Medical visual question answering(MedVQA)faces unique challenges due to the high precision required for images and the specialized nature of the questions.These challenges include insufficient feature extraction capab...Medical visual question answering(MedVQA)faces unique challenges due to the high precision required for images and the specialized nature of the questions.These challenges include insufficient feature extraction capabilities,a lack of textual priors,and incomplete information fusion and interaction.This paper proposes an enhanced bootstrapping language-image pre-training(BLIP)model for MedVQA based on multimodal feature augmentation and triple-path collaborative attention(FCA-BLIP)to address these issues.First,FCA-BLIP employs a unified bootstrap multimodal model architecture that integrates ResNet and bidirectional encoder representations from Transformer(BERT)models to enhance feature extraction capabilities.It enables a more precise analysis of the details in images and questions.Next,the pre-trained BLIP model is used to extract features from image-text sample pairs.The model can understand the semantic relationships and shared information between images and text.Finally,a novel attention structure is developed to fuse the multimodal feature vectors,thereby improving the alignment accuracy between modalities.Experimental results demonstrate that the proposed method performs well in clinical visual question-answering tasks.For the MedVQA task of staging diabetic macular edema in fundus imaging,the proposed method outperforms the existing major models in several performance metrics.展开更多
The medical education of the Song dynasty constitutes a pivotal aspect within the broader framework of ancient Chinese medical education. The advent of the imperial examination system coincided with the emergence of a...The medical education of the Song dynasty constitutes a pivotal aspect within the broader framework of ancient Chinese medical education. The advent of the imperial examination system coincided with the emergence of a medical examination system, which served as the cornerstone for the subsequent evolution of medical education. According to historical records, the Song government established dedicated medical departments, along with comprehensive systems encompassing medical professors, students, and examinations. By examining extant medical historical documents, such as Tai Yi Ju Zhu Ke Cheng Wen Ge(《太医局诸科程文格》 Examination Answers and Standards of the Imperial Medical Bureau), researchers and readers can obtain a comprehensive understanding of the medical system that prevailed in the Song dynasty. While the intricate details of medical education during this era are not explicitly documented in historical records, modern researchers have the opportunity to uncover the entire view of medical education, particularly the medical examination system, through rigorous analysis of these extant historical medical documents. Such studies offer valuable insights into the developmental trajectory of the ancient Chinese medical examination system and provide crucial references for contemporary medical education. By conducting in-depth literature research and analysis of Tai Yi Ju Zhu Ke Cheng Wen Ge, this study endeavors to reconstruct the authentic scenario of medical examinations in the Song dynasty, as presented in the document, for the benefit of modern readers and researchers.展开更多
In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilizati...In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries.展开更多
To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,t...To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,the question classifier draws both semantic and grammatical information into information retrieval and machine learning methods in the form of various training features,including the question word,the main verb of the question,the dependency structure,the position of the main auxiliary verb,the main noun of the question,the top hypernym of the main noun,etc.Then the QA query results are re-ranked by question class information.Experiments show that the questions in real-world web data sets can be accurately classified by the classifier,and the QA results after re-ranking can be obviously improved.It is proved that with both semantic and grammatical information,applications such as QA, built upon real-world web data sets, can be improved,thus showing better performance.展开更多
Purpose: Taking Zhihu as the object for a case study, we intend to analyze the key factors that have affected users on adopting answers in social Q&A(SQA) websites.Design/methodology/approach: With information ado...Purpose: Taking Zhihu as the object for a case study, we intend to analyze the key factors that have affected users on adopting answers in social Q&A(SQA) websites.Design/methodology/approach: With information adoption model(IAM) as the theoretical foundation and widely accepted evaluation criteria for answer quality in SQA sites as variables, we constructed a factor model that has influenced SQA community users to adopt offered answers. With the partial least squares(PLS) technique, our model was then empirically tested through a sample of 311 Zhihu users.Findings: Our results showed that answer usefulness is the most effective variable, and answer interactivity and answer entertainment both have positive and significant impacts on users’ attitude to adopt answers in an SQA community. Except for novelty, other three components of answer quality, i.e. knowledge, reliability, and solution to the problem have all significant effect on answer usefulness.Research limitations: First, due to the limited sample size, it is still questionable if our research results based on Zhihu could be applied to other SQA communities. Second, our