Metal batteries have attracted considerable attention from researchers because of their low reduction voltage and high specific capacity.However,the reduction in the capacity and lifespan of batteries caused by the de...Metal batteries have attracted considerable attention from researchers because of their low reduction voltage and high specific capacity.However,the reduction in the capacity and lifespan of batteries caused by the dendrite growth of metal anode limits the development of metal batteries.Metal-organic frameworks (MOFs) can be used to protect metal anodes owing to their advantages of ideal specific surface area,tunable porosity,and physiochemical stability in electrolytes.Therefore,MOFs have been extensively investigated in metal batteries.The introduction of MOFs to the metal anode interface can greatly improve the performance of batteries.In this review,the synthesis methods of typical MOFs and their derivatives,their protective mechanism on the metal anode,including Li,Na,K,Zn,and Mg,and their effects on the performance of metal batteries were elucidated.This review would help to design and apply MOFs to the anode interface in metal batteries.展开更多
Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased intern...Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices.展开更多
Aluminum(Al)metal is a promising anode material for rechargeable aluminum batteries(RABs)due to its high abundance and specific capacity.However,its application is limited by dendrite formation and ultra-thick separat...Aluminum(Al)metal is a promising anode material for rechargeable aluminum batteries(RABs)due to its high abundance and specific capacity.However,its application is limited by dendrite formation and ultra-thick separators are usually required.Here,we propose that silica nanoparticles(nano-SiO_(2))can serve as multifunctional additive for chloroaluminate electrolyte(IL)because of their unique physicochemical properties.By combining experimental and simulation studies,nano-SiO_(2)form a colloidal system with IL,which helps nano-SiO_(2)play a positive role throughout battery lifecycle.They help to uniform electric field,increase ion migration number,and promote electrochemical reactions on the anode side,which inhibits the growth of Al dendrite and enhances the cycle life of battery.By using IL-SiO_(2)-3‰,the cycle life of the symmetric cell increases to 2300 h at 1 mA·cm^(−2),which is approximately 80 times greater than that using IL.The cycle number of the Al//graphite full battery increases from 3644 in IL to over 26,000 in IL-SiO_(2)-3‰at 2 A·g^(−1)with a capacity retention of~99%.This work provides a valuable direction for the further optimization of the interface between metal anode and electrolyte in rechargeable batteries.展开更多
While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further devel...While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further development dramatically.Herein,we utilize the amino acid glycine(Gly)as an electrolyte additive to stabilize the Zn anode–electrolyte interface.The unique interfacial chemistry is facilitated by the synergistic“anchor-capture”effect of polar groups in Gly molecule,manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn^(2+)in the local region.As such,this robust anode–electrolyte interface inhibits the disordered migration of Zn^(2+),and effectively suppresses both side reactions and dendrite growth.The reversibility of Zn anode achieves a significant improvement with an average Coulombic efficiency of 99.22%at 1 mA cm^(−2)and 0.5 mAh cm^(−2)over 500 cycles.Even at a high Zn utilization rate(depth of discharge,DODZn)of 68%,a steady cycle life up to 200 h is obtained for ultrathin Zn foils(20μm).The superior rate capability and long-term cycle stability of Zn–MnO_(2)full cells further prove the effectiveness of Gly in stabilizing Zn anode.This work sheds light on additive designing from the specific roles of polar groups for AZIBs.展开更多
Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte inte...Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.展开更多
Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit...Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.展开更多
