The performance of any inertially stabilized platform (ISP) is strongly related to the bandwidth and accuracy of the angular velocity signals. This paper discusses the development of an optimal state estimator for s...The performance of any inertially stabilized platform (ISP) is strongly related to the bandwidth and accuracy of the angular velocity signals. This paper discusses the development of an optimal state estimator for sensing inertial velocity using low-cost micro-electro-mechanical systems (MEMS) sensors. A low-bandwidth gyroscope is used alone with two low-performance accelerometers to obtain the estimation. The gyroscope has its own limited dynamics and mainly contributes to the low-frequency components of the estimation. The accelerometers have inherent biases and mainly contribute to the high-frequency components of the estimation. Extensive experimental results show that the state estimator can achieve high-performance signals over a wide range of velocities without drifts in both the t- and s-domains. Furthermore, with applications in miniature inertially stabilized platforms, the control characteristic presents a significantly improvement over the existing methods. The method can be also applied to robotics, attitude estimation, and friction compensation.展开更多
A drive signal frequency-lock method for quartz angular-rate sensor is presented. The calculation result obtained by the equivalent volume force analytic method indicated that when taking the inherent frequency of the...A drive signal frequency-lock method for quartz angular-rate sensor is presented. The calculation result obtained by the equivalent volume force analytic method indicated that when taking the inherent frequency of the drive tines as the drive signal frequency the phase of the reference vibration is 90° behind that of the drive signal, and the square of amplitude is less than that of the maximal amplitude by 1/(4Q~2_d) merely. The curves derived from the finite element analytic method proved that near the inherent frequency the phase shift of the feedback voltage is identical to that of the reference vibration, and the amplitude is proportional to that of the reference vibration, and the phase shift is linear approximatively with the frequency shift. The frequency shift could be calculated according to the phase shift obtained by quadrature correlation detection, so the drive signal frequency could be locked at the inherent frequency of the drive tines by means of iteration.展开更多
A simple fiber sensor to measure angular displacement with high resolution, which is based on whispering gallery mode (WGM) resonance in bent optical fibers,is proposed. The sensor is composed of a single loop forme...A simple fiber sensor to measure angular displacement with high resolution, which is based on whispering gallery mode (WGM) resonance in bent optical fibers,is proposed. The sensor is composed of a single loop formed by loosely tying a knot using single mode fiber. To measure the transmission spectra, a tunable laser and an optic power meter are connected to the two ends of fi- ber loop, respectively. Significant WGM resonances occur over the investigated wavelength range for all the sensors with different bend radius. The angular-displacement sensitivity is studied in the range from -0. 1°to 0. 1°. The detection limit of 1.49 × 10 ^-7 rad can be achieved for the detecting system with the resolution of lpm. The simple loop-structure fiber sensor has potential application prospect in the field of architecture or bridge building with low detection limit and low cost.展开更多
The exact thermoelastic analysis of a functionally graded piezoelectrical (FGP) rotating cylinder is investigated analytically. The cylinder is subjected to a com- bination of electrical, thermal, and mechanical loa...The exact thermoelastic analysis of a functionally graded piezoelectrical (FGP) rotating cylinder is investigated analytically. The cylinder is subjected to a com- bination of electrical, thermal, and mechanical loads simultaneously. The structure is a simplified model of a rotational sensor or actuator. The basic governing differential equation of the system is obtained by using the energy method. A novel term, named as the additional energy, is introduced to exact the evaluation of the energy functional. The solution to the governing differential equation is presented for two types of boundary conditions including free rotating and rotating cylinders exposed to the inner pressure. The effect of the angular velocity is investigated on the radial distribution of various components. The mentioned structure can be considered as a sensor for measuring the angular velocity of the cylinder subjected to the pressure and temperature. The obtained results indicate that the electrical potential is proportional to the angular velocity.展开更多
基金Foundation item: National Natural Science Foundation of China (50805144)
文摘The performance of any inertially stabilized platform (ISP) is strongly related to the bandwidth and accuracy of the angular velocity signals. This paper discusses the development of an optimal state estimator for sensing inertial velocity using low-cost micro-electro-mechanical systems (MEMS) sensors. A low-bandwidth gyroscope is used alone with two low-performance accelerometers to obtain the estimation. The gyroscope has its own limited dynamics and mainly contributes to the low-frequency components of the estimation. The accelerometers have inherent biases and mainly contribute to the high-frequency components of the estimation. Extensive experimental results show that the state estimator can achieve high-performance signals over a wide range of velocities without drifts in both the t- and s-domains. Furthermore, with applications in miniature inertially stabilized platforms, the control characteristic presents a significantly improvement over the existing methods. The method can be also applied to robotics, attitude estimation, and friction compensation.
文摘A drive signal frequency-lock method for quartz angular-rate sensor is presented. The calculation result obtained by the equivalent volume force analytic method indicated that when taking the inherent frequency of the drive tines as the drive signal frequency the phase of the reference vibration is 90° behind that of the drive signal, and the square of amplitude is less than that of the maximal amplitude by 1/(4Q~2_d) merely. The curves derived from the finite element analytic method proved that near the inherent frequency the phase shift of the feedback voltage is identical to that of the reference vibration, and the amplitude is proportional to that of the reference vibration, and the phase shift is linear approximatively with the frequency shift. The frequency shift could be calculated according to the phase shift obtained by quadrature correlation detection, so the drive signal frequency could be locked at the inherent frequency of the drive tines by means of iteration.
基金Supported by the National Basic Research Program of China ( "973" Program) ( 2011 CB013000 ) the National Natural Sci- ence Foundation of China (NSFC) ( 90923039 51105038)
文摘A simple fiber sensor to measure angular displacement with high resolution, which is based on whispering gallery mode (WGM) resonance in bent optical fibers,is proposed. The sensor is composed of a single loop formed by loosely tying a knot using single mode fiber. To measure the transmission spectra, a tunable laser and an optic power meter are connected to the two ends of fi- ber loop, respectively. Significant WGM resonances occur over the investigated wavelength range for all the sensors with different bend radius. The angular-displacement sensitivity is studied in the range from -0. 1°to 0. 1°. The detection limit of 1.49 × 10 ^-7 rad can be achieved for the detecting system with the resolution of lpm. The simple loop-structure fiber sensor has potential application prospect in the field of architecture or bridge building with low detection limit and low cost.
文摘The exact thermoelastic analysis of a functionally graded piezoelectrical (FGP) rotating cylinder is investigated analytically. The cylinder is subjected to a com- bination of electrical, thermal, and mechanical loads simultaneously. The structure is a simplified model of a rotational sensor or actuator. The basic governing differential equation of the system is obtained by using the energy method. A novel term, named as the additional energy, is introduced to exact the evaluation of the energy functional. The solution to the governing differential equation is presented for two types of boundary conditions including free rotating and rotating cylinders exposed to the inner pressure. The effect of the angular velocity is investigated on the radial distribution of various components. The mentioned structure can be considered as a sensor for measuring the angular velocity of the cylinder subjected to the pressure and temperature. The obtained results indicate that the electrical potential is proportional to the angular velocity.