questionnaires were mainly designed to investigate how users felt about the answers in an SQA site, but did not differentiate the content of the answer itself.Practical implications: As a three-year-old SQA platform, Zhihu has developed very quickly with its high-quality answers and public intellectual users, and has been regarded as one of the representatives of fast emerging Chinese SQA communities in recent years. Our studycould help shed light on users’ information sharing and knowledge adoption behaviors in a Chinese SQA site, such as Zhihu. Originality/value: Compared with previous studies on answer quality assessments in SQA sites and on information adoption model, to the best of our knowledge, this is one of the pioneer studies which combined answer qualities with users’ intention of adopting SQA answers. Our study on user answer adoption in Zhihu community could further develop the theory of IAM. This study showed that answer usefulness is the most important motivation of Zhihu users in the process of adopting answers.展开更多
Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the eve...Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the ever-growing volume of content that CQAs engender.To clarify the current state of the CQA literature that has used ML and DL,this paper reports a systematic literature review.The goal is to summarise and synthesise the major themes of CQA research related to(i)questions,(ii)answers and(iii)users.The final review included 133 articles.Dominant research themes include question quality,answer quality,and expert identification.In terms of dataset,some of the most widely studied platforms include Yahoo!Answers,Stack Exchange and Stack Overflow.The scope of most articles was confined to just one platform with few cross-platform investigations.Articles with ML outnumber those with DL.Nonetheless,the use of DL in CQA research is on an upward trajectory.A number of research directions are proposed.展开更多
Deep learning models have been shown to have great advantages in answer selection tasks.The existing models,which employ encoder-decoder recurrent neural network(RNN),have been demonstrated to be effective.However,the...Deep learning models have been shown to have great advantages in answer selection tasks.The existing models,which employ encoder-decoder recurrent neural network(RNN),have been demonstrated to be effective.However,the traditional RNN-based models still suffer from limitations such as 1)high-dimensional data representation in natural language processing and 2)biased attentive weights for subsequent words in traditional time series models.In this study,a new answer selection model is proposed based on the Bidirectional Long Short-Term Memory(Bi-LSTM)and attention mechanism.The proposed model is able to generate the more effective question-answer pair representation.Experiments on a question answering dataset that includes information from multiple fields show the great advantages of our proposed model.Specifically,we achieve a maximum improvement of 3.8%over the classical LSTM model in terms of mean average precision.展开更多
Given the limitations of the community question answering(CQA)answer quality prediction method in measuring the semantic information of the answer text,this paper proposes an answer quality prediction model based on t...Given the limitations of the community question answering(CQA)answer quality prediction method in measuring the semantic information of the answer text,this paper proposes an answer quality prediction model based on the question-answer joint learning(ACLSTM).The attention mechanism is used to obtain the dependency relationship between the Question-and-Answer(Q&A)pairs.Convolutional Neural Network(CNN)and Long Short-term Memory Network(LSTM)are used to extract semantic features of Q&A pairs and calculate their matching degree.Besides,answer semantic representation is combined with other effective extended features as the input representation of the fully connected layer.Compared with other quality prediction models,the ACLSTM model can effectively improve the prediction effect of answer quality.In particular,the mediumquality answer prediction,and its prediction effect is improved after adding effective extended features.Experiments prove that after the ACLSTM model learning,the Q&A pairs can better measure the semantic match between each other,fully reflecting the model’s superior performance in the semantic information processing of the answer text.展开更多
Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural...Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural network(RNN)model is proposed,which works for both simple and complex questions.First,the vector representations of questions are learned by the bidirectional long short-term memory(Bi-LSTM)model at the word and character levels,and named entities in questions are labeled by the conditional random field(CRF)model.Candidate entities are generated based on a dictionary,the disambiguation of candidate entities is realized based on predefined rules,and named entities mentioned in questions are linked to entities in knowledge base.Next,questions are classified into simple or complex questions by the machine learning method.Starting from the identified entities,for simple questions,one-hop relations are collected in the knowledge base as candidate relations;for complex questions,two-hop relations are collected as candidates.Finally,the multi-attention Bi-LSTM model is used to encode questions and candidate relations,compare their similarity,and return the candidate relation with the highest similarity as the result of relation linking.It is worth noting that the Bi-LSTM model with one attentions is adopted for simple questions,and the Bi-LSTM model with two attentions is adopted for complex questions.The experimental results show that,based on the effective entity linking method,the Bi-LSTM model with the attention mechanism improves the relation linking effectiveness of both simple and complex questions,which outperforms the existing relation linking methods based on graph algorithm or linguistics understanding.展开更多