In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid...In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid solution atoms in theα-Mg matrix without its second-phase generation,and at the same time facilitates grain refinement,dendritic segregation and Mg17Sr2-phases precipitation.During discharge operation,Sr modifies the film composition via its compounds and promoted the redeposition of In at the substrate/film interface;their co-deposition behavior on the anodic reaction surface enhances anode reaction kinetics,suppresses the negative difference effect(NDE)and mitigates the“chunk effect”(CE),which is contributed to uniform dissolution and low self-corrosion hydrogen evolution rate(HER).Therefore,Mg-Sr-xIn alloy anodes show excellent discharge performance,e.g.,0.5Sr-1.0In shows an average discharge voltage of 1.4234 V and a specific energy density of 1990.71 Wh kg^(-1)at 10 mA cm^(-2).Furthermore,the decisive factor(CE and self-discharge HE)for anodic efficiency are quantitively analyzed,the self-discharge is the main factor of cell efficiency loss.Surprisingly,all Mg-Sr-xIn anodes show anodic efficiency greater than 60%at high current density(≥10 mA cm^(-2)),making them excellent candidate anodes for Mg-Air cells at high-power output.展开更多
Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv...Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.展开更多
The preferential proton reduction over zinc-ion deposition in aqueous batteries arises from dual yet conflicting roles of water as charge carrier and parasitic reactant,posing persistent interfacial challenges.Althoug...The preferential proton reduction over zinc-ion deposition in aqueous batteries arises from dual yet conflicting roles of water as charge carrier and parasitic reactant,posing persistent interfacial challenges.Although cosolvent engineering has shown promise in mitigating water activity through hydrogenbond network modulation,prevailing strategies remain limited by their narrow focus on electronic and functional group properties,neglecting the stereochemical influence on molecular assembly.In this work,we uncover how molecular chirality dictates the hierarchical organization of hydrogen-bonding networks between cosolvents and water,which is a critical but previously unrecognized determinant of interfacial stability.By interrogating enantiomeric pairs(L-/D-carnitine),we demonstrate that chiral constraints steer the spatial arrangement of hydration structures through stereoselective hydrogenbonding geometries.Combined spectroscopic and molecular dynamics analyses reveal that L-carnitine(L-CN)forms a three-dimensional hydrogen-bonded matrix with water,exhibiting superior directional connectivity relative to its D-isomer.This stereo-dependent architecture simultaneously reinforces Zn2+solvation shells via bridging H-bond interactions and generates a self-adaptive interfacial structure that kinetically isolates water from the zinc anode surface.This stereochemical optimization enables Zn||Zn symmetric cells with unprecedented cycling stability exceeding 2000 h at 0.5 mA cm^(-2)/0.5 mAh cm^(-2).Corresponding Zn||Cu asymmetric cells maintain a high average Coulombic efficiency of 99.7%over 500 cycles at 3.0 mA cm^(-2)/3.0 mAh cm^(-2).This study pioneers a stereochemical design framework for aqueous electrolytes,elucidating chiral recognition mechanisms in solvation structures and establishing molecular topology engineering as a transformative strategy for high-efficiency energy storage systems.展开更多
All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-impr...All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density.However,lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs.Here,a thin layer(approximately 5 nm)of g-C_(3)N_(4)is coated on the surface of a sulfide SE(Li_(6)PS_(5)Cl),which not only lowers the electronic conductivity of Li_(6)PS_(5)Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li3N at the Li/Li_(6)PS_(5)Cl interface.Additionally,the g-C_(3)N_(4)coating on the surface can substantially reduce the formation of H_(2)S when Li_(6)PS_(5)Cl is exposed to humid air.As a result,Li-Li symmetrical cells using g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl stably cycle for 1000 h with a current density of 0.2 mA cm^(-2).ASSLMBs paired with LiNbO_(3)-coated LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)exhibit a capacity of 132.8 mAh g^(-1)at 0.1 C and a high-capacity retention of 99.1%after 200 cycles.Furthermore,g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl effectively mitigates the self-discharge behavior observed in ASSLMBs.This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs.展开更多
