Ants rank among the most ecologically dominant and evolutionarily remarkable insects on the planet,capturing the imagination of both curious children and thoughtful scholars alike.Aristotle,impressed by their division...Ants rank among the most ecologically dominant and evolutionarily remarkable insects on the planet,capturing the imagination of both curious children and thoughtful scholars alike.Aristotle,impressed by their division of labor and cooperative behavior,described them as“political animals”.In Aesop’s Fables,they are celebrated for their foresight and diligence in preparing for hardship.Traditional Chinese narratives similarly portray ants as modest creatures that,through collective effort,achieve extraordinary power and influence.展开更多
The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeogr...The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeographic studies(Wagner and Liebherr 1992;Peeters and Ito 2001;Helms 2018).展开更多
Hierarchical Task Network(HTN)planning is a powerful technique in artificial intelligence for handling complex problems by decomposing them into hierarchical task structures.However,achieving optimal solutions in HTN ...Hierarchical Task Network(HTN)planning is a powerful technique in artificial intelligence for handling complex problems by decomposing them into hierarchical task structures.However,achieving optimal solutions in HTN planning remains a challenge,especially in scenarios where traditional search algorithms struggle to navigate the vast solution space efficiently.This research proposes a novel technique to enhance HTN planning by integrating the Ant Colony Optimization(ACO)algorithm into the refinement process.The Ant System algorithm,inspired by the foraging behavior of ants,is well-suited for addressing optimization problems by efficiently exploring solution spaces.By incorporating ACO into the refinement phase of HTN planning,the authors aim to leverage its adaptive nature and decentralized decision-making to improve plan generation.This paper involves the development of a hybrid strategy called ACO-HTN,which combines HTN planning with ACO-based plan selection.This technique enables the system to adaptively refine plans by guiding the search towards optimal solutions.To evaluate the effectiveness of the proposed technique,this paper conducts empirical experiments on various domains and benchmark datasets.Our results demonstrate that the ACO-HTN strategy enhances the efficiency and effectiveness of HTN planning,outperforming traditional methods in terms of solution quality and computational performance.展开更多
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed...As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed by traditional manufacturing processes,conventional hydraulic integrated valve blocks fail to satisfy the demands of a more compact channel layout and lower energy dissipation.Notably,the subjectivity in the arrangement of internal passages results in a time-consuming and labor-intensive process.This study employed additive manufacturing technology and the ant colony algorithm and B-spline curves for the meticulous design of internal passages within an aviation EHA valve block.The layout environment for the valve block passages was established,and path optimization was achieved using the ant colony algorithm,complemented by smoothing using B-spline curves.Three-dimensional modeling was performed using SolidWorks software,revealing a 10.03%reduction in volume for the optimized passages compared with the original passages.Computational fluid dynamics(CFD)simulations were performed using Fluent software,demonstrating that the algorithmically optimized passages effectively prevented the occurrence of vortices at right-angled locations,exhibited superior flow characteristics,and concurrently reduced pressure losses by 34.09%-36.36%.The small discrepancy between the experimental and simulation results validated the efficacy of the ant colony algorithm and B-spline curves in optimizing the passage design,offering a viable solution for channel design in additive manufacturing.展开更多
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ...This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms.展开更多
In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion mode...In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion model was established to solve the forward and inverse kinematic equations.Secondly,the traditional ant colony algorithm was improved.The heuristic function was improved by introducing the distance between the optional nodes and the target point into the function.Then the transition probability was improved by introducing the security factor of surrounding points into the transition probability.In addition,the local path chunking strategy was used to optimize the local multi-inflection path and reduce the local redundant inflection points.Finally,according to the position of the hook,the kinematic inversion of the tower crane was carried out,and the variables of each joint were obtained.More specifically,compared with the traditional ant colony algorithm,the simulation results showed that improved ant colony algorithm converged faster,shortened the optimal path length,and optimized the path quality in the simple and complex environment.展开更多
With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, le...With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.展开更多
