Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of informatio...Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of information that help</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> to market the appropriate products at the appropriate time. Moreover, services are considered recently as products. The development of education and health services </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span><span style="font-family:Verdana;"> depending on historical data. For the more, reducing online social media networks problems and crimes need a significant source of information. Data analysts need to use an efficient classification algorithm to predict the future of such businesses. However, dealing with a huge quantity of data requires great time to process. Data mining involves many useful techniques that are used to predict statistical data in a variety of business applications. The classification technique is one of the most widely used with a variety of algorithms. In this paper, various classification algorithms are revised in terms of accuracy in different areas of data mining applications. A comprehensive analysis is made after delegated reading of 20 papers in the literature. This paper aims to help data analysts to choose the most suitable classification algorithm for different business applications including business in general, online social media networks, agriculture, health, and education. Results show FFBPN is the most accurate algorithm in the business domain. The Random Forest algorithm is the most accurate in classifying online social networks (OSN) activities. Na<span style="white-space:nowrap;">ï</span>ve Bayes algorithm is the most accurate to classify agriculture datasets. OneR is the most accurate algorithm to classify instances within the health domain. The C4.5 Decision Tree algorithm is the most accurate to classify students’ records to predict degree completion time.展开更多
In this research article, we analyze the multimedia data mining and classification algorithm based on database optimization techniques. Of high performance application requirements of various kinds are springing up co...In this research article, we analyze the multimedia data mining and classification algorithm based on database optimization techniques. Of high performance application requirements of various kinds are springing up constantly makes parallel computer system structure is valued by more and more common but the corresponding software system development lags far behind the development of the hardware system, it is more obvious in the field of database technology application. Multimedia mining is different from the low level of computer multimedia processing technology and the former focuses on the extracted from huge multimedia collection mode which focused on specific features of understanding or extraction from a single multimedia objects. Our research provides new paradigm for the methodology which will be meaningful and necessary.展开更多
Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by ...Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation.展开更多
A new classification algorithm for web mining is proposed on the basis of general classification algorithm for data mining in order to implement personalized information services. The building tree method of detecting...A new classification algorithm for web mining is proposed on the basis of general classification algorithm for data mining in order to implement personalized information services. The building tree method of detecting class threshold is used for construction of decision tree according to the concept of user expectation so as to find classification rules in different layers. Compared with the traditional C4.5 algorithm, the disadvantage of excessive adaptation in C4.5 has been improved so that classification results not only have much higher accuracy but also statistic meaning.展开更多
Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to ...Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to predict the associated diagnosis or prognosis.To gain experts’trust,the prediction and the reasoning behind it are equally important.Accordingly,we confine our research to learn rule-based models because they are transparent and comprehensible.One approach to MDC involves the use of metaheuristic(MH)algorithms.Here we report on the development and testing of a novel MH algorithm:IWD-Miner.This algorithm can be viewed as a fusion of Intelligent Water Drops(IWDs)and AntMiner+.It was subjected to a four-stage sensitivity analysis to optimize its performance.For this purpose,21 publicly available medical datasets were used from the Machine Learning Repository at the University of California Irvine.Interestingly,there were only limited differences in performance between IWDMiner variants which is suggestive of its robustness.Finally,using the same 21 datasets,we compared the performance of the optimized IWD-Miner against two extant algorithms,AntMiner+and J48.The experiments showed that both rival algorithms are considered comparable in the effectiveness to IWD-Miner,as confirmed by the Wilcoxon nonparametric statistical test.Results suggest that IWD-Miner is more efficient than AntMiner+as measured by the average number of fitness evaluations to a solution(1,386,621.30 vs.2,827,283.88 fitness evaluations,respectively).J48 exhibited higher accuracy on average than IWD-Miner(79.58 vs.73.65,respectively)but produced larger models(32.82 leaves vs.8.38 terms,respectively).展开更多
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri...Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning.展开更多
To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using d...To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using data mining to perform such tasks. Data mining techniques are used to find hidden information from large data source. Data mining is using for various fields: Artificial intelligence, Bank, health and medical, corruption, legal issues, corporate business, marketing, etc. Special interest is given to associate rules, data mining algorithms, decision tree and distributed approach. Data is becoming larger and spreading geographically. So it is difficult to find better result from only a central data source. For knowledge discovery, we have to work with distributed database. On the other hand, security and privacy considerations are also another factor for de-motivation of working with centralized data. For this reason, distributed database is essential for future processing. In this paper, we have proposed a framework to study data mining in distributed environment. The paper presents a framework to bring out actionable knowledge. We have shown some level by which we can generate actionable knowledge. Possible tools and technique for these levels are discussed.展开更多