Tailoring functional interfacial layers through molecular design of electrolyte additives has emerged as a prevalent strategy to modulate interfacial reactions and stabilize aqueous zinc-ion batteries(AZIBs).In this w...Tailoring functional interfacial layers through molecular design of electrolyte additives has emerged as a prevalent strategy to modulate interfacial reactions and stabilize aqueous zinc-ion batteries(AZIBs).In this work,the effect of alkyl chain-induced conformation evolution in interfacial layers on stabilizing the zinc anode was systematically studied using linear cationic surfactant additives.Based on the electrochemical tests and COMSOL simulations,these additives expanded the electrochemical stability window of electrolytes and formed zincophilic-hydrophobic interfacial layers on the anode surface,thus suppressing side reactions and blocking water erosion.Moreover,the interfacial layers not only increased the nucleation overpotential of zinc ions,thus alleviating the electrolyte concentration polarization,but also restricted the 2D diffusion of zinc ions on the anode surface,thereby inducing uniform deposition of finer zinc particles and inhibiting dendrite growth.Furthermore,theoretical calculations revealed that va rying alkyl chain lengths in cationic surfactants and their adsorption configurations resulted in different interfacial layer thicknesses.Especially the dodecyltrimethylammonium chloride(DTAC),the dodecyl group provided a robust hydrophobic layer,effectively stabilizing the zinc anode.And the Zn‖Zn cell with ZSO-DTAC electrolyte achieved a long lifespan of 2000 h at 1 mA cm^(-2),the Zn‖Cu cell exhibited an excellent Coulombic efficiency of 99.69%at 2 mA cm^(-2).In addition,the Zn‖MnO_(2) full cell delivered an initial capacity of 149.44 mA h g^(-1)at 5 A g^(-1),with 83.02%capacity retention after 2000cycles.This work provided fundamental insights into modulating interfacial conformations and reactions to stabilize zinc anodes by surfactant-type additives,offering practical guidance for electrolyte optimization in high-performance AZIBs.展开更多
Undesirable side reactions at the Zn anode interface hindered the development of aqueous zinc-ion batteries(AzIBs).In particular,the direct contact between the zinc(Zn)anode and aqueous media triggers side reactions s...Undesirable side reactions at the Zn anode interface hindered the development of aqueous zinc-ion batteries(AzIBs).In particular,the direct contact between the zinc(Zn)anode and aqueous media triggers side reactions such as Zn dendrites,hydrogen evolution,and corrosion.In this study,an artificial interlayer(TiO_(2))is constructed on the Zn anode surface by magnetron sputtering technology.Thanks to its ultra-thin,uniform,and stable porous structure,the TiO_(2) interlayer can effectively suppress and reduce side reactions through a physical barrier and regulation of ion flux.The experimental results show that the ZnllZn symmetric cells using Zn anode with TiO_(2) interlayer(TO-Zn)exhibit symmetric charge-discharge curves and an ultra-long cycle life of over 5100 h at 5 mA/cm^(2)(1 mA·h/cm^(2)),which is approximately 51 times longer than the bare Zn anode(only 100 h).Compared to the bare ZnllMnO_(2) full cell,the full cell assembled with TO-Zn exhibits a relatively stable cycling performance,retaining a reversible capacity of approximately 108.4 mAh/g after 1000 cycles.This study uses a facile process technology to provide a reference for constructing an artificial interlayer.展开更多
Solid-state batteries represent the future of energy storage technology,offering improved safety and energy density.Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO)solidstate electrolytes-based solid-state lithium batteries...Solid-state batteries represent the future of energy storage technology,offering improved safety and energy density.Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO)solidstate electrolytes-based solid-state lithium batteries(SSLBs)stand out for their appealingmaterial properties and chemical stability.Yet,their successful deployment depends on conquering interfacial challenges.This review article primarily focuses on the advancement of interfacial engineering for LLZO-based SSLBs.We commence with a concise introduction to solid-state electrolytes and a discussion of the challenges tied to interfacial properties in LLZO-based SSLBs.We deeply explore the correlations between structure and properties and the design principles vital for achieving an ideal electrode/electrolyte interface.Subsequently,we delve into the latest advancements and strategies dedicated to overcoming these challenges,with designated sections on cathode and anode interface design.In the end,we share our insights into the advancements and opportunities for interface design in realizing the full potential of LLZO-based SSLBs,ultimately contributing to the development of safe and high-performance energy storage solutions.展开更多
