期刊文献+
共找到33,889篇文章
< 1 2 250 >
每页显示 20 50 100
Theoretical and Experimental Sets of Choice Anode/Cathode Architectonics for High-Performance Full-Scale LIB Built-up Models 被引量:3
1
作者 H.Khalifa S.A.El-Safty +4 位作者 A.Reda M.A.Shenashen M.M.Selim A.Elmarakbi H.A.Metawa 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期485-507,共23页
To control the power hierarchy design of lithium-ion battery(LIB)builtup sets for electric vehicles(EVs),we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulate... To control the power hierarchy design of lithium-ion battery(LIB)builtup sets for electric vehicles(EVs),we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulated in full-scale LIB built-up models.As primary structural tectonics,heterogeneous composite superstructures of full-cell-LIB(anode//cathode)electrodes were designed in closely packed flower agave rosettes TiO2@C(FRTO@C anode)and vertical-star-tower LiFePO4@C(VST@C cathode)building blocks to regulate the electron/ion movement in the three-dimensional axes and orientation pathways.The superpower hierarchy surfaces and multi-directional orientation components may create isosurface potential electrodes with mobile electron movements,in-to-out interplay electron dominances,and electron/charge cloud distributions.This study is the first to evaluate the hotkeys of choice anode/cathode architectonics to assemble different LIB-electrode platforms with high-mobility electron/ion flows and high-performance capacity functionalities.Density functional theory calculation revealed that the FRTO@C anode and VST-(i)@C cathode architectonics are a superior choice for the configuration of full-scale LIB built-up models.The integrated FRTO@C//VST-(i)@C full-scale LIB retains a huge discharge capacity(~94.2%),an average Coulombic efficiency of 99.85%after 2000 cycles at 1 C,and a high energy density of 127 Wh kg?1,thereby satisfying scale-up commercial EV requirements. 展开更多
关键词 LITHIUM-ION battery 3D super-scalable hierarchal anode/cathode MODELS Density functional theory anode/cathode architectonics Electric vehicle applications
在线阅读 下载PDF
“Tennis racket”hydrogel electrolytes to synchronously regulate cathode and anode of zinc-iodine batteries 被引量:1
2
作者 Tian-Yi Yang Ting-Ting Su +3 位作者 Hai-Long Wang Kun Li Wen-Feng Ren Run-Cang Sun 《Journal of Energy Chemistry》 2025年第3期454-462,共9页
Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyio... Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries. 展开更多
关键词 Tennis racket Hydrogele lectrolyte Interface regulation Zinc anode Zinc-iodide batteries
在线阅读 下载PDF
Synchronous regulation of V_(2)O_(5) cathode and Zn anode using sodium gluconate as an additive for long-life aqueous zinc-ion batteries 被引量:1
3
作者 Rongkun Sun Dan Luo +5 位作者 Hongyang Zhou Zhaolong Zhang Yinuo Gao Siyuan Ma Zhi Li Xiaohong Kang 《Journal of Energy Chemistry》 2025年第4期703-713,共11页
Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hamp... Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hampered by the instability of both the anode-electrolyte interface and the cathode-electrolyte interface.The use of sodium gluconate(SG),an organic sodium salt with multiple hydroxyl groups,as an electrolyte additive is suggested.Experimental and theoretical analyses demonstrate that Na^(+)from SG can intercalate and deintercalate within the associated V_(2)O_(5) cathode during in situ electrochemical processes.This action supports the layered structure of V_(2)O_(5),prevents structural collapse and phase transitions,and enhances Zn^(2+)diffusion kinetics.Additionally,the gluconate anion disrupts the original Zn^(2+)solvation structure,mitigates water-induced side reactions,and suppresses Zn dendrite growth.The synchronous regulation of both the V_(2)O_(5) cathode and Zn anode by the SG additive leads to considerable performance improvements.Zn‖Zn symmetric batteries demonstrate a cycle life exceeding 2800 h at 0.5 mA cm^(-2)and 1 mAh cm^(-2).In Zn‖V_(2)O_(5) full batteries,a high specific capacity of 288.92 mAh g^(-1)and capacity retention of 82.29%are maintained over 1000 cycles at a current density of 2 A g^(-1).This multifunctional additive strategy offers a new pathway for the practical application of AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries Sodium gluconate Vanadium oxides Zn anode Cycling stability High specific capacity
在线阅读 下载PDF
Correction to: Matched MnO@C anode and porous carbon cathode for Li-ion hybrid supercapacitors
4
作者 Cui-Hua An Yue-Qing Li +4 位作者 Shuai Wu Ling-Xiao Gao Li-Yang Lin Qi-Bo Deng Ning Hu 《Rare Metals》 2025年第4期2869-2869,共1页
In the original publication,incorrect version of affiliations has been published.The corrected affiliations are provided inthis correction.
