Based on the state transition rule, the local updating rule and the global updating rule of ant colony algorithm, we propose an improved ant colony algorithm of the least\|cost quality of service (QoS) unicast rou...Based on the state transition rule, the local updating rule and the global updating rule of ant colony algorithm, we propose an improved ant colony algorithm of the least\|cost quality of service (QoS) unicast routing. The algorithm is used for solving the routing problem with delay, delay jitter, bandwidth, and packet loss\|constrained. In the simulation, about 52.33% ants find the successful QoS routing , and converge to the best. It is proved that the algorithm is efficient and effective.展开更多
Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed sy...Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.展开更多
An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although ...An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although the proposed algorithm has exponential time complexity in the worst case, it can get the running results quickly in practical application. When the scale of network increases, the algorithm can efficiently control the size of search space by constraint conditions and prior queue. The results of simulation show that successful request ratio ( r ) of efficient algorithm for multi-constrained optimal path (EAMCOP) is better than that of heuristic algorithm for multi-constrained optimal path (H-MCOP), but average computing time ( t ) of EAMCOP is far less than that of H-MCOP. And it can be seen that the computing time of EAMCOP is only one fourth of that of H-MCOP in Advanced Research Projects Agency Network (ARPANet) topology.展开更多
We investigate a kind of vehicle routing problem with constraints(VRPC)in the car-sharing mobility environment,where the problem is based on user orders,and each order has a reservation time limit and two location poi...We investigate a kind of vehicle routing problem with constraints(VRPC)in the car-sharing mobility environment,where the problem is based on user orders,and each order has a reservation time limit and two location point transitions,origin and destination.It is a typical extended vehicle routing problem(VRP)with both time and space constraints.We consider the VRPC problem characteristics and establish a vehicle scheduling model to minimize operating costs and maximize user(or passenger)experience.To solve the scheduling model more accurately,a spatiotemporal distance representation function is defined based on the temporal and spatial properties of the customer,and a spatiotemporal distance embedded hybrid ant colony algorithm(HACA-ST)is proposed.The algorithm can be divided into two stages.First,through spatiotemporal clustering,the spatiotemporal distance between users is the main measure used to classify customers in categories,which helps provide heuristic information for problem solving.Second,an improved ant colony algorithm(ACO)is proposed to optimize the solution by combining a labor division strategy and the spatiotemporal distance function to obtain the final scheduling route.Computational analysis is carried out based on existing data sets and simulated urban instances.Compared with other heuristic algorithms,HACA-ST reduces the length of the shortest route by 2%–14%in benchmark instances.In VRPC testing instances,concerning the combined cost,HACA-ST has competitive cost compared to existing VRP-related algorithms.Finally,we provide two actual urban scenarios to further verify the effectiveness of the proposed algorithm.展开更多