Solid-state sodium metal batteries utilizing inorganic solid electrolytes(SEs)hold immense potentials such as intrinsical safety,high energy density,and environmental sustainability.However,the interfacial inhomogenei...Solid-state sodium metal batteries utilizing inorganic solid electrolytes(SEs)hold immense potentials such as intrinsical safety,high energy density,and environmental sustainability.However,the interfacial inhomogeneity/instability at the anode-SE interface usually triggers the penetration of sodium dendrites into the electrolyte,leading to short circuit and battery failure.Herein,confronting with the original nonuniform and high-resistance solid electrolyte interphase(SEI)at the Na-Na_(3)Zr_(2)Si_(2)PO_(12)interface,an oxygen-regulated SEI innovative approach is proposed to enhance the cycling stability of anode-SEs interface,through a spontaneous reaction between the metallic sodium(containing trace amounts of oxygen)and the Na_(3)Zr_(2)Si_(2)POi_(2)SE.The oxygen-regulated spontaneous SEI is thin,uniform,and kinetically stable to facilitate homogenous interfacial Na^+transportation,Benefitting from the optimized SEI,the assembled symmetric cell exhibits an ultra-stable sodium plating/stripping cycle for over 6600 h under a practical capacity of 3 mAh cm^(-2).Qua si-sol id-state batteries with Na_(3)V_(2)(PO_(4))_(3)cathode deliver excellent cyclability over 500 cycles at a rate of 0.5 C(1 C=117 mA cm^(-2))with a high capacity retention of95.4%.This oxygen-regulated SEI strategy may offer a potential avenue for the future development of high-energy-density solid-state metal batteries.展开更多
基金financial support from the National Natural Science Foundation of China (No.61904073)Spring City Plan-Special Program for Young Talents (No.K202005007)+2 种基金Yunnan Local Colleges Applied Basic Research Projects (Nos.202101BA070001-138,2018FH001-016)Yunnan Talents Support Plan for Yong Talents (No.XDYC-QNRC-2022-0482)Frontier Research Team of Kunming University 2023,and Yunnan Provincial Education Department (Nos.2022Y732,2022Y739)。
文摘Metal batteries have attracted considerable attention from researchers because of their low reduction voltage and high specific capacity.However,the reduction in the capacity and lifespan of batteries caused by the dendrite growth of metal anode limits the development of metal batteries.Metal-organic frameworks (MOFs) can be used to protect metal anodes owing to their advantages of ideal specific surface area,tunable porosity,and physiochemical stability in electrolytes.Therefore,MOFs have been extensively investigated in metal batteries.The introduction of MOFs to the metal anode interface can greatly improve the performance of batteries.In this review,the synthesis methods of typical MOFs and their derivatives,their protective mechanism on the metal anode,including Li,Na,K,Zn,and Mg,and their effects on the performance of metal batteries were elucidated.This review would help to design and apply MOFs to the anode interface in metal batteries.
基金Joint Funds of the National Natural Science Foundation of China (U22A20140)University of Jinan Disciplinary Cross-Convergence Construction Project 2023 (XKJC-202309, XKJC-202307)+4 种基金Jinan City-School Integration Development Strategy Project (JNSX2023015)Independent Cultivation Program of Innovation Team of Ji’nan City (202333042)Youth Innovation Group Plan of Shandong Province (2022KJ095)Shenzhen Stable Support Plan Program for Higher Education Institutions Research Program (20220816131408001)Shenzhen Science and Technology Program (JCYJ20230807091802006)。
文摘Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices.
基金supported by the National Natural Science Foundation of China(No.52274302).
文摘Aluminum(Al)metal is a promising anode material for rechargeable aluminum batteries(RABs)due to its high abundance and specific capacity.However,its application is limited by dendrite formation and ultra-thick separators are usually required.Here,we propose that silica nanoparticles(nano-SiO_(2))can serve as multifunctional additive for chloroaluminate electrolyte(IL)because of their unique physicochemical properties.By combining experimental and simulation studies,nano-SiO_(2)form a colloidal system with IL,which helps nano-SiO_(2)play a positive role throughout battery lifecycle.They help to uniform electric field,increase ion migration number,and promote electrochemical reactions on the anode side,which inhibits the growth of Al dendrite and enhances the cycle life of battery.By using IL-SiO_(2)-3‰,the cycle life of the symmetric cell increases to 2300 h at 1 mA·cm^(−2),which is approximately 80 times greater than that using IL.The cycle number of the Al//graphite full battery increases from 3644 in IL to over 26,000 in IL-SiO_(2)-3‰at 2 A·g^(−1)with a capacity retention of~99%.This work provides a valuable direction for the further optimization of the interface between metal anode and electrolyte in rechargeable batteries.