关键词 porous carbon cathode lithium ion hybrid supercapacitors mno c anode
原文传递
Developing High-Energy,Stable All-Solid-State Lithium Batteries Using Aluminum-Based Anodes and High-Nickel Cathodes
5
作者 Xin Wu Meiyu Wang +4 位作者 Hui Pan Xinyi Sun Shaochun Tang Haoshen Zhou Ping He 《Nano-Micro Letters》 2025年第10期292-306,共15页
Aluminum(Al)exhibits excellent electrical conductivity,mechanical ductility,and good chemical compatibility with high-ionic-conductivity electrolytes.This makes it more suitable as an anode material for all-solid-stat... Aluminum(Al)exhibits excellent electrical conductivity,mechanical ductility,and good chemical compatibility with high-ionic-conductivity electrolytes.This makes it more suitable as an anode material for all-solid-state lithium batteries(ASSLBs)compared to the overly reactive metallic lithium anode and the mechanically weak silicon anode.This study finds that the pre-lithiated Al anode demonstrates outstanding interfacial stability with the Li_6PS_5Cl(LPSCl)electrolyte,maintaining stable cycling for over 1200 h under conditions of deep charge-discharge.This paper combines the pre-lithiated Al anode with a high-nickel cathode,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),paired with the highly ionic conductive LPSCl electrolyte,to design an ASSLB with high energy density and stability.Using anode pre-lithiation techniques,along with dual-reinforcement technology between the electrolyte and the cathode active material,the ASSLB achieves stable cycling for 1000 cycles at a 0.2C rate,with a capacity retention rate of up to 82.2%.At a critical negative-to-positive ratio of 1.1,the battery's specific energy reaches up to 375 Wh kg^(-1),and it maintains over 85.9%of its capacity after 100 charge-discharge cycles.This work provides a new approach and an excellent solution for developing low-cost,high-stability all-solid-state batteries. 展开更多
关键词 All-solid-state lithium battery Ni-rich cathode Pre-lithiated Al anode High energy density Interface modification
在线阅读 下载PDF
Characteristic analysis of anode panel for a ZnO nanowire cold cathode flat‑panel X‑ray source using Monte Carlo simulations
6
作者 Xiao-Ying Zhang Jian-Cong Dai +2 位作者 Jun Chen Wang-Jiang Wu Yuan Xu 《Nuclear Science and Techniques》 2025年第10期24-34,共11页
Flat-panel X-ray sources(FPXSs)have many advantages in terms of compactness and low-dose imaging,enhancing their capability for novel X-ray applications.Experimental analysis of the X-ray characteristics and optimizin... Flat-panel X-ray sources(FPXSs)have many advantages in terms of compactness and low-dose imaging,enhancing their capability for novel X-ray applications.Experimental analysis of the X-ray characteristics and optimizing the anode panel of an FPXS are time-consuming,expensive,and sometimes impractical.In this study,a FPXS was prepared using a ZnO nanowire cold cathode and a molybdenum film anode target.Monte Carlo(MC)simulations were utilized to optimize the anode panel and obtain the average fluence,average energy,and spatial distribution of the X-rays for the ZnO nanowire FPXS.The accuracy of the MC simulations was verified by comparing the measured and simulated energy spectra.Optimization of the anode target considers the material,thickness,and morphology,whereas optimization of the substrate focuses on the material and thickness.The results show that the difference between the positions of the K-shell peaks in the measured and simulated energy spectra is within 0.26 keV.At the acceleration voltages of 30 kV,60 kV,and 90 kV,the optimal thicknesses of the tungsten array anode were 0.65μm,2.45μm,and 5μm,respectively,while the molybdenum array anode has the optimal thicknesses of 1.45μm,5.25μm,and 24μm,respectively.The microsemi-ellipsoidal anode with a recessed design showed a 5%increase in the transmitted X-ray fluence compared with the film target.The sapphire substrate with a thickness of 0.78 mm exhibits a mechanical strength comparable to that of a glass substrate with a thickness of 3 mm,implying that the former can increase the average X-ray fluence by reducing the filtration of X-rays.The findings of this study provide valuable guidance for the fabrication and optimization of the ZnO nanowire FPXS. 展开更多
关键词 ZnO nanowire cold cathode flat-panel X-ray source Monte Carlo simulation anode optimization Substrate optimization