This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on componen...This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on components is ex tended to the generalized covariant derivative that can act on any geometric quantity including base vectors, vectors and tensors. Under the axiom, the algebra structure of the gen eralized covariant derivative is proved to be covariant dif ferential ring. Based on the powerful operation capabilities and simple analytical properties of the generalized covariant derivative, the tensor analysis in curved coordinate systems is simplified to a large extent.展开更多
Proteus mirabilis is abundant in soil and water,and although it is part of the normal human intestinal flora(along with Klebsiella species and Escherichia coli),it is known to cause serious infections in humans,with a...Proteus mirabilis is abundant in soil and water,and although it is part of the normal human intestinal flora(along with Klebsiella species and Escherichia coli),it is known to cause serious infections in humans,with a fatality rate of 20%-50%[1].Proteus mirabilis is intrinsically resistant to tetracycline,tigecycline,and colistin.The widespread and irregular use of antimicrobial agents,P.mirabilis antimicrobial resistance has mirabilis.They acquire antimicrobial resistance(AMR)by capturing plasmids,transposons,or other mobile elements harboring antimicrobial resistance genes.This mechanism allows the rapid selection and transmission of numerous AMR genes in clinical,veterinary,food production,transportation,and environmental settings.展开更多
This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,shoul...This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect.The contemporary methods of steganography are at best a compromise between these two.In this paper,we present our approach,entitled Ant Colony Optimization(ACO)-Least Significant Bit(LSB),which attempts to optimize the capacity in steganographic embedding.The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte,both for integrity verification and the file checksumof the secret data.This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images.The ACO algorithm uses adaptive exploration to select some pixels,maximizing the capacity of data embedding whileminimizing the degradation of visual quality.Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement.The levels of pheromone are modified to reinforce successful pixel choices.Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30%in the embedding capacity compared with traditional approaches;the average Peak Signal to Noise Ratio(PSNR)is 40.5 dB with a Structural Index Similarity(SSIM)of 0.98.The approach also demonstrates very high resistance to detection,cutting down the rate by 20%.Implemented in MATLAB R2023a,the model was tested against one thousand publicly available grayscale images,thus providing robust evidence of its effectiveness.展开更多
Adenine nucleotide translocator(ANT)is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane.It plays a crucial role in cellular energy metabolism by facilitating the ...Adenine nucleotide translocator(ANT)is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane.It plays a crucial role in cellular energy metabolism by facilitating the transport of ATP synthesized within the mitochondria to the cytoplasm.The isoform ANT1 predominately expresses in cardiac and skeletal muscles.Mutations or dysregulation in ANT1 have been implicated in various mitochondrial disorders and neuromuscular diseases.We aimed to examine whether ANT1 deletion may affect mitochondrial redox state in our established ANT1-de-cient mice.Hearts and quadriceps resected from age-matched wild type(WT)and ANT1-de-cient mice were snap-frozen in liquid nitrogen.The Chance redox scanner was utilized to perform 3D optical redox imaging.Each sample underwent scanning across 3–5 sections.Global averaging analysis showed no signi-cant differences in the redox indices(NADH,flavin adenine dinucleotide containing-flavoproteins Fp,and the redox ratio Fp/(NADH+Fp)between WT and ANT1-de-cient groups.However,quadriceps had higher Fp than hearts in both groups(p¼0:0004 and 0.01,respectively).Furthermore,the quadriceps were also more oxidized(a higher redox ratio)than hearts in WT group(p¼0:004).NADH levels were similar in all cases.Our data suggest that under non-stressful physical condition,the ANT1-de-cient muscle cells were in the same mitochondrial state as WT ones and that the signi-cant difference in the mitochondrial redox state between quadriceps and hearts found in WT might be diminished in ANT1-de-cient ones.Redox imaging of muscles under physical stress can be conducted in future.展开更多
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi...The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.展开更多
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node...Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).展开更多
基金supported by the National Natural Science Foundation of China(32388102 to G.Z.,32370668 to W.L.)Yunnan Provincial Science and Technology Department,Yunnan Fundamental Research Projects(202201AT070129 and 202401BC070017 to W.L.)。
文摘Ants rank among the most ecologically dominant and evolutionarily remarkable insects on the planet,capturing the imagination of both curious children and thoughtful scholars alike.Aristotle,impressed by their division of labor and cooperative behavior,described them as“political animals”.In Aesop’s Fables,they are celebrated for their foresight and diligence in preparing for hardship.Traditional Chinese narratives similarly portray ants as modest creatures that,through collective effort,achieve extraordinary power and influence.
