期刊文献+
共找到360篇文章
< 1 2 18 >
每页显示 20 50 100
A migration imaging method using CGP stacked cylindrical waves 被引量:1
1
作者 Li Zishun Long Jiangnan Wu Qingling 《Applied Geophysics》 SCIE CSCD 2006年第2期87-91,共5页
In view of the seismic exploration problem of thin sand reservoirs in the Songliao Basin, this paper puts forward a migration imaging method using CGP (common geophone point) stacked cylindrical waves. By this means... In view of the seismic exploration problem of thin sand reservoirs in the Songliao Basin, this paper puts forward a migration imaging method using CGP (common geophone point) stacked cylindrical waves. By this means, seismic data should be acquired from a midpoint shooting layout system with small shot-point spacing and small geophone interval. Using such seismic data, CGP gathers are first stacked to compose a cylindrical wave section. The cylindrical wave section is migrated and imaged by means of the ray path downward continuation of the down-going wave and the wave equation downward continuation of the upgoing wave. The results from the modeling analysis and the data processing of the TK8157 seismic line in the Songliao Basin shows that the proposed migration imaging method has higher seismic resolution and fidelity. Furthermore, the proposed method is proven to be more effective for discovering small sand bodies, small faults, stratigraphic pinch-outs, and so on. 展开更多
关键词 songliao Basin CMP stack CGP stack and migration imaging
在线阅读 下载PDF
Inverse Gaussian-beam common-reflection-point-stack imaging in crosswell seismic tomography 被引量:1
2
作者 Wei Zheng Rong Yang Fei-Long +1 位作者 Liu Bao-Hua Pei Yan-Liang 《Applied Geophysics》 SCIE CSCD 2019年第3期349-357,396,397,共11页
To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging qua... To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging quality of conventional ray-based crosswell seismic stack imaging is poor in complex areas;moreover,the imaging range is small and with sever interference because of the arc phenomenon in seismic migration.Thus,we propose the inverse Gaussian-beam stack imaging,in which Gaussian weight functions of rays contributing to the geophones energy are calculated and used to decompose the seismic wavefield.This effectively enlarges the coverage of the reflection points and improves the transverse resolution.Compared with the traditional VSP–CDP stack imaging,the proposed methods extends the imaging range,yields higher horizontal resolution,and is more adaptable to complex geological structures.The method is applied to model a complex structure in the K-area.The results suggest that the wave group of the target layer is clearer,the resolution is higher,and the main frequency of the crosswell seismic section is higher than that in surface seismic exploration The effectiveness and robustness of the method are verified by theoretical model and practical data. 展开更多
关键词 crosswell seismic GAUSSIAN weight function inverse beam common reflection stack imaging
在线阅读 下载PDF
Optimized Non-hyperbolic Stack Imaging Based on Interpretation Model
3
作者 Song Wei Wang Shangxu 《Petroleum Science》 SCIE CAS CSCD 2007年第4期50-55,共6页