Purpose: The purpose of this study is to develop an automated frequently asked question(FAQ) answering system for farmers. This paper presents an approach for calculating the similarity between Chinese sentences based...Purpose: The purpose of this study is to develop an automated frequently asked question(FAQ) answering system for farmers. This paper presents an approach for calculating the similarity between Chinese sentences based on hybrid strategies.Design/methodology/approach: We analyzed the factors influencing the successful matching between a user's question and a question-answer(QA) pair in the FAQ database. Our approach is based on a combination of multiple factors. Experiments were conducted to test the performance of our method.Findings: Experiments show that this proposed method has higher accuracy. Compared with similarity calculation based on TF-IDF,the sentence surface forms and the semantic relations,the proposed method based on hybrid strategies has a superior performance in precision,recall and F-measure value.Research limitations: The FAQ answering system is only capable of meeting users' demand for text retrieval at present. In the future,the system needs to be improved to meet users' demand for retrieving images and videos.Practical implications: This FAQ answering system will help farmers utilize agricultural information resources more efficiently.Originality/value: We design the algorithms for calculating similarity of Chinese sentences based on hybrid strategies,which integrate the question surface similarity,the question semantic similarity and the question-answer similarity based on latent semantic analysis(LSA) to find answers to a user's question.展开更多
The information integration method of semantic web based on agent ontology(SWAO method) was put forward aiming at the problems in current network environment,which integrates,analyzes and processes enormous web inform...The information integration method of semantic web based on agent ontology(SWAO method) was put forward aiming at the problems in current network environment,which integrates,analyzes and processes enormous web information and extracts answers on the basis of semantics. With SWAO method as the clue,the following technologies were studied:the method of concept extraction based on semantic term mining,agent ontology construction method on account of multi-points and the answer extraction in view of semantic inference. Meanwhile,the structural model of the question answering system applying ontology was presented,which adopts OWL language to describe domain knowledge from where QA system infers and extracts answers by Jena inference engine. In the system testing,the precision rate reaches 86%,and the recalling rate is 93%. The experimental results prove that it is feasible to use the method to develop a question answering system,which is valuable for further study in more depth.展开更多
With recent advancements in robotic surgery,notable strides have been made in visual question answering(VQA).Existing VQA systems typically generate textual answers to questions but fail to indicate the location of th...With recent advancements in robotic surgery,notable strides have been made in visual question answering(VQA).Existing VQA systems typically generate textual answers to questions but fail to indicate the location of the relevant content within the image.This limitation restricts the interpretative capacity of the VQA models and their abil-ity to explore specific image regions.To address this issue,this study proposes a grounded VQA model for robotic surgery,capable of localizing a specific region during answer prediction.Drawing inspiration from prompt learning in language models,a dual-modality prompt model was developed to enhance precise multimodal information interactions.Specifically,two complementary prompters were introduced to effectively integrate visual and textual prompts into the encoding process of the model.A visual complementary prompter merges visual prompt knowl-edge with visual information features to guide accurate localization.The textual complementary prompter aligns vis-ual information with textual prompt knowledge and textual information,guiding textual information towards a more accurate inference of the answer.Additionally,a multiple iterative fusion strategy was adopted for comprehensive answer reasoning,to ensure high-quality generation of textual and grounded answers.The experimental results vali-date the effectiveness of the model,demonstrating its superiority over existing methods on the EndoVis-18 and End-oVis-17 datasets.展开更多
Below is Problem 9 in Singapore MathematicalOlympiad 2001:Five people jointly bought a lottery ticketwhich won the first prize.They decided to keeptheir ticket in a locker installed with a number oflocks.Each person m...Below is Problem 9 in Singapore MathematicalOlympiad 2001:Five people jointly bought a lottery ticketwhich won the first prize.They decided to keeptheir ticket in a locker installed with a number oflocks.Each person may hold the keys to more thanone lock.What is the minimum number of locks nee-ded to serve the purpose that any 3 together will beable to open the locker but any 2 of them togetherwill not be able to open it ?A.6 B.9 C.10 D.展开更多
基金Supported by the Program for Liaoning Excellent Talents in University(No.LR15045)the Liaoning Provincial Science and Technology Department Applied Basic Research Plan(No.101300243).
