The 15th China International Animation Copyright Fair concluded successfully at the ACTIF Center in Shipai Town,Dongguan City,also known as the'"Capital of Art Toys in China.n Over 600 Chinese and foreign ent...The 15th China International Animation Copyright Fair concluded successfully at the ACTIF Center in Shipai Town,Dongguan City,also known as the'"Capital of Art Toys in China.n Over 600 Chinese and foreign enterprises and institutions participated in the event,which featured over 2,000 film and animation IPs from more than 40 countries and regions.展开更多
With the development of educational digitalization,how to effectively apply digital animation technology to traditional classroom teaching has become an urgent problem to be solved.This study explores the application ...With the development of educational digitalization,how to effectively apply digital animation technology to traditional classroom teaching has become an urgent problem to be solved.This study explores the application of Manim in the course of Mathematical Methods for Physics.Taking the visualization of Fourier series,complex numbers,and other content as examples,it improves students’understanding of complex and abstract mathematical physics concepts through dynamic and visual teaching methods.The teaching effect shows that Manim helps to enhance students’learning experience,improve teaching efficiency and effectiveness,and has a positive impact on students’active learning ability.The research in this paper can provide references and inspiration for the educational digitalization of higher education.展开更多
Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microgl...Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.展开更多
BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models ...BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.展开更多
Effective treatment methods for stroke,a common cerebrovascular disease with a high mortality rate,are still being sought.Exosome therapy,a form of acellular therapy,has demonstrated promising efficacy in various dise...Effective treatment methods for stroke,a common cerebrovascular disease with a high mortality rate,are still being sought.Exosome therapy,a form of acellular therapy,has demonstrated promising efficacy in various diseases in animal models;however,there is currently insufficient evidence to guide the clinical application of exosome in patients with stroke.This article reviews the progress of exosome applications in stroke treatment.It aims to elucidate the significant potential value of exosomes in stroke therapy and provide a reference for their clinical translation.At present,many studies on exosome-based therapies for stroke are actively underway.Regarding preclinical research,exosomes,as bioactive substances with diverse sources,currently favor stem cells as their origin.Due to their high plasticity,exosomes can be effectively modified through various physical,chemical,and genetic engineering methods to enhance their efficacy.In animal models of stroke,exosome therapy can reduce neuroinflammatory responses,alleviate oxidative stress damage,and inhibit programmed cell death.Additionally,exosomes can promote angiogenesis,repair and regenerate damaged white matter fiber bundles,and facilitate the migration and differentiation of neural stem cells,aiding the repair process.We also summarize new directions for the application of exosomes,specifically the exosome intervention through the ventricular-meningeal lymphatic system.The review findings suggest that the treatment paradigm for stroke is poised for transformation.展开更多
Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance to...Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke.展开更多
Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in ...Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.展开更多
The purpose of this article is to discuss the proper method for Chinese digital animation character design on the foundation of certain cultural elements. The method used in this study is known as comparative analysis...The purpose of this article is to discuss the proper method for Chinese digital animation character design on the foundation of certain cultural elements. The method used in this study is known as comparative analysis of Disney and Japanese animation styles in action, appearance, facial expression and voice design. These dynamic factors are the best carrier of the animation spirit and native culture, so it is important to take the dynamic factors into account when producing the digital animation, and it will be an excellent starting point to innovate Chinese digital animation.展开更多