In complex media, especially for seismic prospecting in deep layers in East China and in the mountainous area in West China, due to the complex geological condition, the common-mid-point (CMP) gather of deep reflect... In complex media, especially for seismic prospecting in deep layers in East China and in the mountainous area in West China, due to the complex geological condition, the common-mid-point (CMP) gather of deep reflection event is neither hyperbolic, nor any simple function. If traditional normal move-out (NMO) and stack imaging technology are still used, it is difficult to get a clear stack image. Based on previous techniques on non-hyperbolic stack, it is thought in this paper that no matter how complex the geological condition is, in order to get an optimized stack image, the stack should be non time move-out stack, and any stacking method limited to some kind of curve will be restricted to application conditions. In order to overcome the above-mentioned limit, a new method called optimized non-hyperbolic stack imaging based on interpretation model is presented in this paper. Based on CMP/CRP (Common-Reflection-Point) gather after NMO or pre-stack migration, this method uses the interpretation model of reflectors as constraint, and takes comparability as a distinguishing criterion, and finally forms a residual move-out correction for the gather of constrained model. Numerical simulation indicates that this method could overcome the non hyperbolic problem and get fine stack image. 展开更多
关键词 Non-hyperbolic interpretation model stack imaging
原文传递
Inverse gaussian beam stack imaging in 3D crosswell seismic exploration of deviated wells and Its application
4
作者 Yang Fei-Long Zhao Chong +4 位作者 Wei Zheng-Rong Sun Hui Li Hui-Feng Zhao Chi Luo Hao 《Applied Geophysics》 SCIE CSCD 2020年第5期629-638,899,共11页
In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imag... In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imaging section produced by the VSP-CDP stack imaging method employed with ray-tracing theory is amplitude-preserved.However,imaging 3D complex lithological structures accurately with this method is difficult.Therefore,this study proposes inverse Gaussian beam stack imaging in the 3D crosswell seismic exploration of deviated wells on the basis of Gaussian beam ray-tracing theory.By employing Gaussian beam ray-tracing theory in 3D crosswell seismic exploration,we analyzed the energy relationship between seismic wave fields and their effective rays.In imaging,the single-channel seismic wave fi eld data in the common shot point gather are converted into multiple effective wave fields in the common reflection point gather by the inverse Gaussian beam.The process produces a large fold number of intensive reflection points.Selected from the horizontal and vertical directions of the 2D measuring line,the wave fi elds of the eff ective reflection points in the same stack bin are projected onto the 2D measuring line,chosen according to the distribution characteristics of the reflection points,and stacked into an imaging section.The method is applied to X oilfi eld to identify the internal structure of the off shore gas cloud area.The results provided positive support for the inverse Gaussian beam stack imaging of 3D complex lithological structures and proved that technology is a powerful imaging tool for 3D crosswell seismic data processing. 展开更多
关键词 Crosswell seismic exploration Inverse Gaussian beam Fold number stack imaging Gas cloud area
在线阅读 下载PDF