软件定义网络(Software Defined Network,SDN)流量具有动态性,链路质量、剩余带宽和节点负载等参数会频繁波动,这使得传统基于静态路径的路由选择方法难以有效应对,易引发网络拥塞、服务质量降低甚至服务中断等问题。为提高网络资源利...软件定义网络(Software Defined Network,SDN)流量具有动态性,链路质量、剩余带宽和节点负载等参数会频繁波动,这使得传统基于静态路径的路由选择方法难以有效应对,易引发网络拥塞、服务质量降低甚至服务中断等问题。为提高网络资源利用率和网络性能,提出一种在SDN网络下考虑多维度QoS约束的动态路由选择方法。通过SDN收集各个链路的QoS参数特征,构建综合考虑链路质量、剩余带宽与节点负载因素的传输代价模型。依据传输代价模型选定路径具有最小的传输代价为目标,建立一个最小化路径成本的多约束SDN网络动态路由模型,最大化网络吞吐量。为了应对不同优先级数据流对多维度QoS需求,引入蚁群算法对该模型智能决策获取最优路径,从而实现SDN网络的动态路由选择优化。实验分析表明,所提方法在不同网络负载率下的丢包率保持在0.3%以下,并且显著提升了平均带宽利用率和链路利用率。展开更多
为了提高网络路由性能,提出并设计了一种基于遗传-蚁群优化算法的服务质量(quality of service,QoS)组播路由算法。首先,设计了自适应变频采集策略用于采集网络与节点信息,以此获得网络和节点的状态,为后续路由优化提供数据支持;其次,...为了提高网络路由性能,提出并设计了一种基于遗传-蚁群优化算法的服务质量(quality of service,QoS)组播路由算法。首先,设计了自适应变频采集策略用于采集网络与节点信息,以此获得网络和节点的状态,为后续路由优化提供数据支持;其次,计算路径代价,将路径代价最小作为优化目标,建立QoS组播路由优化模型,并设置相关约束条件;最后,结合遗传算法和蚁群算法提出一种遗传-蚁群优化算法求解上述模型,输出最优路径,完成路由优化。实验结果表明,所提算法可有效降低路径长度与路径代价,提高搜索效率与路由请求成功率,优化后的路由时延抖动较小。展开更多
In order to establish a route supporting multi-constrained quality of service(QoS), increase network throughput and reduce network energy consumption, an improved ant colony-based multi-constrained QoS energy-saving...In order to establish a route supporting multi-constrained quality of service(QoS), increase network throughput and reduce network energy consumption, an improved ant colony-based multi-constrained QoS energy-saving routing algorithm(IAMQER) is proposed. The ant colony algorithm, as one of the available heuristic algorithms, is used to find the optimal route from source node to destination node. The proposed IAMQER algorithm, which is based on the analysis of local node information such as node queue length, node forwarding number of data packets and node residual energy, balances the relationship between the network throughput and the energy consumption, thus improving the performance of network in multi-constrained QoS routing. Simulation results show that this IAMQER algorithm can find the QoS route that reduce average energy consumption and improves network packet delivery ratio under the end-to-end delay and packet loss ratio constraints.展开更多
面向QoS路由问题,设计了一种基于遗传算法和蚁群算法融合的QoS路由算法(QoS routing algorithm according to the combination of the genetic algorithm and ant colony algorithm,GAACO_QoS)。利用遗传算法生成初始解,将其转换为蚁群...面向QoS路由问题,设计了一种基于遗传算法和蚁群算法融合的QoS路由算法(QoS routing algorithm according to the combination of the genetic algorithm and ant colony algorithm,GAACO_QoS)。利用遗传算法生成初始解,将其转换为蚁群算法所需的信息素初值,然后利用蚁群算法求取最优解。设置遗传算法控制函数来控制遗传算法和蚁群算法融合的适当时机。通过与遗传算法以及蚁群算法的比较,进一步说明算法的有效性。展开更多
文摘Based on the state transition rule, the local updating rule and the global updating rule of ant colony algorithm, we propose an improved ant colony algorithm of the least\|cost quality of service (QoS) unicast routing. The algorithm is used for solving the routing problem with delay, delay jitter, bandwidth, and packet loss\|constrained. In the simulation, about 52.33% ants find the successful QoS routing , and converge to the best. It is proved that the algorithm is efficient and effective.
文摘Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.
文摘An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although the proposed algorithm has exponential time complexity in the worst case, it can get the running results quickly in practical application. When the scale of network increases, the algorithm can efficiently control the size of search space by constraint conditions and prior queue. The results of simulation show that successful request ratio ( r ) of efficient algorithm for multi-constrained optimal path (EAMCOP) is better than that of heuristic algorithm for multi-constrained optimal path (H-MCOP), but average computing time ( t ) of EAMCOP is far less than that of H-MCOP. And it can be seen that the computing time of EAMCOP is only one fourth of that of H-MCOP in Advanced Research Projects Agency Network (ARPANet) topology.