暂未订购
Tackling Challenges and Exploring Opportunities in Cathode Binder Innovation
7
作者 Tingrun Lai Li Wang +3 位作者 Zhibei Liu Adnan Murad Bhayo Yude Wang Xiangming He 《Nano-Micro Letters》 2026年第1期198-228,共31页
Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further ex... Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs. 展开更多
关键词 cathode Binder Lithium-Ion Battery Performance Optimization Sustainable Development Innovative Design
在线阅读 下载PDF
Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries
8
作者 Jingjing Dong Liu Pei +6 位作者 Yifei Wang Yan Liu Xingliang Liu Zhidan Diao Jianling Li Yejing Li Xindong Wang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期306-314,共9页
The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batte... The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)). 展开更多
关键词 sodium-ion batteries Cu/Ti doping cyclic stability layered cathode material
在线阅读 下载PDF
Porous cathode enables continuous flow anodic oxidation for water purification:Performance and mechanisms
9
作者 Runsheng Xu Haotian Wu +3 位作者 Daoyuan Zu Kui Yang Xiangtong Kong Jinxing Ma 《Chinese Chemical Letters》 2025年第8期655-660,共6页
Flow anodic oxidation system has demonstrated to be a promising and environmental benign water treatment technology because of its advantages of high contaminant removal efficiency and low energy consumption.However,t... Flow anodic oxidation system has demonstrated to be a promising and environmental benign water treatment technology because of its advantages of high contaminant removal efficiency and low energy consumption.However,traditional setup needs an external unit for flow anode material separation and recovery,which inevitably increases the capital cost and hinders its continuous operation.Herein,a specific porous cathode is introduced to achieve continuous water purification with high contaminant removal in a flow anodic oxidation system.The efuent concentration of carbamazepine(CBZ),a common and model contaminant widely detected in natural water environment,was reduced by 99%.The linear sweep voltammetry(LSV)and quenching tests demonstrated that HO·was the dominant reactive species.While the removal of contaminants was inhibited in practical surface water,largely related to the quenching by dissolved organic matter and bicarbonate,the flow anodic oxidation process was competent in alleviating the ecotoxicity following oxidation.Our study constructs a modular device for cost-effective continuous water purification and provides insight into the mechanisms of flow andic oxidation. 展开更多
关键词 Water purification Flow anodic oxidation Porous cathode Magneli phase titanium suboxide CARBAMAZEPINE
原文传递
Lithium-ion full cell with high energy density using nickel-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 cathode and SiO-C composite anode 被引量:12
10
作者 Azhar Iqbal Long Chen +3 位作者 Yong Chen Yu-xian Gao Fang Chen Dao-cong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第12期1473-1481,共9页
A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 cathode and Si O-C composite anode. The LiNi_(0.8)Co_(0.1)Mn_... A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 cathode and Si O-C composite anode. The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 and Si O-C exhibited excellent electrochemical performance in both half and full cells. Specifically, when integrated into a full cell configuration, a high energy density(280 Wh·kg^(-1)) with excellent rate capability and long cycle life was attained. At 0.5 C, the full cell retained 80% of its initial capacity after 200 charge/discharge cycles, and 60% after 600 cycles, indicating robust structural tolerance for the repeated insertion/extraction of Li^+ ions. The rate performance showed that, at high rate of 1 C and 2 C, 96.8% and 93% of the initial capacity were retained, respectively. The results demonstrate strong potential for the development of high energy density Li-ion batteries for practical applications. 展开更多
关键词 HIGH energy DENSITY full cell rate performance HIGH capacity cathode
在线阅读 下载PDF
A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode 被引量:7
11
作者 Hao Chen Zhenzhen Wu +4 位作者 Zhong Su Luke Hencz Su Chen Cheng Yan Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期127-135,I0003,共10页
Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large... Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large volume change and active material loss in lithium-ion batteries during prolonged cycles. Herein, a hydrophilic polymer poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was explored as a dual-functional aqueous binder for the preparation of high-performance silicon anode and sulfur cathode. Benefiting from the dual functions of PMVEMA, i.e., the excellent dispersion ability and strong binding forces, the as-prepared electrodes exhibit improved capacity, rate capability and long-term cycling performance. In particular, the as-prepared Si electrode delivers a high initial discharge capacity of 1346.5 mAh g^(−1) at a high rate of 8.4 A/g and maintains 834.5 mAh g^(−1) after 300 cycles at 4.2 A/g, while the as-prepared S cathode exhibits enhanced cycling performance with high remaining discharge capacities of 663.4 mAh g^(−1) after 100 cycles at 0.2 C and 487.07 mAh g^(−1) after 300 cycles at 1 C, respectively. These encouraging results suggest that PMVEMA could be a universal binder to facilitate the green manufacture of both anode and cathode for high-capacity energy storage systems. 展开更多
关键词 Dual-functional Aqueous binder Silicon anode Sulfur cathode Lithium-ion batteries Lithium-sulfur batteries
在线阅读 下载PDF
Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries 被引量:5
12
作者 Nkongolo Tshamala Aristote Kangyu Zou +6 位作者 Andi Di Wentao Deng Baowei Wang Xinglan Deng Hongshuai Hou Guoqiang Zou Xiaobo Ji 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第2期730-742,共13页
Sodium-ion batteries(SIBs) have gained more scientists’ interest, owing to some facts such as the natural abundance of Na, the similarities of physicochemical characteristics between Li and Na. The irreversible Na+io... Sodium-ion batteries(SIBs) have gained more scientists’ interest, owing to some facts such as the natural abundance of Na, the similarities of physicochemical characteristics between Li and Na. The irreversible Na+ions consumption during the first cycle of charge/discharge process(due to the formation of the solid electrolyte interface(SEI) on the electrode surface and other irreversible reactions) is the factor that determines high performance SIBs and largely reduces the capacity of the full cell SIBs. Thus, the initial coulombic efficiency(ICE) of SIBs for both anode and cathode materials, is a key parameter for high performance SIBs, and the point is to increase the transport rate of the Na+ions. Therefore, developing SIBs with high ICE and rate performance becomes vital to boost the commercialization of SIBs. Here we provide a review on the methods to improve the ICE and the rate performance, by summarizing some methods of improving the ICE and rate performance of the anode and cathode materials for SIBs, and end by a conclusion with some perspectives and recommendations. 展开更多
关键词 Initial coulombic efficiency Rate performance Sodium-ion batteries anode materials cathode materials
原文传递
A rapid one-step electrodeposition process for fabrication of superhydrobic surfaces on anode and cathode 被引量:3
13
作者 郝丽梅 闫小乐 +2 位作者 解忧 张涛 陈志 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1576-1583,共8页
This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A r... This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface. 展开更多
关键词 one-step electrodeposition process SUPERHYDROPHOBICITY contact angle AQUEOUS anode cathode
在线阅读 下载PDF
Fabricating a PVDF skin for PEO-based SPE to stabilize the interface both at cathode and anode for Li-ion batteries 被引量:2
14
作者 Qi Ye Haoyue Liang +4 位作者 Shuhao Wang Can Cui Cheng Zeng Tianyou Zhai Huiqiao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期356-362,I0010,共8页