文摘Medical visual question answering(MedVQA)faces unique challenges due to the high precision required for images and the specialized nature of the questions.These challenges include insufficient feature extraction capabilities,a lack of textual priors,and incomplete information fusion and interaction.This paper proposes an enhanced bootstrapping language-image pre-training(BLIP)model for MedVQA based on multimodal feature augmentation and triple-path collaborative attention(FCA-BLIP)to address these issues.First,FCA-BLIP employs a unified bootstrap multimodal model architecture that integrates ResNet and bidirectional encoder representations from Transformer(BERT)models to enhance feature extraction capabilities.It enables a more precise analysis of the details in images and questions.Next,the pre-trained BLIP model is used to extract features from image-text sample pairs.The model can understand the semantic relationships and shared information between images and text.Finally,a novel attention structure is developed to fuse the multimodal feature vectors,thereby improving the alignment accuracy between modalities.Experimental results demonstrate that the proposed method performs well in clinical visual question-answering tasks.For the MedVQA task of staging diabetic macular edema in fundus imaging,the proposed method outperforms the existing major models in several performance metrics.
文摘The medical education of the Song dynasty constitutes a pivotal aspect within the broader framework of ancient Chinese medical education. The advent of the imperial examination system coincided with the emergence of a medical examination system, which served as the cornerstone for the subsequent evolution of medical education. According to historical records, the Song government established dedicated medical departments, along with comprehensive systems encompassing medical professors, students, and examinations. By examining extant medical historical documents, such as Tai Yi Ju Zhu Ke Cheng Wen Ge(《太医局诸科程文格》 Examination Answers and Standards of the Imperial Medical Bureau), researchers and readers can obtain a comprehensive understanding of the medical system that prevailed in the Song dynasty. While the intricate details of medical education during this era are not explicitly documented in historical records, modern researchers have the opportunity to uncover the entire view of medical education, particularly the medical examination system, through rigorous analysis of these extant historical medical documents. Such studies offer valuable insights into the developmental trajectory of the ancient Chinese medical examination system and provide crucial references for contemporary medical education. By conducting in-depth literature research and analysis of Tai Yi Ju Zhu Ke Cheng Wen Ge, this study endeavors to reconstruct the authentic scenario of medical examinations in the Song dynasty, as presented in the document, for the benefit of modern readers and researchers.
文摘In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries.
基金Microsoft Research Asia Internet Services in Academic Research Fund(No.FY07-RES-OPP-116)the Science and Technology Development Program of Tianjin(No.06YFGZGX05900)
文摘To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,the question classifier draws both semantic and grammatical information into information retrieval and machine learning methods in the form of various training features,including the question word,the main verb of the question,the dependency structure,the position of the main auxiliary verb,the main noun of the question,the top hypernym of the main noun,etc.Then the QA query results are re-ranked by question class information.Experiments show that the questions in real-world web data sets can be accurately classified by the classifier,and the QA results after re-ranking can be obviously improved.It is proved that with both semantic and grammatical information,applications such as QA, built upon real-world web data sets, can be improved,thus showing better performance.
基金jointly supported by National Social Science Foundation of China(Grant No.14BTQ044)Wuhan University Academic Development Plan for Scholars after 1970s
文摘Purpose: Taking Zhihu as the object for a case study, we intend to analyze the key factors that have affected users on adopting answers in social Q&A(SQA) websites.Design/methodology/approach: With information adoption model(IAM) as the theoretical foundation and widely accepted evaluation criteria for answer quality in SQA sites as variables, we constructed a factor model that has influenced SQA community users to adopt offered answers. With the partial least squares(PLS) technique, our model was then empirically tested through a sample of 311 Zhihu users.Findings: Our results showed that answer usefulness is the most effective variable, and answer interactivity and answer entertainment both have positive and significant impacts on users’ attitude to adopt answers in an SQA community. Except for novelty, other three components of answer quality, i.e. knowledge, reliability, and solution to the problem have all significant effect on answer usefulness.Research limitations: First, due to the limited sample size, it is still questionable if our research results based on Zhihu could be applied to other SQA communities. Second, our questionnaires were mainly designed to investigate how users felt about the answers in an SQA site, but did not differentiate the content of the answer itself.Practical implications: As a three-year-old SQA platform, Zhihu has developed very quickly with its high-quality answers and public intellectual users, and has been regarded as one of the representatives of fast emerging Chinese SQA communities in recent years. Our studycould help shed light on users’ information sharing and knowledge adoption behaviors in a Chinese SQA site, such as Zhihu. Originality/value: Compared with previous studies on answer quality assessments in SQA sites and on information adoption model, to the best of our knowledge, this is one of the pioneer studies which combined answer qualities with users’ intention of adopting SQA answers. Our study on user answer adoption in Zhihu community could further develop the theory of IAM. This study showed that answer usefulness is the most important motivation of Zhihu users in the process of adopting answers.