基金supported by National Key R&D Program(2022YFB2502000)Zhejiang Provincial Natural Science Foundation of China(LZ23B030003)+1 种基金the Fundamental Research Funds for the Central Universities(2021FZZX001-09)the National Natural Science Foundation of China(52175551).
文摘While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further development dramatically.Herein,we utilize the amino acid glycine(Gly)as an electrolyte additive to stabilize the Zn anode–electrolyte interface.The unique interfacial chemistry is facilitated by the synergistic“anchor-capture”effect of polar groups in Gly molecule,manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn^(2+)in the local region.As such,this robust anode–electrolyte interface inhibits the disordered migration of Zn^(2+),and effectively suppresses both side reactions and dendrite growth.The reversibility of Zn anode achieves a significant improvement with an average Coulombic efficiency of 99.22%at 1 mA cm^(−2)and 0.5 mAh cm^(−2)over 500 cycles.Even at a high Zn utilization rate(depth of discharge,DODZn)of 68%,a steady cycle life up to 200 h is obtained for ultrathin Zn foils(20μm).The superior rate capability and long-term cycle stability of Zn–MnO_(2)full cells further prove the effectiveness of Gly in stabilizing Zn anode.This work sheds light on additive designing from the specific roles of polar groups for AZIBs.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the National Natural Science Foundation of China(No.U23A20555,52202211)+3 种基金the Ninth Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028)the Fundamental Research Funds for the Central Universities(2023CDJXY-018)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2022119,cx2023087).
文摘Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.
基金financially supported by the National Natural Science Foundation of China (No. 52377222)the Natural Science Foundation of Hunan Province, China (Nos. 2023JJ20064, 2023JJ40759)。
文摘Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.
文摘In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid solution atoms in theα-Mg matrix without its second-phase generation,and at the same time facilitates grain refinement,dendritic segregation and Mg17Sr2-phases precipitation.During discharge operation,Sr modifies the film composition via its compounds and promoted the redeposition of In at the substrate/film interface;their co-deposition behavior on the anodic reaction surface enhances anode reaction kinetics,suppresses the negative difference effect(NDE)and mitigates the“chunk effect”(CE),which is contributed to uniform dissolution and low self-corrosion hydrogen evolution rate(HER).Therefore,Mg-Sr-xIn alloy anodes show excellent discharge performance,e.g.,0.5Sr-1.0In shows an average discharge voltage of 1.4234 V and a specific energy density of 1990.71 Wh kg^(-1)at 10 mA cm^(-2).Furthermore,the decisive factor(CE and self-discharge HE)for anodic efficiency are quantitively analyzed,the self-discharge is the main factor of cell efficiency loss.Surprisingly,all Mg-Sr-xIn anodes show anodic efficiency greater than 60%at high current density(≥10 mA cm^(-2)),making them excellent candidate anodes for Mg-Air cells at high-power output.
基金supported by the National Key Research and Development Program(2021YFB2400300)National Natural Science Foundation of China(22379013 and 22209010)the Beijing Institute of Technology“Xiaomi Young Scholars”program。
文摘Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.
基金supported by the National Natural Science Foundation of China(52402316)the Natural Science Foundation of Zhejiang Province(LQ23B030002)the Start-up Foundation of Zhejiang University of Science and Technology(ZUST)。
文摘The preferential proton reduction over zinc-ion deposition in aqueous batteries arises from dual yet conflicting roles of water as charge carrier and parasitic reactant,posing persistent interfacial challenges.Although cosolvent engineering has shown promise in mitigating water activity through hydrogenbond network modulation,prevailing strategies remain limited by their narrow focus on electronic and functional group properties,neglecting the stereochemical influence on molecular assembly.In this work,we uncover how molecular chirality dictates the hierarchical organization of hydrogen-bonding networks between cosolvents and water,which is a critical but previously unrecognized determinant of interfacial stability.By interrogating enantiomeric pairs(L-/D-carnitine),we demonstrate that chiral constraints steer the spatial arrangement of hydration structures through stereoselective hydrogenbonding geometries.Combined spectroscopic and molecular dynamics analyses reveal that L-carnitine(L-CN)forms a three-dimensional hydrogen-bonded matrix with water,exhibiting superior directional connectivity relative to its D-isomer.This stereo-dependent architecture simultaneously reinforces Zn2+solvation shells via bridging H-bond interactions and generates a self-adaptive interfacial structure that kinetically isolates water from the zinc anode surface.This stereochemical optimization enables Zn||Zn symmetric cells with unprecedented cycling stability exceeding 2000 h at 0.5 mA cm^(-2)/0.5 mAh cm^(-2).Corresponding Zn||Cu asymmetric cells maintain a high average Coulombic efficiency of 99.7%over 500 cycles at 3.0 mA cm^(-2)/3.0 mAh cm^(-2).This study pioneers a stereochemical design framework for aqueous electrolytes,elucidating chiral recognition mechanisms in solvation structures and establishing molecular topology engineering as a transformative strategy for high-efficiency energy storage systems.
