词 矿井定位 多人员 预警分类 UWB定位轨迹数据 随机森林算法
在线阅读 下载PDF
基于优化蚁群算法的露天矿无人矿卡绕跨并行类三维路径规划 被引量:1
12
作者 高明宇 鲍久圣 +5 位作者 阴妍 胡德平 张可琨 朱晨钟 王茂森 王凯 《煤炭科学技术》 北大核心 2025年第S1期399-411,共13页
随着我国矿山智能化建设的不断推进,运输环节无人化已发展成为智慧矿山系统的重要组成部分。露天矿装卸载区等场景通常为非结构化作业区域,地形环境复杂且存在较多障碍物,无人矿卡作为露天矿物料运输的主要工具,由于其体型、载重大等特... 随着我国矿山智能化建设的不断推进,运输环节无人化已发展成为智慧矿山系统的重要组成部分。露天矿装卸载区等场景通常为非结构化作业区域,地形环境复杂且存在较多障碍物,无人矿卡作为露天矿物料运输的主要工具,由于其体型、载重大等特性,在该场景下的路径规划具有较大难度。针对无人矿卡在路径规划时绕行过多导致行驶效率低、路径质量差的问题,提出了一种基于优化蚁群算法的“类三维”路径规划方法,并通过仿真和试验验证了算法的有效性。首先,设计了一种基于激光点云的类三维地图构建方法,对滤波和配准后的有效点云数据进行栅格化处理并计算栅格高度,得到了包含障碍物高度信息的类三维地图。其次,以无人矿卡为研究对象,设计了一种三维碰撞检测方法,可在横向和纵向上分别判断障碍物与车体的冲突关系,并根据矿卡结构特征与道路工况制定了一种绕跨并行通行策略,直接跨越对车辆无威胁的障碍物,可在保证安全性的前提下有效提高矿卡的通行效率。然后,优化蚁群算法的初始信息素分布,提高算法的目标导向性,在改进信息素更新策略中考虑最优最差路径,以提高路径搜索的性能和效率;引入自适应多步长移动方式,并设计了一种引入跨障评价的多目标启发函数,仿真结果发现:优化后的蚁群算法在较少和较多障碍物场景搜索到的路径长度分别缩短了16.53%、16.79%,且路径拐点的减少有效提高了路径质量,使得算法生成的路径更符合实际需求。最后,通过搭建多障碍物场景模拟露天矿非结构化区域开展实车模拟试验,结果表明:搭载优化蚁群算法的无人矿卡试验车能跨越部分障碍物,在较少障碍物场景中的通行效率提升20.53%,在较多障碍物场景中的通行效率提升31.62%,且未与障碍物发生刮蹭。因此,所提出的基于优化蚁群算法的绕跨并行类三维路径规划方法可有效缩短路径长度,提高搜索效率与路径质量,在保证安全性的前提下充分发挥无人矿卡宽体高底盘特性。研究结果为露天矿卡无人驾驶技术开发及应用提供了理论参考。 展开更多
关键词 露天矿 无人矿卡 路径规划 类三维地图 优化蚁群算法
在线阅读 下载PDF
基于改进Ant-miner算法的分类规则挖掘 被引量:3
13
作者 肖菁 梁燕辉 《计算机工程》 CAS CSCD 2012年第17期162-165,共4页
为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点... 为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点变异,由此扩大规则的搜索空间,提高规则的预测准确度。在Ant-miner算法的信息素更新公式中加入挥发系数,使其更接近现实蚂蚁的觅食行为,防止算法过早收敛。基于UCI标准数据的实验结果表明,该算法相比传统Ant-miner算法具有更高的预测准确度。 展开更多
关键词 ant-miner算法 分类规则挖掘 数据挖掘 蚁群优化 规则修剪策略
在线阅读 下载PDF
基于分类算法的定制家具客户需求信息处理 被引量:1
14
作者 彭淑勤 熊先青 《林业工程学报》 北大核心 2025年第1期168-176,共9页