文摘Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the ever-growing volume of content that CQAs engender.To clarify the current state of the CQA literature that has used ML and DL,this paper reports a systematic literature review.The goal is to summarise and synthesise the major themes of CQA research related to(i)questions,(ii)answers and(iii)users.The final review included 133 articles.Dominant research themes include question quality,answer quality,and expert identification.In terms of dataset,some of the most widely studied platforms include Yahoo!Answers,Stack Exchange and Stack Overflow.The scope of most articles was confined to just one platform with few cross-platform investigations.Articles with ML outnumber those with DL.Nonetheless,the use of DL in CQA research is on an upward trajectory.A number of research directions are proposed.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61572326,and Grant 61802258the Natural Science Foundation of Shanghai under Grant 18ZR1428300the Shanghai Committee of Science and Technology under Grant 17070502800 and Grant 16JC1403000.
文摘Deep learning models have been shown to have great advantages in answer selection tasks.The existing models,which employ encoder-decoder recurrent neural network(RNN),have been demonstrated to be effective.However,the traditional RNN-based models still suffer from limitations such as 1)high-dimensional data representation in natural language processing and 2)biased attentive weights for subsequent words in traditional time series models.In this study,a new answer selection model is proposed based on the Bidirectional Long Short-Term Memory(Bi-LSTM)and attention mechanism.The proposed model is able to generate the more effective question-answer pair representation.Experiments on a question answering dataset that includes information from multiple fields show the great advantages of our proposed model.Specifically,we achieve a maximum improvement of 3.8%over the classical LSTM model in terms of mean average precision.
基金the Zhejiang Provincial Natural Science Foundation of China under Grant No.LGF18F020011.
文摘Given the limitations of the community question answering(CQA)answer quality prediction method in measuring the semantic information of the answer text,this paper proposes an answer quality prediction model based on the question-answer joint learning(ACLSTM).The attention mechanism is used to obtain the dependency relationship between the Question-and-Answer(Q&A)pairs.Convolutional Neural Network(CNN)and Long Short-term Memory Network(LSTM)are used to extract semantic features of Q&A pairs and calculate their matching degree.Besides,answer semantic representation is combined with other effective extended features as the input representation of the fully connected layer.Compared with other quality prediction models,the ACLSTM model can effectively improve the prediction effect of answer quality.In particular,the mediumquality answer prediction,and its prediction effect is improved after adding effective extended features.Experiments prove that after the ACLSTM model learning,the Q&A pairs can better measure the semantic match between each other,fully reflecting the model’s superior performance in the semantic information processing of the answer text.
基金The National Natural Science Foundation of China(No.61502095).
文摘Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural network(RNN)model is proposed,which works for both simple and complex questions.First,the vector representations of questions are learned by the bidirectional long short-term memory(Bi-LSTM)model at the word and character levels,and named entities in questions are labeled by the conditional random field(CRF)model.Candidate entities are generated based on a dictionary,the disambiguation of candidate entities is realized based on predefined rules,and named entities mentioned in questions are linked to entities in knowledge base.Next,questions are classified into simple or complex questions by the machine learning method.Starting from the identified entities,for simple questions,one-hop relations are collected in the knowledge base as candidate relations;for complex questions,two-hop relations are collected as candidates.Finally,the multi-attention Bi-LSTM model is used to encode questions and candidate relations,compare their similarity,and return the candidate relation with the highest similarity as the result of relation linking.It is worth noting that the Bi-LSTM model with one attentions is adopted for simple questions,and the Bi-LSTM model with two attentions is adopted for complex questions.The experimental results show that,based on the effective entity linking method,the Bi-LSTM model with the attention mechanism improves the relation linking effectiveness of both simple and complex questions,which outperforms the existing relation linking methods based on graph algorithm or linguistics understanding.