Poly(ethylene oxide)(PEO)-based solid polymer electrolyte is always the most promising candidate for preparing thinner, lighter and safer lithium-ion batteries. However, the lithium dendrites growth of lithium anode a... Poly(ethylene oxide)(PEO)-based solid polymer electrolyte is always the most promising candidate for preparing thinner, lighter and safer lithium-ion batteries. However, the lithium dendrites growth of lithium anode and the high-voltage oxidation of cathode are easy to cause the PEO-based battery failure.The way to deal with the different challenges on both sides of the anode and cathode is pursued all the time. In this study, we reported a new strategy to construct the PVDF/PEO/PVDF three-layer structure for solid polymer electrolyte(marked as PVDF@PEO) using PVDF as the functional “skin”. The PVDF@PEO electrolyte can effectively prevent from the lithium dendrites, and shows a stable cycling life over1000 h in the Li/PVDF@PEO/Li cell. In addition, the PVDF@PEO electrolyte exhibits higher oxidation resistance and can be matched with high-voltage LiCoO_(2) cathode. The Li/PVDF@PEO/LiCoO_(2) cell delivered a specific capacity of about 150 m Ah g^(-1) over 150 cycles and maintained good cycling stability. Our research provides insights that the polymer electrolytes constructed with PVDF functional “skin” can simultaneously meet the challenges of both anode and cathode in solid-state lithium-ion batteries(SSLIBs). 展开更多
关键词 PVDF PEO Solid-state lithium-ion batteries cathode anode
在线阅读 下载PDF
Effect of samarium doped ceria nanoparticles impregnation on the performance of anode supported SOFC with(Pr_(0.7)Ca_(0.3))_(0.9)MnO_(3-δ) cathode 被引量:3
15
作者 熊麟 王绍荣 +1 位作者 王振荣 温珽琏 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第1期96-99,共4页
Solid oxide fuel cell(SOFC) electrodes,after a high temperature sintering,may be impregnated to deposit nanoparticles within their pores to enhance the catalytic function.Samarium doped CeO2(SDC) nanoparticles were in... Solid oxide fuel cell(SOFC) electrodes,after a high temperature sintering,may be impregnated to deposit nanoparticles within their pores to enhance the catalytic function.Samarium doped CeO2(SDC) nanoparticles were infiltrated into(Pr0.7Ca0.3)0.9MnO3-δ(PCM) cathode of anode supported SOFC cells.The cell with 2.6 mg/cm2 SDC impregnated in cathode showed the maximum power density of 580 mW/cm2 compared with 310 mW/cm2 of the cell without impregnation at 850 °C.The cells were also characterized with the impeda... 展开更多
关键词 solid oxide fuel cell(SOFC) doped ceria cathode IMPREGNATION rare earths
在线阅读 下载PDF
Sodium-based dual-ion batteries via coupling high-capacity selenium/graphene anode with high-voltage graphite cathode 被引量:1
16
作者 Xiankun Hou Wenhao Li +5 位作者 Yingying Wang Shaofang Li Yunfeng Meng Haiyue Yu Baokuan Chen Xinglong Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第9期2314-2318,共5页
Dual ion batteries(DIBs) exhibit broad application prospects in the field of electrical energy storage(EES)devices with excellent properties,such as high voltage,high energy density,and low cost.In the graphitebased D... Dual ion batteries(DIBs) exhibit broad application prospects in the field of electrical energy storage(EES)devices with excellent properties,such as high voltage,high energy density,and low cost.In the graphitebased DIBs,high voltage is needed to store enough anions with the formation of anion intercalation compound XCn(X=AlCl4-,PF6-,TFSI-,etc.).Hence,it is difficult for graphite-based DIBs to match proper anodes and electrolytes.Here,an Se/graphene composite is prepared via a convenient method,and assembled into a dual-ion full battery(DIFB) as anode with graphite cathode and 1 mol/L NaPF6 in EC:EMC(1:1,v:v).This DIFB has achieved a high discharge capacity of 75.9 mAh/g and high medium output voltage of 3.5 V at 0.1 A/g.Actually,the suitable anode materials,such as the present Se/graphene composite,are extremely important for the development and application of graphite-based DIBs.This study is enlightening for the design of future low-cost EES devices including graphite-based DIBs. 展开更多
关键词 Dual ion batteries High-capacity anode Se/grapheme High-voltage cathode GRAPHITE
原文传递
Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode 被引量:1
17
作者 Kui Lin Xiaofu Xu +8 位作者 Xianying Qin Ming Liu Liang Zhao Zijin Yang Qi Liu Yonghuang Ye Guohua Chen Feiyu Kang Baohua Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期174-186,共13页