基金supported by Beijing Natural Science Foundation(JQ22028)National Natural Science Foundation of China(U21A2080)+1 种基金Jilin Province Science and Technology Major Project(20210301021GX)Ministry of Science and Technology Rare Earth Special(2022YFB3506300).
文摘All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density.However,lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs.Here,a thin layer(approximately 5 nm)of g-C_(3)N_(4)is coated on the surface of a sulfide SE(Li_(6)PS_(5)Cl),which not only lowers the electronic conductivity of Li_(6)PS_(5)Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li3N at the Li/Li_(6)PS_(5)Cl interface.Additionally,the g-C_(3)N_(4)coating on the surface can substantially reduce the formation of H_(2)S when Li_(6)PS_(5)Cl is exposed to humid air.As a result,Li-Li symmetrical cells using g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl stably cycle for 1000 h with a current density of 0.2 mA cm^(-2).ASSLMBs paired with LiNbO_(3)-coated LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)exhibit a capacity of 132.8 mAh g^(-1)at 0.1 C and a high-capacity retention of 99.1%after 200 cycles.Furthermore,g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl effectively mitigates the self-discharge behavior observed in ASSLMBs.This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs.
基金funding provided by Cangzhou Institute of Tiangong University(Grant No.TGCYY-F-0301)Hebei Natural Science Foundation,China(Grant No.E2025110039)。
文摘Tailoring functional interfacial layers through molecular design of electrolyte additives has emerged as a prevalent strategy to modulate interfacial reactions and stabilize aqueous zinc-ion batteries(AZIBs).In this work,the effect of alkyl chain-induced conformation evolution in interfacial layers on stabilizing the zinc anode was systematically studied using linear cationic surfactant additives.Based on the electrochemical tests and COMSOL simulations,these additives expanded the electrochemical stability window of electrolytes and formed zincophilic-hydrophobic interfacial layers on the anode surface,thus suppressing side reactions and blocking water erosion.Moreover,the interfacial layers not only increased the nucleation overpotential of zinc ions,thus alleviating the electrolyte concentration polarization,but also restricted the 2D diffusion of zinc ions on the anode surface,thereby inducing uniform deposition of finer zinc particles and inhibiting dendrite growth.Furthermore,theoretical calculations revealed that va rying alkyl chain lengths in cationic surfactants and their adsorption configurations resulted in different interfacial layer thicknesses.Especially the dodecyltrimethylammonium chloride(DTAC),the dodecyl group provided a robust hydrophobic layer,effectively stabilizing the zinc anode.And the Zn‖Zn cell with ZSO-DTAC electrolyte achieved a long lifespan of 2000 h at 1 mA cm^(-2),the Zn‖Cu cell exhibited an excellent Coulombic efficiency of 99.69%at 2 mA cm^(-2).In addition,the Zn‖MnO_(2) full cell delivered an initial capacity of 149.44 mA h g^(-1)at 5 A g^(-1),with 83.02%capacity retention after 2000cycles.This work provided fundamental insights into modulating interfacial conformations and reactions to stabilize zinc anodes by surfactant-type additives,offering practical guidance for electrolyte optimization in high-performance AZIBs.
基金supported by the National Natural Science Foundation of China(52172044)the Engineering and Physical Sciences Research Council(EP/V027433/1)the Physical Sciences Research Council(EP/V027433/2).