Improvement of User's Accuracy Through Classification of Principal Component Images and Stacked Temporal Images 被引量:1
5
作者 Nilanchal Patel Brijesh Kumar Kaushal 《Geo-Spatial Information Science》 2010年第4期243-248,共6页
The classification accuracy of the various categories on the classified remotely sensed images are usually evaluated by two different measures of accuracy, namely, producer's accuracy (PA) and user's accuracy (UA... The classification accuracy of the various categories on the classified remotely sensed images are usually evaluated by two different measures of accuracy, namely, producer's accuracy (PA) and user's accuracy (UA). The PA of a category indicates to what extent the reference pixels of the category are correctly classified, whereas the UA of a category represents to what extent the other categories are less misclassified into the category in question. Therefore, the UA of the various categories determines the reliability of their interpretation on the classified image and is more important to the analyst than the PA. The present investigation has been performed in order to determine if there occurs improvement in the UA of the various categories on the classified image of the principal components of the original bands and on the classified image of the stacked image of two different years. We performed the analyses using the IRS LISS Ⅲ images of two different years, i.e., 1996 and 2009, that represent the different magnitude of urbanization and the stacked image of these two years pertaining to Ranchi area, Jharkhand, India, with a view to assessing the impacts of urbanization on the UA of the different categories. The results of the investigation demonstrated that there occurs significant improvement in the UA of the impervious categories in the classified image of the stacked image, which is attributable to the aggregation of the spectral information from twice the number of bands from two different years. On the other hand, the classified image of the principal components did not show any improvement in the UA as compared to the original images. 展开更多
关键词 producer's accuracy user's accuracy principal components CLASSIFICATION stacked image
原文传递
基于Stacking集成学习的店铺销量预测研究
6
作者 尹迎菊 《湖南工程学院学报(自然科学版)》 2025年第1期50-58,共9页
提高店铺销量预测的准确性可以显著优化库存规划,进而提升供应链管理效率.本文采用Stacking集成学习方法,结合多种预测模型,并引入竞品销售信息、商品评论情感分析、商品图片特征等外部数据,以进一步提高销量预测的精度.具体而言,选择了... 提高店铺销量预测的准确性可以显著优化库存规划,进而提升供应链管理效率.本文采用Stacking集成学习方法,结合多种预测模型,并引入竞品销售信息、商品评论情感分析、商品图片特征等外部数据,以进一步提高销量预测的精度.具体而言,选择了XGBoost、KNN、RF和LR作为第一层基学习器,线性回归作为第二层元学习器.通过对历史销售数据进行验证,结果表明,相较于单一模型,Stacking方法在销量预测中表现出更高的准确性,尤其在引入外部特征后.Stacking方法在平均绝对误差(MAE)和均方根误差(RMSE)等指标上均优于单独使用RF、线性回归、XGBoost或KNN模型.研究表明,结合外部特征的Stacking集成学习方法能够有效发挥多种模型的优势,提供更准确的销量预测结果,从而为店铺制定库存和生产计划提供科学依据. 展开更多
关键词 店铺销量预测 stacking集成学习 KNN XGBoost 竞品信息 情感分析 图像处理
在线阅读 下载PDF
Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders 被引量:2
7
作者 Samah Ibrahim Alshathri Desiree Juby Vincent V.S.Hari 《Computers, Materials & Continua》 SCIE EI 2022年第4期1371-1386,共16页
Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In ... Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In this paper,letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method.A stacked denoising autoencoder(SDAE)is implemented with two hidden layers each in encoder network and decoder network.In order to capture the most salient features of training samples,a undercomplete autoencoder is designed with non-linear encoder and decoder function.This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy.A dataset consisting of 59,119 letter images,which contains both English alphabets(upper and lower case)and numbers(0 to 9)is prepared from many scanned invoices images and windows true type(.ttf)files,are used for training the neural network.Performance is analyzed in terms of Signal to Noise Ratio(SNR),Peak Signal to Noise Ratio(PSNR),Structural Similarity Index(SSIM)and Universal Image Quality Index(UQI)and compared with other filtering techniques like Nonlocal Means filter,Anisotropic diffusion filter,Gaussian filters and Mean filters.Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values.Results show the superior performance of proposed SDAE method. 展开更多
关键词 stacked denoising autoencoder(SDAE) optical character recognition(OCR) signal to noise ratio(SNR) universal image quality index(UQ1)and structural similarity index(SSIM)
在线阅读 下载PDF
基于深度学习光谱特征提取的城市遥感地物目标分割方法
8
作者 徐颖慧 刘锋华 《计算机测量与控制》 2026年第1期125-133,共9页
城市遥感影像复杂背景多重语义,通过简单的形态学运算难以获取细微信息,只能获取地物目标表层特征,目标分割的像素易错乱,导致分割结果不理想;为此,提出基于深度学习光谱特征提取的城市遥感地物目标分割方法;利用高通与低通滤波器对图... 城市遥感影像复杂背景多重语义,通过简单的形态学运算难以获取细微信息,只能获取地物目标表层特征,目标分割的像素易错乱,导致分割结果不理想;为此,提出基于深度学习光谱特征提取的城市遥感地物目标分割方法;利用高通与低通滤波器对图像中每个像元的光谱向量进行一维小波分解,并通过指数函数非线性增强,凸显微小光谱特征;基于堆栈自动编码机构建深度学习模型,提取深层次光谱特征;运用模糊C均值聚类算法,根据特征像元相似度进行初步分割;引入自适应区域生长算法,以初步分割结果中的种子点出发,进行二次精细分割,得到修正后的准确分割结果;实验结果表明:面向简单背景的城市遥感图像,该方法分割结果MIoU值保持在0.55以上,而遇到复杂背景的遥感图像,其分割结果MIoU值也超过了0.5,极大提升了遥感图像分割处理质量。 展开更多
关键词 深度学习 堆栈自动编码机 光谱特征 遥感图像 城市地物 分割
在线阅读 下载PDF
基于Stacking集成学习的夏玉米覆盖度估测模型研究 被引量:16
9
作者 张宏鸣 陈丽君 +3 位作者 刘雯 韩文霆 张姝茵 张凡 《农业机械学报》 EI CAS CSCD 北大核心 2021年第7期195-202,共8页
以基于无人机多光谱影像提取的夏玉米植被指数作为特征变量,利用皮尔森相关系数结合随机森林反向验证权重的方法进行特征选择,去除冗余特征。以随机森林、梯度提升树、支持向量机和岭回归作为初级学习器,以岭回归作为次级学习器,建立基... 以基于无人机多光谱影像提取的夏玉米植被指数作为特征变量,利用皮尔森相关系数结合随机森林反向验证权重的方法进行特征选择,去除冗余特征。以随机森林、梯度提升树、支持向量机和岭回归作为初级学习器,以岭回归作为次级学习器,建立基于Stacking集成学习的夏玉米覆盖度估测模型,并通过5折交叉验证进一步提升模型泛化能力,采用随机搜索和网格搜索结合的方法对模型超参数进行优化,使用4种回归指标进行模型精度评价,并利用次年数据验证其鲁棒性。结果表明,与单一模型以及决策树、Xgboost、Adaboost、Bagging集成框架相比,Stacking集成学习模型具有更高的精度和更强的鲁棒性,R^(2)为0.9509,比单一模型平均提升0.0369,比其他集成模型平均提升0.0417;Stacking集成学习模型RMSE、MAE和MAPE分别为0.0432、0.0330和5.01%,各指标分别比单一模型平均降低0.0138、0.0130和2.14个百分点,分别比其他集成模型平均降低0.0185、0.0126和2.15个百分点。本研究为夏玉米覆盖度估测提供了新的方法。 展开更多
关键词 夏玉米 植被覆盖度 stacking集成学习 无人机 多光谱影像
在线阅读 下载PDF
海上深层低渗气田精细地震成像处理关键技术及应用
10
作者 涂齐催 娄敏 +5 位作者 李炳颖 刘江 毛云新 潘雅婷 吴啸啸 张宇慧 《海洋地质前沿》 北大核心 2026年第1期95-106,共12页
A气田位于东海盆地西湖凹陷内,所在海域水深为90~110 m,主要气藏埋深均在海平面4 000 m以深,气田现有的叠前深度偏移(prestack depth migration, PSDM)地震资料在小断层识别、储层内幕刻画、钻井深度预测等方面均存在不足,亟需开展针对... A气田位于东海盆地西湖凹陷内,所在海域水深为90~110 m,主要气藏埋深均在海平面4 000 m以深,气田现有的叠前深度偏移(prestack depth migration, PSDM)地震资料在小断层识别、储层内幕刻画、钻井深度预测等方面均存在不足,亟需开展针对性的地震资料重处理,以改善地震资料品质、提高低渗气藏描述精度,推动气田高效开发。基于原始地震数据,在开展海域噪声压制、源缆鬼波压制、浅水多次波压制的基础上,重点开展了精细地震成像处理,主要包括:高精度速度分析、弯曲射线Kirchhoff叠前时间偏移、全局寻优网格层析速度反演、井震联合各向异性速度建模、Kirchhoff各向异性叠前深度偏移。通过以上精细地震处理,地震资料信噪比和分辨率明显提高,深层地震成像能量更聚焦,深层断层成像和储层内幕更清晰;基于成像处理的地震速度开展钻前深度预测,与实际钻井层位标定深度更接近。新处理资料应用表明,以上精细成像处理技术及流程对海上深层低渗气田地震资料改善作用明显,可在相似区块进行推广应用。 展开更多
关键词 东海盆地 地震成像 鬼波 层析速度反演 各向异性 叠前深度偏移
在线阅读 下载PDF
基于图像差异性的生物特性识别技术研究
11
作者 刘婷婷 《计算机应用文摘》 2026年第1期229-231,共3页