基金jointly supported by the National Social Science Foundation of China(Grant Nos.:08ATQ003 and 10&ZD134)
文摘Purpose: The purpose of this study is to develop an automated frequently asked question(FAQ) answering system for farmers. This paper presents an approach for calculating the similarity between Chinese sentences based on hybrid strategies.Design/methodology/approach: We analyzed the factors influencing the successful matching between a user's question and a question-answer(QA) pair in the FAQ database. Our approach is based on a combination of multiple factors. Experiments were conducted to test the performance of our method.Findings: Experiments show that this proposed method has higher accuracy. Compared with similarity calculation based on TF-IDF,the sentence surface forms and the semantic relations,the proposed method based on hybrid strategies has a superior performance in precision,recall and F-measure value.Research limitations: The FAQ answering system is only capable of meeting users' demand for text retrieval at present. In the future,the system needs to be improved to meet users' demand for retrieving images and videos.Practical implications: This FAQ answering system will help farmers utilize agricultural information resources more efficiently.Originality/value: We design the algorithms for calculating similarity of Chinese sentences based on hybrid strategies,which integrate the question surface similarity,the question semantic similarity and the question-answer similarity based on latent semantic analysis(LSA) to find answers to a user's question.
基金Projects(60773462, 60672171) supported by the National Natural Science Foundation of ChinaProjects(2009AA12143, 2009AA012136) supported by the National High-Tech Research and Development Program of ChinaProject(20080430250) supported by the Foundation of Post-Doctor in China
文摘The information integration method of semantic web based on agent ontology(SWAO method) was put forward aiming at the problems in current network environment,which integrates,analyzes and processes enormous web information and extracts answers on the basis of semantics. With SWAO method as the clue,the following technologies were studied:the method of concept extraction based on semantic term mining,agent ontology construction method on account of multi-points and the answer extraction in view of semantic inference. Meanwhile,the structural model of the question answering system applying ontology was presented,which adopts OWL language to describe domain knowledge from where QA system infers and extracts answers by Jena inference engine. In the system testing,the precision rate reaches 86%,and the recalling rate is 93%. The experimental results prove that it is feasible to use the method to develop a question answering system,which is valuable for further study in more depth.
基金supported in part by the National Key Research and Development Program of China,No.2021ZD0112400National Natural Science Foundation of China,No.U1908214+5 种基金Program for Innovative Research Team at the University of Liaoning Province,No.LT2020015the Support Plan for Key Field Innovation Team of Dalian,No.2021RT06the Support Plan for Leading Innovation Team of Dalian University,No.XLJ202010Program for the Liaoning Province Doctoral Research Starting Fund,No.2022-BS-336Key Laboratory of Advanced Design and Intelligent Computing(Dalian University),and Ministry of Education,No.ADIC2022003Interdisciplinary Project of Dalian University,No.DLUXK-2023-QN-015.
文摘With recent advancements in robotic surgery,notable strides have been made in visual question answering(VQA).Existing VQA systems typically generate textual answers to questions but fail to indicate the location of the relevant content within the image.This limitation restricts the interpretative capacity of the VQA models and their abil-ity to explore specific image regions.To address this issue,this study proposes a grounded VQA model for robotic surgery,capable of localizing a specific region during answer prediction.Drawing inspiration from prompt learning in language models,a dual-modality prompt model was developed to enhance precise multimodal information interactions.Specifically,two complementary prompters were introduced to effectively integrate visual and textual prompts into the encoding process of the model.A visual complementary prompter merges visual prompt knowl-edge with visual information features to guide accurate localization.The textual complementary prompter aligns vis-ual information with textual prompt knowledge and textual information,guiding textual information towards a more accurate inference of the answer.Additionally,a multiple iterative fusion strategy was adopted for comprehensive answer reasoning,to ensure high-quality generation of textual and grounded answers.The experimental results vali-date the effectiveness of the model,demonstrating its superiority over existing methods on the EndoVis-18 and End-oVis-17 datasets.
文摘Below is Problem 9 in Singapore MathematicalOlympiad 2001:Five people jointly bought a lottery ticketwhich won the first prize.They decided to keeptheir ticket in a locker installed with a number oflocks.Each person may hold the keys to more thanone lock.What is the minimum number of locks nee-ded to serve the purpose that any 3 together will beable to open the locker but any 2 of them togetherwill not be able to open it ?A.6 B.9 C.10 D.