文摘Undesirable side reactions at the Zn anode interface hindered the development of aqueous zinc-ion batteries(AzIBs).In particular,the direct contact between the zinc(Zn)anode and aqueous media triggers side reactions such as Zn dendrites,hydrogen evolution,and corrosion.In this study,an artificial interlayer(TiO_(2))is constructed on the Zn anode surface by magnetron sputtering technology.Thanks to its ultra-thin,uniform,and stable porous structure,the TiO_(2) interlayer can effectively suppress and reduce side reactions through a physical barrier and regulation of ion flux.The experimental results show that the ZnllZn symmetric cells using Zn anode with TiO_(2) interlayer(TO-Zn)exhibit symmetric charge-discharge curves and an ultra-long cycle life of over 5100 h at 5 mA/cm^(2)(1 mA·h/cm^(2)),which is approximately 51 times longer than the bare Zn anode(only 100 h).Compared to the bare ZnllMnO_(2) full cell,the full cell assembled with TO-Zn exhibits a relatively stable cycling performance,retaining a reversible capacity of approximately 108.4 mAh/g after 1000 cycles.This study uses a facile process technology to provide a reference for constructing an artificial interlayer.
基金National Key R&D Program of China,Grant/Award Number:2022YFB3807700National Natural Science Foundation of China,Grant/Award Numbers:U20A20248,52372247+4 种基金Key-Area Research and Development Program of Guangdong Province,Grant/Award Number:2020B090919001Shanghai Pujiang Programme,Grant/Award Number:23PJD110China Academy of Engineering Physics,Grant/Award Number:U1930208Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2021QB007Science and Technology Commission of Shanghai Municipality,Grant/Award Number:18DZ2280800。
文摘Solid-state batteries represent the future of energy storage technology,offering improved safety and energy density.Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO)solidstate electrolytes-based solid-state lithium batteries(SSLBs)stand out for their appealingmaterial properties and chemical stability.Yet,their successful deployment depends on conquering interfacial challenges.This review article primarily focuses on the advancement of interfacial engineering for LLZO-based SSLBs.We commence with a concise introduction to solid-state electrolytes and a discussion of the challenges tied to interfacial properties in LLZO-based SSLBs.We deeply explore the correlations between structure and properties and the design principles vital for achieving an ideal electrode/electrolyte interface.Subsequently,we delve into the latest advancements and strategies dedicated to overcoming these challenges,with designated sections on cathode and anode interface design.In the end,we share our insights into the advancements and opportunities for interface design in realizing the full potential of LLZO-based SSLBs,ultimately contributing to the development of safe and high-performance energy storage solutions.
基金Zhejiang Provincial Natural Science Foundation of China(LZ23B030003)the National Key R&D Program(2022YFB2502000)+1 种基金the National Key R&D Program(2022YFB2502000)the Fundamental Research Funds for the Central Universities(2021FZZX001-09)。
文摘Solid-state sodium metal batteries utilizing inorganic solid electrolytes(SEs)hold immense potentials such as intrinsical safety,high energy density,and environmental sustainability.However,the interfacial inhomogeneity/instability at the anode-SE interface usually triggers the penetration of sodium dendrites into the electrolyte,leading to short circuit and battery failure.Herein,confronting with the original nonuniform and high-resistance solid electrolyte interphase(SEI)at the Na-Na_(3)Zr_(2)Si_(2)PO_(12)interface,an oxygen-regulated SEI innovative approach is proposed to enhance the cycling stability of anode-SEs interface,through a spontaneous reaction between the metallic sodium(containing trace amounts of oxygen)and the Na_(3)Zr_(2)Si_(2)POi_(2)SE.The oxygen-regulated spontaneous SEI is thin,uniform,and kinetically stable to facilitate homogenous interfacial Na^+transportation,Benefitting from the optimized SEI,the assembled symmetric cell exhibits an ultra-stable sodium plating/stripping cycle for over 6600 h under a practical capacity of 3 mAh cm^(-2).Qua si-sol id-state batteries with Na_(3)V_(2)(PO_(4))_(3)cathode deliver excellent cyclability over 500 cycles at a rate of 0.5 C(1 C=117 mA cm^(-2))with a high capacity retention of95.4%.This oxygen-regulated SEI strategy may offer a potential avenue for the future development of high-energy-density solid-state metal batteries.