为实现定制家具企业客户需求快速响应,利用机器学习算法(贝叶斯分类、随机森林分类及决策树算法)对定制家具客户订单进行分类实验。选取M企业4852个客户订单,通过客户订单信息划分属性变量及标签变量对客户信息进行编码;并通过准确率、... 为实现定制家具企业客户需求快速响应,利用机器学习算法(贝叶斯分类、随机森林分类及决策树算法)对定制家具客户订单进行分类实验。选取M企业4852个客户订单,通过客户订单信息划分属性变量及标签变量对客户信息进行编码;并通过准确率、精确率、召回率及F1分数值对客户需求数据进行评价,实验结果:在客户需求信息分类二分类数据集中,贝叶斯分类准确率、精准率及召回率3个性能指标分别比随机森林分类高17.54,34.60和35.45个百分点,比决策树算法高4.67,9.02和15.67个百分点;在客户需求信息分类多分类数据集中,贝叶斯分类的准确率、精准率、召回率及F1分数分别为89.4%,82.2%,93.1%和86.4%,综合4项评价指标比其他两种分类法更优;在二分类及多分类中贝叶斯分类的综合性能更优。据此,本研究提出一种基于贝叶斯分类算法的定制家具客户需求信息分类方法,为定制家具客户需求响应平台设计提供理论支持。 展开更多
关键词 定制家具 客户需求信息处理 分类算法 数据挖掘 评价指标
在线阅读 下载PDF
煤矿通风系统反风效果动态模拟及风流调控参数库构建 被引量:1
15
作者 王智欣 刘立仁 +3 位作者 陈博 袁强 李静 董沙沙 《工矿自动化》 北大核心 2025年第7期27-35,共9页
针对矿井火灾事故中传统反风调控存在决策滞后、参数精度不足的问题,提出一种煤矿通风系统反风效果动态模拟及风流调控参数库构建方法。以陕西省榆林市三道沟煤矿通风系统为例,通过三维建模技术建立巷道拓扑关系数据库,采用改进的遗传-... 针对矿井火灾事故中传统反风调控存在决策滞后、参数精度不足的问题,提出一种煤矿通风系统反风效果动态模拟及风流调控参数库构建方法。以陕西省榆林市三道沟煤矿通风系统为例,通过三维建模技术建立巷道拓扑关系数据库,采用改进的遗传-蚁群融合算法进行通风网络解算,实现火灾时期井下风流场分布的高精度动态仿真。通过多场景火灾模拟,建立了反风可行性评价体系,重点分析了烟流扩散路径、关键节点风速变异系数和反风达标时间等参数。基于模拟数据构建层次化反风流调控参数库,采用关联性编码技术实现巷道编号-火灾坐标-调控参数的智能映射。实际应用表明,该参数库使反风操作准备时间减少了68%,风流稳定性标准差由±15.3%降至±5.7%,既提高了矿井对突发事件的应急响应效率,也为矿井智能通风系统在灾变应急中的应用提供了新范式。 展开更多
关键词 矿井智能通风 反风模拟解算 反风风流调控 参数库 遗传-蚁群融合算法
在线阅读 下载PDF
基于改进蚁群算法的煤矿巡检机器人路径规划
16
作者 孙强 孙霞 《煤矿机械》 2025年第4期199-202,共4页
机器人巡检是保证煤矿开采过程安全的重要措施。针对目前煤矿用机器人巡检时采用固定步长和串行方式生成巡检路径效率低、路径长等问题,从优化算法的启发函数和信息素挥发系数入手,提出了一种基于改进蚁群算法的路径规划方法。仿真结果... 机器人巡检是保证煤矿开采过程安全的重要措施。针对目前煤矿用机器人巡检时采用固定步长和串行方式生成巡检路径效率低、路径长等问题,从优化算法的启发函数和信息素挥发系数入手,提出了一种基于改进蚁群算法的路径规划方法。仿真结果表明,在保证有效躲避障碍物的前提下,改进算法相对于传统算法,平均迭代次数减少31,收敛速度更快;平均路径长度减少2.24,巡检路径更短;平均拐点数量减少7,路径更加平滑。该方法规划出的路径性能更佳。 展开更多
关键词 煤矿巡检机器人 改进蚁群算法 路径规划 栅格地图
原文传递
基于KNN算法的电子档案信息文本自动分类方法 被引量:3
17
作者 杨易木 《办公自动化》 2025年第5期14-16,共3页