As internet technology use is on the rise globally,phishing constitutes a considerable share of the threats that may attack individuals and organizations,leading to significant losses from personal and confidential in...As internet technology use is on the rise globally,phishing constitutes a considerable share of the threats that may attack individuals and organizations,leading to significant losses from personal and confidential information to substantial financial losses.Thus,much research has been dedicated in recent years to developing effective and robust mechanisms to enhance the ability to trace illegitimate web pages and to distinguish them from non-phishing sites as accurately as possible.Aiming to conclude whether a universally accepted model can detect phishing attempts with 100%accuracy,we conduct a systematic review of research carried out in 2018-2021 published in well-known journals published by Elsevier,IEEE,Springer,and Emerald.Those researchers studied different Data Mining(DM)algorithms,some of which created a whole new model,while others compared the performance of several algorithms.Some studies combined two or more algorithms to enhance the detection performance.Results reveal that while most algorithms achieve accuracies higher than 90%,only some specific models can achieve 100%accurate results.展开更多
To efficiently mine threat intelligence from the vast array of open-source cybersecurity analysis reports on the web,we have developed the Parallel Deep Forest-based Multi-Label Classification(PDFMLC)algorithm.Initial...To efficiently mine threat intelligence from the vast array of open-source cybersecurity analysis reports on the web,we have developed the Parallel Deep Forest-based Multi-Label Classification(PDFMLC)algorithm.Initially,open-source cybersecurity analysis reports are collected and converted into a standardized text format.Subsequently,five tactics category labels are annotated,creating a multi-label dataset for tactics classification.Addressing the limitations of low execution efficiency and scalability in the sequential deep forest algorithm,our PDFMLC algorithm employs broadcast variables and the Lempel-Ziv-Welch(LZW)algorithm,significantly enhancing its acceleration ratio.Furthermore,our proposed PDFMLC algorithm incorporates label mutual information from the established dataset as input features.This captures latent label associations,significantly improving classification accuracy.Finally,we present the PDFMLC-based Threat Intelligence Mining(PDFMLC-TIM)method.Experimental results demonstrate that the PDFMLC algorithm exhibits exceptional node scalability and execution efficiency.Simultaneously,the PDFMLC-TIM method proficiently conducts text classification on cybersecurity analysis reports,extracting tactics entities to construct comprehensive threat intelligence.As a result,successfully formatted STIX2.1 threat intelligence is established.展开更多
文摘Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of information that help</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> to market the appropriate products at the appropriate time. Moreover, services are considered recently as products. The development of education and health services </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span><span style="font-family:Verdana;"> depending on historical data. For the more, reducing online social media networks problems and crimes need a significant source of information. Data analysts need to use an efficient classification algorithm to predict the future of such businesses. However, dealing with a huge quantity of data requires great time to process. Data mining involves many useful techniques that are used to predict statistical data in a variety of business applications. The classification technique is one of the most widely used with a variety of algorithms. In this paper, various classification algorithms are revised in terms of accuracy in different areas of data mining applications. A comprehensive analysis is made after delegated reading of 20 papers in the literature. This paper aims to help data analysts to choose the most suitable classification algorithm for different business applications including business in general, online social media networks, agriculture, health, and education. Results show FFBPN is the most accurate algorithm in the business domain. The Random Forest algorithm is the most accurate in classifying online social networks (OSN) activities. Na<span style="white-space:nowrap;">ï</span>ve Bayes algorithm is the most accurate to classify agriculture datasets. OneR is the most accurate algorithm to classify instances within the health domain. The C4.5 Decision Tree algorithm is the most accurate to classify students’ records to predict degree completion time.
文摘In this research article, we analyze the multimedia data mining and classification algorithm based on database optimization techniques. Of high performance application requirements of various kinds are springing up constantly makes parallel computer system structure is valued by more and more common but the corresponding software system development lags far behind the development of the hardware system, it is more obvious in the field of database technology application. Multimedia mining is different from the low level of computer multimedia processing technology and the former focuses on the extracted from huge multimedia collection mode which focused on specific features of understanding or extraction from a single multimedia objects. Our research provides new paradigm for the methodology which will be meaningful and necessary.
文摘Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation.
文摘A new classification algorithm for web mining is proposed on the basis of general classification algorithm for data mining in order to implement personalized information services. The building tree method of detecting class threshold is used for construction of decision tree according to the concept of user expectation so as to find classification rules in different layers. Compared with the traditional C4.5 algorithm, the disadvantage of excessive adaptation in C4.5 has been improved so that classification results not only have much higher accuracy but also statistic meaning.