基金Project supported by the National Science and Technology Innovation 2030 Major Project of the Ministry of Science and Technology of China(No.2018AAA0101200)。
文摘We investigate a kind of vehicle routing problem with constraints(VRPC)in the car-sharing mobility environment,where the problem is based on user orders,and each order has a reservation time limit and two location point transitions,origin and destination.It is a typical extended vehicle routing problem(VRP)with both time and space constraints.We consider the VRPC problem characteristics and establish a vehicle scheduling model to minimize operating costs and maximize user(or passenger)experience.To solve the scheduling model more accurately,a spatiotemporal distance representation function is defined based on the temporal and spatial properties of the customer,and a spatiotemporal distance embedded hybrid ant colony algorithm(HACA-ST)is proposed.The algorithm can be divided into two stages.First,through spatiotemporal clustering,the spatiotemporal distance between users is the main measure used to classify customers in categories,which helps provide heuristic information for problem solving.Second,an improved ant colony algorithm(ACO)is proposed to optimize the solution by combining a labor division strategy and the spatiotemporal distance function to obtain the final scheduling route.Computational analysis is carried out based on existing data sets and simulated urban instances.Compared with other heuristic algorithms,HACA-ST reduces the length of the shortest route by 2%–14%in benchmark instances.In VRPC testing instances,concerning the combined cost,HACA-ST has competitive cost compared to existing VRP-related algorithms.Finally,we provide two actual urban scenarios to further verify the effectiveness of the proposed algorithm.
文摘软件定义网络(Software Defined Network,SDN)流量具有动态性,链路质量、剩余带宽和节点负载等参数会频繁波动,这使得传统基于静态路径的路由选择方法难以有效应对,易引发网络拥塞、服务质量降低甚至服务中断等问题。为提高网络资源利用率和网络性能,提出一种在SDN网络下考虑多维度QoS约束的动态路由选择方法。通过SDN收集各个链路的QoS参数特征,构建综合考虑链路质量、剩余带宽与节点负载因素的传输代价模型。依据传输代价模型选定路径具有最小的传输代价为目标,建立一个最小化路径成本的多约束SDN网络动态路由模型,最大化网络吞吐量。为了应对不同优先级数据流对多维度QoS需求,引入蚁群算法对该模型智能决策获取最优路径,从而实现SDN网络的动态路由选择优化。实验分析表明,所提方法在不同网络负载率下的丢包率保持在0.3%以下,并且显著提升了平均带宽利用率和链路利用率。
文摘为了提高网络路由性能,提出并设计了一种基于遗传-蚁群优化算法的服务质量(quality of service,QoS)组播路由算法。首先,设计了自适应变频采集策略用于采集网络与节点信息,以此获得网络和节点的状态,为后续路由优化提供数据支持;其次,计算路径代价,将路径代价最小作为优化目标,建立QoS组播路由优化模型,并设置相关约束条件;最后,结合遗传算法和蚁群算法提出一种遗传-蚁群优化算法求解上述模型,输出最优路径,完成路由优化。实验结果表明,所提算法可有效降低路径长度与路径代价,提高搜索效率与路由请求成功率,优化后的路由时延抖动较小。
基金supported by the National Natural Science Foundation of China(61101107)the Beijing Higher Education Young Elite Teacher Project
文摘In order to establish a route supporting multi-constrained quality of service(QoS), increase network throughput and reduce network energy consumption, an improved ant colony-based multi-constrained QoS energy-saving routing algorithm(IAMQER) is proposed. The ant colony algorithm, as one of the available heuristic algorithms, is used to find the optimal route from source node to destination node. The proposed IAMQER algorithm, which is based on the analysis of local node information such as node queue length, node forwarding number of data packets and node residual energy, balances the relationship between the network throughput and the energy consumption, thus improving the performance of network in multi-constrained QoS routing. Simulation results show that this IAMQER algorithm can find the QoS route that reduce average energy consumption and improves network packet delivery ratio under the end-to-end delay and packet loss ratio constraints.
文摘面向QoS路由问题,设计了一种基于遗传算法和蚁群算法融合的QoS路由算法(QoS routing algorithm according to the combination of the genetic algorithm and ant colony algorithm,GAACO_QoS)。利用遗传算法生成初始解,将其转换为蚁群算法所需的信息素初值,然后利用蚁群算法求取最优解。设置遗传算法控制函数来控制遗传算法和蚁群算法融合的适当时机。通过与遗传算法以及蚁群算法的比较,进一步说明算法的有效性。