The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density t... The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density to the maximum extent.However,the poor reversibility and infinite volume change of Li metal hinder the realistic implementation of Li metal in battery community.Herein,a commercially viable hybrid Li-ion/metal battery is realized by a coordinated strategy of symbiotic anode and prelithiated cathode.To be specific,a scalable template-removal method is developed to fabricate the porous graphite layer(PGL),which acts as a symbiotic host for Li ion intercalation and subsequent Li metal deposition due to the enhanced lithiophilicity and sufficient ion-conducting pathways.A continuous dissolution-deintercalation mechanism during delithiation process further ensures the elimination of dead Li.As a result,when the excess plating Li reaches 30%,the PGL could deliver an ultrahigh average Coulombic efficiency of 99.5% for 180 cycles with a capacity of 2.48 m Ah cm^(-2) in traditional carbonate electrolyte.Meanwhile,an air-stable recrystallized lithium oxalate with high specific capacity(514.3 m Ah g^(-1))and moderate operating potential(4.7-5.0 V)is introduced as a sacrificial cathode to compensate the initial loss and provide Li source for subsequent cycles.Based on the prelithiated cathode and initial Li-free symbiotic anode,under a practical-level3 m Ah capacity,the assembled hybrid Li-ion/metal full cell with a P/N ratio(capacity ratio of Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2) to graphite)of 1.3exhibits significantly improved capacity retention after 300 cycles,indicating its great potential for high-energy-density Li batteries. 展开更多
关键词 Hybrid lithium-ion/metal battery Symbiotic anode Porous graphite layer cathode prelithiation Lithium oxalate
在线阅读 下载PDF
Iodine Promoted Ultralow Zn Nucleation Overpotential and Zn-Rich Cathode for Low-Cost, Fast-Production and High-Energy Density Anode-Free Zn-Iodine Batteries 被引量:3
18
作者 Yixiang Zhang Lequan Wang +5 位作者 Qingyun Li Bo Hu Junming Kang Yuhuan Meng Zedong Zhao Hongbin Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期373-386,共14页
The anode-free design is a promising strategy to increase the energy density of aqueous Zn metal batteries(AZMBs).However,the scarcity of Zn-rich cathodes and the rapid loss of limited Zn greatly hinder their commerci... The anode-free design is a promising strategy to increase the energy density of aqueous Zn metal batteries(AZMBs).However,the scarcity of Zn-rich cathodes and the rapid loss of limited Zn greatly hinder their commercial applications.To address these issues,a novel anode-free Zniodine battery(AFZIB)was designed via a simple,low-cost and scalable approach.Iodine plays bifunctional roles in improving the AFZIB overall performance:enabling high-performance Zn-rich cathode and modulating Zn deposition behavior.On the cathode side,the ZnI_(2) serves as Zn-rich cathode material.The graphene/polyvinyl pyrrolidone heterostructure was employed as an efficient host for ZnI_(2) to enhance electron conductivity and suppress the shuttle effect of iodine species.On the anode side,trace I_(3)^(−) additive in the electrolyte creates surface reconstruction on the commercial Cu foil.The in situ formed zincophilic Cu nanocluster allows ultralow-overpotential and uniform Zn deposition and superior reversibility(average coulombic efficiency>99.91% over 7,000 cycles).Based on such a configuration,AFZIB exhibits significantly increased energy density(162 Wh kg^(−1)) and durable cycle stability(63.8% capacity retention after 200 cycles)under practical application conditions.Considering the low cost and simple preparation methods of the electrode materials,this work paves the way for the practical application of AZMBs. 展开更多
关键词 Zn metal battery Zn deposition Zn-rich cathode anode-free Energy density
在线阅读 下载PDF
In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell 被引量:3
19
作者 Xiaoli Zheng Zhanhua Wei +4 位作者 Haining Chen Yang Bai Shuang Xiao Teng Zhang Shihe Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期736-743,共8页
We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with t... We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability. 展开更多
关键词 Dual porous TiO2 film Carbon cathode Perovskite solar cell Light scattering Charge transport
在线阅读 下载PDF
Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis 被引量:1
20
作者 Zhihao Zheng Mingzhuang Xie +5 位作者 Guoqing Yu Zegang Wu Jingjing Zhong Yi Wang Hongliang Zhao Fengqin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2466-2475,共10页
Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and th... Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC. 展开更多
关键词 graphitized spent carbon cathode hazardous solid waste flotation acid leaching lithium-ion batteries
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部