目的分析斑马鱼模型在药源性肾损伤评价中的应用价值。方法检索PubMed、Web of Science、中国知网(CNKI)数据库中斑马鱼模型在药物及化学品诱导肾毒性研究中的文献,检索时限为各数据库自建库起至2023年12月31日,归纳其方法学、评价指标...目的分析斑马鱼模型在药源性肾损伤评价中的应用价值。方法检索PubMed、Web of Science、中国知网(CNKI)数据库中斑马鱼模型在药物及化学品诱导肾毒性研究中的文献,检索时限为各数据库自建库起至2023年12月31日,归纳其方法学、评价指标、毒性机制及在中医药评价中的具体实践,展望其在新领域的应用潜力。结果斑马鱼因与人类高度的遗传与生理相似性、早期胚胎透明、繁殖快速等特点,在肾毒性评价中展现出独特优势,可作为补充模型。斑马鱼模型肾损伤评价指标包括表型和组织病理形态学指标、滤过功能相关指标、细胞生物学过程和生化指标、肾损伤细胞标志物,涵盖从整体表型到分子标志物的多层次检测体系。化学品诱导斑马鱼模型肾毒性的主要机制包括细胞凋亡、细胞死亡、纤维化、炎性反应、氧化应激等。该模型已成功应用于马兜铃酸等中药毒性物质的评价及大黄酸、大豆苷等潜在肾保护成分的筛选,但未来仍需进一步明确斑马鱼模型在化学品毒性筛选中的地位,考察其对药物毒性动力学、实验操作及结果评价的重现性和标准,并加快高端配套设备的研发。结论斑马鱼模型可作为衔接体外筛选与哺乳动物体内实验、进行药物肾毒性快速评价与机制研究的一种重要补充模型,且在复杂的中医药体系安全性评价中具有潜力。展开更多
The super-maneuver flight performance has a very high tactical value, and the development of this tactical value has great significance. A discussion is devoted to the study of intelligent control methods and technolo...The super-maneuver flight performance has a very high tactical value, and the development of this tactical value has great significance. A discussion is devoted to the study of intelligent control methods and technologies of real-time distributed 3-dimensional animation simulation for the super-maneuverable attack of new generational fighter in this paper. A flight control system of super-maneuver is reconstructed by adopting three layers BP neural networks of number 3, and the fire/flight coupler is designed by introducing a fuzzy control rule whose universe of discourse and gain are regulated adaptively on the line. Furthermore, a new method of real-time distributed 3-dimensional animation simulation is put forward, and a real-time distributed 3-dimensional animation simulation tool platform is constructed in this paper. The simulation result is lifelike, perceivable directly and useful.展开更多
文摘The 15th China International Animation Copyright Fair concluded successfully at the ACTIF Center in Shipai Town,Dongguan City,also known as the'"Capital of Art Toys in China.n Over 600 Chinese and foreign enterprises and institutions participated in the event,which featured over 2,000 film and animation IPs from more than 40 countries and regions.
基金supported by the Teaching Reform Research Project of Shaanxi University of Science&Technology(23Y083)the Project of National University Association for Mathematical Methods in Physics(JZW-23-SL-02)+3 种基金the Graduate Course Construction Project of Shaanxi University of Science&Technology(KC2024Y03)the 2024 National Higher Education University Physics Reform Research Project(2024PR064)the Teaching Reform Research Project of the International Office of Shaanxi University of Science&Technology(YB202410)Graduate Education and Teaching Reform Research Project of Shaanxi University of Science&Technology(JG2025Y18).
文摘With the development of educational digitalization,how to effectively apply digital animation technology to traditional classroom teaching has become an urgent problem to be solved.This study explores the application of Manim in the course of Mathematical Methods for Physics.Taking the visualization of Fourier series,complex numbers,and other content as examples,it improves students’understanding of complex and abstract mathematical physics concepts through dynamic and visual teaching methods.The teaching effect shows that Manim helps to enhance students’learning experience,improve teaching efficiency and effectiveness,and has a positive impact on students’active learning ability.The research in this paper can provide references and inspiration for the educational digitalization of higher education.
基金supported by the Natural Science Foundation of Yunnan Province,No.202401AS070086(to ZW)the National Key Research and Development Program of China,No.2018YFA0801403(to ZW)+1 种基金Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(to ZW)the Natural Science Foundation of China,No.31960120(to ZW)。
文摘Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.
基金Supported by the National Key Specialty of Traditional Chinese Medicine(Spleen and Stomach Diseases),No.0500004National Natural Science Foundation of China,No.82205104 and No.82104850+1 种基金Hospital Capability Enhancement Project of Xiyuan Hospital,CACMS,No.XYZX0303-07the Fundamental Research Funds for the Central Public Welfare Research Institutes,Excellent Young Scientists Training Program of China Academy of Chinese Medical Sciences,No.ZZ16-YQ-002.
文摘BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.
基金supported by the Natural Science Foundation of Chongqing,No.CSTB2023NSCQ-mSX0561(to WL).