针对生物特性识别系统面临的欺骗攻击威胁及鲁棒性不足的问题,提出了一种基于图像质量差异放大的生物特性识别方法。首先,通过剪切波变换和子带系数振幅之和来提取生物特征图像的质量特征;其次,利用堆栈式自动编码器放大真伪样本之间的... 针对生物特性识别系统面临的欺骗攻击威胁及鲁棒性不足的问题,提出了一种基于图像质量差异放大的生物特性识别方法。首先,通过剪切波变换和子带系数振幅之和来提取生物特征图像的质量特征;其次,利用堆栈式自动编码器放大真伪样本之间的质量差异;最后,采用Softmax分类器实现高准确率的生物特性识别。实验结果表明,该方法能够有效抵抗无约束环境的干扰,在指纹、虹膜和人脸等生物特征模态下,平均等错误率(Equal Error Rate,EER)仅为1.87%,且在6种欺骗攻击下的平均识别准确率高达97.97%。该方法为生物识别系统的安全防护提供了有力的技术支撑。 展开更多
关键词 图像差异性 生物特性识别 剪切波变换 堆栈式自动编码器
在线阅读 下载PDF
Gait recognition based on Wasserstein generating adversarial image inpainting network 被引量:4
12
作者 XIA Li-min WANG Hao GUO Wei-ting 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2759-2770,共12页
Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion a... Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion area.In order to reduce the effect of noise on feature extraction,the stacked automatic encoder with robustness was used.In order to improve the ability of gait classification,the sparse coding was used to express and classify the gait features.Experiments results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA-B and TUM-GAID for gait recognition. 展开更多
关键词 gait recognition image inpainting generating adversarial network stacking automatic encoder
在线阅读 下载PDF
D-SS Frame:deep spectral-spatial feature extraction and fusion for classification of panchromatic and multispectral images 被引量:2
13
作者 Teffahi Hanane Yao Hongxun 《High Technology Letters》 EI CAS 2018年第4期378-386,共9页
Facing the very high-resolution( VHR) image classification problem,a feature extraction and fusion framework is presented for VHR panchromatic and multispectral image classification based on deep learning techniques. ... Facing the very high-resolution( VHR) image classification problem,a feature extraction and fusion framework is presented for VHR panchromatic and multispectral image classification based on deep learning techniques. The proposed approach combines spectral and spatial information based on the fusion of features extracted from panchromatic( PAN) and multispectral( MS) images using sparse autoencoder and its deep version. There are three steps in the proposed method,the first one is to extract spatial information of PAN image,and the second one is to describe spectral information of MS image. Finally,in the third step,the features obtained from PAN and MS images are concatenated directly as a simple fusion feature. The classification is performed using the support vector machine( SVM) and the experiments carried out on two datasets with very high spatial resolution. MS and PAN images from WorldView-2 satellite indicate that the classifier provides an efficient solution and demonstrate that the fusion of the features extracted by deep learning techniques from PAN and MS images performs better than that when these techniques are used separately. In addition,this framework shows that deep learning models can extract and fuse spatial and spectral information greatly,and have huge potential to achieve higher accuracy for classification of multispectral and panchromatic images. 展开更多
关键词 imagE classification FEATURE extraction(FE) FEATURE FUSION SPARSE autoencoder stacked SPARSE autoencoder support vector machine(SVM) multispectral(MS)image panchromatic(PAN)image
在线阅读 下载PDF
Pseudo Zernike Moment and Deep Stacked Sparse Autoencoder for COVID-19 Diagnosis 被引量:1
14
作者 Yu-Dong Zhang Muhammad Attique Khan +1 位作者 Ziquan Zhu Shui-Hua Wang 《Computers, Materials & Continua》 SCIE EI 2021年第12期3145-3162,共18页