基金funded by the“Departments of Excellence”program of the Italian Ministry for University and Research(MIUR,2018-2022 and MUR,2023-2027).
文摘The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeographic studies(Wagner and Liebherr 1992;Peeters and Ito 2001;Helms 2018).
基金supported by the Ministry of Science and High Education of the Russian Federation by the grant 075-15-2022-1137supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R323),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Hierarchical Task Network(HTN)planning is a powerful technique in artificial intelligence for handling complex problems by decomposing them into hierarchical task structures.However,achieving optimal solutions in HTN planning remains a challenge,especially in scenarios where traditional search algorithms struggle to navigate the vast solution space efficiently.This research proposes a novel technique to enhance HTN planning by integrating the Ant Colony Optimization(ACO)algorithm into the refinement process.The Ant System algorithm,inspired by the foraging behavior of ants,is well-suited for addressing optimization problems by efficiently exploring solution spaces.By incorporating ACO into the refinement phase of HTN planning,the authors aim to leverage its adaptive nature and decentralized decision-making to improve plan generation.This paper involves the development of a hybrid strategy called ACO-HTN,which combines HTN planning with ACO-based plan selection.This technique enables the system to adaptively refine plans by guiding the search towards optimal solutions.To evaluate the effectiveness of the proposed technique,this paper conducts empirical experiments on various domains and benchmark datasets.Our results demonstrate that the ACO-HTN strategy enhances the efficiency and effectiveness of HTN planning,outperforming traditional methods in terms of solution quality and computational performance.
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
基金Supported by National Natural Science Foundation of China(Grant No.51890881)。
文摘As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed by traditional manufacturing processes,conventional hydraulic integrated valve blocks fail to satisfy the demands of a more compact channel layout and lower energy dissipation.Notably,the subjectivity in the arrangement of internal passages results in a time-consuming and labor-intensive process.This study employed additive manufacturing technology and the ant colony algorithm and B-spline curves for the meticulous design of internal passages within an aviation EHA valve block.The layout environment for the valve block passages was established,and path optimization was achieved using the ant colony algorithm,complemented by smoothing using B-spline curves.Three-dimensional modeling was performed using SolidWorks software,revealing a 10.03%reduction in volume for the optimized passages compared with the original passages.Computational fluid dynamics(CFD)simulations were performed using Fluent software,demonstrating that the algorithmically optimized passages effectively prevented the occurrence of vortices at right-angled locations,exhibited superior flow characteristics,and concurrently reduced pressure losses by 34.09%-36.36%.The small discrepancy between the experimental and simulation results validated the efficacy of the ant colony algorithm and B-spline curves in optimizing the passage design,offering a viable solution for channel design in additive manufacturing.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms.
基金supported by Shaanxi Provincial Key Research and Development Program of China(Nos.2024GX-YBXM-305,2024GX-YBXM-178)Shaanxi Province Qinchuangyuan“Scientists+Engineers”Team Construction(No.2022KXJ032)。
文摘In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion model was established to solve the forward and inverse kinematic equations.Secondly,the traditional ant colony algorithm was improved.The heuristic function was improved by introducing the distance between the optional nodes and the target point into the function.Then the transition probability was improved by introducing the security factor of surrounding points into the transition probability.In addition,the local path chunking strategy was used to optimize the local multi-inflection path and reduce the local redundant inflection points.Finally,according to the position of the hook,the kinematic inversion of the tower crane was carried out,and the variables of each joint were obtained.More specifically,compared with the traditional ant colony algorithm,the simulation results showed that improved ant colony algorithm converged faster,shortened the optimal path length,and optimized the path quality in the simple and complex environment.