文章深入探讨文本自动分类的领域,聚焦于一种广泛应用的基于内容的分类技术——KNN(K-Nearest Neighbors)算法,对其原理和应用进行重点介绍。采用KNN算法结合优化的词特征权重评估与文本相似性计算技术,实现文本的自动分类。经过KNN分... 文章深入探讨文本自动分类的领域,聚焦于一种广泛应用的基于内容的分类技术——KNN(K-Nearest Neighbors)算法,对其原理和应用进行重点介绍。采用KNN算法结合优化的词特征权重评估与文本相似性计算技术,实现文本的自动分类。经过KNN分类处理后,分类结果的准确率和召回率均显著提升。 展开更多
关键词 KNN算法 文本自动分类 数据挖掘
在线阅读 下载PDF
改进模糊聚类下电力多源异构数据动态挖掘 被引量:1
18
作者 王震峰 《电子设计工程》 2025年第9期125-129,134,共6页
为了提高电力多源异构数据动态挖掘效果及结果可靠性,采用了改进模糊聚类方法。引入隶属度函数,以更好地描述电力数据的不确定性。为了更准确地描述多源异构电力数据样本间的相似度,利用加权马氏距离替代模糊C均值聚类算法中的欧氏距离... 为了提高电力多源异构数据动态挖掘效果及结果可靠性,采用了改进模糊聚类方法。引入隶属度函数,以更好地描述电力数据的不确定性。为了更准确地描述多源异构电力数据样本间的相似度,利用加权马氏距离替代模糊C均值聚类算法中的欧氏距离,从而提升动态挖掘的精度。此外,结合蚁群算法,确定模糊C均值聚类算法的初始聚类中心与聚类中心数量,进一步改进算法,并成功应用于电力多源异构数据的动态挖掘。通过实验验证,该方法在电力系统数据集中能够有效地进行动态挖掘,分析电力用户的用电模式,并且在不同异常值比例下均表现出较高的斯皮尔曼等级相关系数,证明了其动态挖掘结果的可靠性。 展开更多
关键词 改进模糊聚类 电力数据 多源异构 动态挖掘 马氏距离 蚁群算法
在线阅读 下载PDF
Ant-Miner算法研究和性能优化
19
作者 邵晓艳 王艳 +1 位作者 李玲玲 胡欣茹 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期154-157,182,共5页
首先阐述了Ant-Miner算法的实现原理,然后从不同角度对Ant-Miner算法进行分析,并针对Ant-Miner算法的不足之处提出了相应的改进和优化方案,最后通过实验证明优化后的算法能达到更好的效果.
关键词 数据挖掘 蚁群算法 分类规则
在线阅读 下载PDF
基于优化深度置信网络的煤矿事故预警方法
20
作者 胡浩然 孙霞 《工业控制计算机》 2025年第1期36-38,共3页
为了对煤矿瓦斯气体泄漏事故进行准确快速的预警,提出了一种基于蝙蝠算法优化过的深度置信网络(Bat Algorithm-Deep Belief Network,BA-DBN)的多传感器数据融合预警方法。针对大部分煤矿等配备精密的传感器设备、能够精确测量各气体浓... 为了对煤矿瓦斯气体泄漏事故进行准确快速的预警,提出了一种基于蝙蝠算法优化过的深度置信网络(Bat Algorithm-Deep Belief Network,BA-DBN)的多传感器数据融合预警方法。针对大部分煤矿等配备精密的传感器设备、能够精确测量各气体浓度参数的应用场景,考虑采用适用于一维数组分类的深度置信网络作为煤矿事故预警的算法,以矿井巷道内各气体浓度参数作为算法输入,对矿井内多个传感器数据进行融合,以实现矿井内环境状态分类,并通过蝙蝠算法优化深度置信网络隐含层中各神经元的数量,提高分类准确率。实验结果表明,系统在传感器数据分类方面的准确率得到明显提高,具有更优秀的分类效果。 展开更多
关键词 煤矿预警 LORA 数据融合 蝙蝠算法 DBN 数据分类
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部