基金a grant from the“Research Center of the Female Scientific and Medical Colleges”,the Deanship of Scientific Research,King Saud University.
文摘Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to predict the associated diagnosis or prognosis.To gain experts’trust,the prediction and the reasoning behind it are equally important.Accordingly,we confine our research to learn rule-based models because they are transparent and comprehensible.One approach to MDC involves the use of metaheuristic(MH)algorithms.Here we report on the development and testing of a novel MH algorithm:IWD-Miner.This algorithm can be viewed as a fusion of Intelligent Water Drops(IWDs)and AntMiner+.It was subjected to a four-stage sensitivity analysis to optimize its performance.For this purpose,21 publicly available medical datasets were used from the Machine Learning Repository at the University of California Irvine.Interestingly,there were only limited differences in performance between IWDMiner variants which is suggestive of its robustness.Finally,using the same 21 datasets,we compared the performance of the optimized IWD-Miner against two extant algorithms,AntMiner+and J48.The experiments showed that both rival algorithms are considered comparable in the effectiveness to IWD-Miner,as confirmed by the Wilcoxon nonparametric statistical test.Results suggest that IWD-Miner is more efficient than AntMiner+as measured by the average number of fitness evaluations to a solution(1,386,621.30 vs.2,827,283.88 fitness evaluations,respectively).J48 exhibited higher accuracy on average than IWD-Miner(79.58 vs.73.65,respectively)but produced larger models(32.82 leaves vs.8.38 terms,respectively).
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number RI-44-0444.
文摘Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning.
文摘To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using data mining to perform such tasks. Data mining techniques are used to find hidden information from large data source. Data mining is using for various fields: Artificial intelligence, Bank, health and medical, corruption, legal issues, corporate business, marketing, etc. Special interest is given to associate rules, data mining algorithms, decision tree and distributed approach. Data is becoming larger and spreading geographically. So it is difficult to find better result from only a central data source. For knowledge discovery, we have to work with distributed database. On the other hand, security and privacy considerations are also another factor for de-motivation of working with centralized data. For this reason, distributed database is essential for future processing. In this paper, we have proposed a framework to study data mining in distributed environment. The paper presents a framework to bring out actionable knowledge. We have shown some level by which we can generate actionable knowledge. Possible tools and technique for these levels are discussed.
文摘As internet technology use is on the rise globally,phishing constitutes a considerable share of the threats that may attack individuals and organizations,leading to significant losses from personal and confidential information to substantial financial losses.Thus,much research has been dedicated in recent years to developing effective and robust mechanisms to enhance the ability to trace illegitimate web pages and to distinguish them from non-phishing sites as accurately as possible.Aiming to conclude whether a universally accepted model can detect phishing attempts with 100%accuracy,we conduct a systematic review of research carried out in 2018-2021 published in well-known journals published by Elsevier,IEEE,Springer,and Emerald.Those researchers studied different Data Mining(DM)algorithms,some of which created a whole new model,while others compared the performance of several algorithms.Some studies combined two or more algorithms to enhance the detection performance.Results reveal that while most algorithms achieve accuracies higher than 90%,only some specific models can achieve 100%accurate results.
文摘To efficiently mine threat intelligence from the vast array of open-source cybersecurity analysis reports on the web,we have developed the Parallel Deep Forest-based Multi-Label Classification(PDFMLC)algorithm.Initially,open-source cybersecurity analysis reports are collected and converted into a standardized text format.Subsequently,five tactics category labels are annotated,creating a multi-label dataset for tactics classification.Addressing the limitations of low execution efficiency and scalability in the sequential deep forest algorithm,our PDFMLC algorithm employs broadcast variables and the Lempel-Ziv-Welch(LZW)algorithm,significantly enhancing its acceleration ratio.Furthermore,our proposed PDFMLC algorithm incorporates label mutual information from the established dataset as input features.This captures latent label associations,significantly improving classification accuracy.Finally,we present the PDFMLC-based Threat Intelligence Mining(PDFMLC-TIM)method.Experimental results demonstrate that the PDFMLC algorithm exhibits exceptional node scalability and execution efficiency.Simultaneously,the PDFMLC-TIM method proficiently conducts text classification on cybersecurity analysis reports,extracting tactics entities to construct comprehensive threat intelligence.As a result,successfully formatted STIX2.1 threat intelligence is established.