文摘With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on components is ex tended to the generalized covariant derivative that can act on any geometric quantity including base vectors, vectors and tensors. Under the axiom, the algebra structure of the gen eralized covariant derivative is proved to be covariant dif ferential ring. Based on the powerful operation capabilities and simple analytical properties of the generalized covariant derivative, the tensor analysis in curved coordinate systems is simplified to a large extent.
基金the National Key Research and Development Program of China[grant number 2021YFC2302002]for financial support.
文摘Proteus mirabilis is abundant in soil and water,and although it is part of the normal human intestinal flora(along with Klebsiella species and Escherichia coli),it is known to cause serious infections in humans,with a fatality rate of 20%-50%[1].Proteus mirabilis is intrinsically resistant to tetracycline,tigecycline,and colistin.The widespread and irregular use of antimicrobial agents,P.mirabilis antimicrobial resistance has mirabilis.They acquire antimicrobial resistance(AMR)by capturing plasmids,transposons,or other mobile elements harboring antimicrobial resistance genes.This mechanism allows the rapid selection and transmission of numerous AMR genes in clinical,veterinary,food production,transportation,and environmental settings.
文摘This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect.The contemporary methods of steganography are at best a compromise between these two.In this paper,we present our approach,entitled Ant Colony Optimization(ACO)-Least Significant Bit(LSB),which attempts to optimize the capacity in steganographic embedding.The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte,both for integrity verification and the file checksumof the secret data.This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images.The ACO algorithm uses adaptive exploration to select some pixels,maximizing the capacity of data embedding whileminimizing the degradation of visual quality.Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement.The levels of pheromone are modified to reinforce successful pixel choices.Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30%in the embedding capacity compared with traditional approaches;the average Peak Signal to Noise Ratio(PSNR)is 40.5 dB with a Structural Index Similarity(SSIM)of 0.98.The approach also demonstrates very high resistance to detection,cutting down the rate by 20%.Implemented in MATLAB R2023a,the model was tested against one thousand publicly available grayscale images,thus providing robust evidence of its effectiveness.
基金supported in part by NIH Grant CA191207 and CA277037(L.Z.Li)AG078814 and CA259635(D.Wallace)and DOD Grant W81XWH2210561(D.Wallace).
文摘Adenine nucleotide translocator(ANT)is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane.It plays a crucial role in cellular energy metabolism by facilitating the transport of ATP synthesized within the mitochondria to the cytoplasm.The isoform ANT1 predominately expresses in cardiac and skeletal muscles.Mutations or dysregulation in ANT1 have been implicated in various mitochondrial disorders and neuromuscular diseases.We aimed to examine whether ANT1 deletion may affect mitochondrial redox state in our established ANT1-de-cient mice.Hearts and quadriceps resected from age-matched wild type(WT)and ANT1-de-cient mice were snap-frozen in liquid nitrogen.The Chance redox scanner was utilized to perform 3D optical redox imaging.Each sample underwent scanning across 3–5 sections.Global averaging analysis showed no signi-cant differences in the redox indices(NADH,flavin adenine dinucleotide containing-flavoproteins Fp,and the redox ratio Fp/(NADH+Fp)between WT and ANT1-de-cient groups.However,quadriceps had higher Fp than hearts in both groups(p¼0:0004 and 0.01,respectively).Furthermore,the quadriceps were also more oxidized(a higher redox ratio)than hearts in WT group(p¼0:004).NADH levels were similar in all cases.Our data suggest that under non-stressful physical condition,the ANT1-de-cient muscle cells were in the same mitochondrial state as WT ones and that the signi-cant difference in the mitochondrial redox state between quadriceps and hearts found in WT might be diminished in ANT1-de-cient ones.Redox imaging of muscles under physical stress can be conducted in future.
基金supported by National Natural Science Foundation of China(Grant Nos.62376089,62302153,62302154,62202147)the key Research and Development Program of Hubei Province,China(Grant No.2023BEB024).
文摘The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.
文摘Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).