The influences of die parameters on shear strain were investigated by using two-dimensional finite element simulation.New formulas of shear strain were proposed.According to the results of formulas,the shear strain sh...The influences of die parameters on shear strain were investigated by using two-dimensional finite element simulation.New formulas of shear strain were proposed.According to the results of formulas,the shear strain showed a linear dependence on the difference between internal and external fillet radius and the slope was determined by the intersection angle.The simulation results indicated that the velocities of the points from different zones were different in the specimen and the motion trajectories of different points did not follow geometrical laws.The influences of the average velocity and the motion trajectory on shear strain were incorporated in the formula to calculate the shear strain produced during equalchannel angular pressing process.The reliability of simulation results has been partially validated by experiments.展开更多
A flux system deployed on a moored buoy has been described, which is capable of directly estimating the airsea fluxes after removing the contamination in the signal due to buoy motion. A triple loop fitting method has...A flux system deployed on a moored buoy has been described, which is capable of directly estimating the airsea fluxes after removing the contamination in the signal due to buoy motion. A triple loop fitting method has been demonstrated for determining the three angular offsets between measurement axes of the sonic anemometer and motion pack. The data collected in an experiment in the Northern Huanghai Sea is used to correct the three sonic anemometer measurements of turbulent wind for buoy motion. The effective removal of wave-scale motion from the spectra and cospectra are demonstrated. Estimates of along-wind momentum flux, sensible heat flux and latent heat flux calculated by the eddy correlation method based on data obtained by sonic anemometer 81000V are shown to be in the same trend and scale with those determined by the bulk aerodynamic method after motion correction. The motion correction not only greatly improve the estimation of the momentum flux but also has a great impact on the calculated sensible heat flux.展开更多
Target motion modes have a close relationship with the relative orientation of missile-totarget in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coor...Target motion modes have a close relationship with the relative orientation of missile-totarget in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification,maneuver detection, maneuvering target tracking and interception using target signatures.展开更多
The global oceans play important roles in exciting the annual polar motion besides the atmosphere. However, it is still unclear about how large the regional oceans contribute to the annual polar motion. We investigate...The global oceans play important roles in exciting the annual polar motion besides the atmosphere. However, it is still unclear about how large the regional oceans contribute to the annual polar motion. We investigate systemically the contributions of the Pacific, Atlantic and Indian Oceans to the excitation of the annual polar motion, based on the output data of ocean current velocity field and ocean bottom pressure field from "Estimating the Circulation and Climate of the Ocean (ECCO)" ocean circulation model over the period 1993-2005. The result shows that due to its particular location and shape, the Atlantic Ocean makes a less significant contribution to the x-component of the annual polar motion excitation than the Pacific and Indian Oceans, while all these three oceans contribute to the y-component of the annual polar motion excitation to some extent.展开更多
基金Item Sponsored by Fundamental Research Funds for Central Universities of China(HEUCF20151002)
文摘The influences of die parameters on shear strain were investigated by using two-dimensional finite element simulation.New formulas of shear strain were proposed.According to the results of formulas,the shear strain showed a linear dependence on the difference between internal and external fillet radius and the slope was determined by the intersection angle.The simulation results indicated that the velocities of the points from different zones were different in the specimen and the motion trajectories of different points did not follow geometrical laws.The influences of the average velocity and the motion trajectory on shear strain were incorporated in the formula to calculate the shear strain produced during equalchannel angular pressing process.The reliability of simulation results has been partially validated by experiments.
基金The National Basic Research Program of China under contract No. 2011CB403501the Fund for Creative Research Groups by NSFC of China under contract No. 40821004+1 种基金the Knowledge Innovation Programs of the Chinese Academy of Sciences under contract No. KZCX2-YW-Q07-02the High-Tech Research and Development Program (863 Program) of China under contract No. 2006AA09A309
文摘A flux system deployed on a moored buoy has been described, which is capable of directly estimating the airsea fluxes after removing the contamination in the signal due to buoy motion. A triple loop fitting method has been demonstrated for determining the three angular offsets between measurement axes of the sonic anemometer and motion pack. The data collected in an experiment in the Northern Huanghai Sea is used to correct the three sonic anemometer measurements of turbulent wind for buoy motion. The effective removal of wave-scale motion from the spectra and cospectra are demonstrated. Estimates of along-wind momentum flux, sensible heat flux and latent heat flux calculated by the eddy correlation method based on data obtained by sonic anemometer 81000V are shown to be in the same trend and scale with those determined by the bulk aerodynamic method after motion correction. The motion correction not only greatly improve the estimation of the momentum flux but also has a great impact on the calculated sensible heat flux.
基金supported by the Specialized Research Fund for the Doctoral Program of China Higher Education (No. 20134307110012)the National Natural Science Foundation of China (No. 61101186)
文摘Target motion modes have a close relationship with the relative orientation of missile-totarget in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification,maneuver detection, maneuvering target tracking and interception using target signatures.
基金Supported by the National Natural Science Foundation of China and Science and Technology Commission of Shanghai Municipality.
文摘The global oceans play important roles in exciting the annual polar motion besides the atmosphere. However, it is still unclear about how large the regional oceans contribute to the annual polar motion. We investigate systemically the contributions of the Pacific, Atlantic and Indian Oceans to the excitation of the annual polar motion, based on the output data of ocean current velocity field and ocean bottom pressure field from "Estimating the Circulation and Climate of the Ocean (ECCO)" ocean circulation model over the period 1993-2005. The result shows that due to its particular location and shape, the Atlantic Ocean makes a less significant contribution to the x-component of the annual polar motion excitation than the Pacific and Indian Oceans, while all these three oceans contribute to the y-component of the annual polar motion excitation to some extent.