文摘Effective treatment methods for stroke,a common cerebrovascular disease with a high mortality rate,are still being sought.Exosome therapy,a form of acellular therapy,has demonstrated promising efficacy in various diseases in animal models;however,there is currently insufficient evidence to guide the clinical application of exosome in patients with stroke.This article reviews the progress of exosome applications in stroke treatment.It aims to elucidate the significant potential value of exosomes in stroke therapy and provide a reference for their clinical translation.At present,many studies on exosome-based therapies for stroke are actively underway.Regarding preclinical research,exosomes,as bioactive substances with diverse sources,currently favor stem cells as their origin.Due to their high plasticity,exosomes can be effectively modified through various physical,chemical,and genetic engineering methods to enhance their efficacy.In animal models of stroke,exosome therapy can reduce neuroinflammatory responses,alleviate oxidative stress damage,and inhibit programmed cell death.Additionally,exosomes can promote angiogenesis,repair and regenerate damaged white matter fiber bundles,and facilitate the migration and differentiation of neural stem cells,aiding the repair process.We also summarize new directions for the application of exosomes,specifically the exosome intervention through the ventricular-meningeal lymphatic system.The review findings suggest that the treatment paradigm for stroke is poised for transformation.
基金supported by the Fundamental Research Funds for the Central Universities,Nos.G2021KY05107,G2021KY05101the National Natural Science Foundation of China,Nos.32071316,32211530049+1 种基金the Natural Science Foundation of Shaanxi Province,No.2022-JM482the Education and Teaching Reform Funds for the Central Universities,No.23GZ230102(all to LL and HH).
文摘Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke.
文摘Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.
文摘The purpose of this article is to discuss the proper method for Chinese digital animation character design on the foundation of certain cultural elements. The method used in this study is known as comparative analysis of Disney and Japanese animation styles in action, appearance, facial expression and voice design. These dynamic factors are the best carrier of the animation spirit and native culture, so it is important to take the dynamic factors into account when producing the digital animation, and it will be an excellent starting point to innovate Chinese digital animation.
文摘目的分析斑马鱼模型在药源性肾损伤评价中的应用价值。方法检索PubMed、Web of Science、中国知网(CNKI)数据库中斑马鱼模型在药物及化学品诱导肾毒性研究中的文献,检索时限为各数据库自建库起至2023年12月31日,归纳其方法学、评价指标、毒性机制及在中医药评价中的具体实践,展望其在新领域的应用潜力。结果斑马鱼因与人类高度的遗传与生理相似性、早期胚胎透明、繁殖快速等特点,在肾毒性评价中展现出独特优势,可作为补充模型。斑马鱼模型肾损伤评价指标包括表型和组织病理形态学指标、滤过功能相关指标、细胞生物学过程和生化指标、肾损伤细胞标志物,涵盖从整体表型到分子标志物的多层次检测体系。化学品诱导斑马鱼模型肾毒性的主要机制包括细胞凋亡、细胞死亡、纤维化、炎性反应、氧化应激等。该模型已成功应用于马兜铃酸等中药毒性物质的评价及大黄酸、大豆苷等潜在肾保护成分的筛选,但未来仍需进一步明确斑马鱼模型在化学品毒性筛选中的地位,考察其对药物毒性动力学、实验操作及结果评价的重现性和标准,并加快高端配套设备的研发。结论斑马鱼模型可作为衔接体外筛选与哺乳动物体内实验、进行药物肾毒性快速评价与机制研究的一种重要补充模型,且在复杂的中医药体系安全性评价中具有潜力。
文摘The super-maneuver flight performance has a very high tactical value, and the development of this tactical value has great significance. A discussion is devoted to the study of intelligent control methods and technologies of real-time distributed 3-dimensional animation simulation for the super-maneuverable attack of new generational fighter in this paper. A flight control system of super-maneuver is reconstructed by adopting three layers BP neural networks of number 3, and the fire/flight coupler is designed by introducing a fuzzy control rule whose universe of discourse and gain are regulated adaptively on the line. Furthermore, a new method of real-time distributed 3-dimensional animation simulation is put forward, and a real-time distributed 3-dimensional animation simulation tool platform is constructed in this paper. The simulation result is lifelike, perceivable directly and useful.