(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic s... (Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic smart diagnosis.(Method)This study aims to propose a novel deep learning method that can obtain better performance.We use the pseudo-Zernike moment(PZM),derived from Zernike moment,as the extracted features.Two settings are introducing:(i)image plane over unit circle;and(ii)image plane inside the unit circle.Afterward,we use a deep-stacked sparse autoencoder(DSSAE)as the classifier.Besides,multiple-way data augmentation is chosen to overcome overfitting.The multiple-way data augmentation is based on Gaussian noise,salt-and-pepper noise,speckle noise,horizontal and vertical shear,rotation,Gamma correction,random translation and scaling.(Results)10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06%±1.54%,a specificity of 92.56%±1.06%,a precision of 92.53%±1.03%,and an accuracy of 92.31%±1.08%.Its F1 score,MCC,and FMI arrive at 92.29%±1.10%,84.64%±2.15%,and 92.29%±1.10%,respectively.The AUC of our model is 0.9576.(Conclusion)We demonstrate“image plane over unit circle”can get better results than“image plane inside a unit circle.”Besides,this proposed PZM-DSSAE model is better than eight state-of-the-art approaches. 展开更多
关键词 Pseudo Zernike moment stacked sparse autoencoder deep learning COVID-19 multiple-way data augmentation medical image analysis
在线阅读 下载PDF
基于RASCIL的W-projection和W-stacking并行算法实测研究
15
作者 杨秋萍 朵琳 《天文研究与技术》 CSCD 2023年第1期73-82,共10页
在射电干涉阵的大视场成像中,W-projection和W-stacking是两类主要成像方法,本文对这两种成像方法进行了并行实测研究。首先分析了两种成像方法的基本原理框架,在此基础上对两种成像方法并行实现的关键因素进行讨论和分析。利用已经校... 在射电干涉阵的大视场成像中,W-projection和W-stacking是两类主要成像方法,本文对这两种成像方法进行了并行实测研究。首先分析了两种成像方法的基本原理框架,在此基础上对两种成像方法并行实现的关键因素进行讨论和分析。利用已经校准的射电干涉阵观测数据对两种成像方法基于射电天文模拟、校准和成像库(Radio Astronomy Simulation,Calibration,and Imaging Library,RASCIL)分别进行并行策略研究和并行计算实验。通过对并行计算时间、并行效率和并行资源配置模式的分析,得到了两种成像方法基于RASCIL(https://gitlab.com/ska-telescope/external/rascil)的并行计算性能,结果表明,两种成像方法都适合采用Strong Scaling的并行资源配置模式进行并行计算,基于RASCIL的W-stacking并行计算还有比较大的性能提升空间。 展开更多
关键词 射电干涉阵 大视场成像 W-projection W-stacking 并行计算 RASCIL
在线阅读 下载PDF
Stacking stability of MoS_2 bilayer: An ab initio study 被引量:1
16
作者 陶鹏 郭怀红 +1 位作者 杨腾 张志东 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期411-416,共6页
The study of the stacking stability of bilayer MoS2 is essential since a bilayer has exhibited advantages over single layer MoS2 in many aspects for nanoelectronic applications. We explored the relative stability, opt... The study of the stacking stability of bilayer MoS2 is essential since a bilayer has exhibited advantages over single layer MoS2 in many aspects for nanoelectronic applications. We explored the relative stability, optimal sliding path between different stacking orders of bilayer MoS2, and (especially) the effect of inter-layer stress, by combining first-principles density functional total energy calculations and the climbing-image nudge-elastic-band (CI-NEB) method. Among five typical stacking orders, which can be categorized into two kinds (I: AA', AB and II: AA', AB', A'B), we found that stacking orders with Mo and S superposing from both layers, such as AA' and AB, is more stable than the others. With smaller computational efforts than potential energy profile searching, we can study the effect of inter-layer stress on the stacking stability. Under isobaric condition, the sliding barrier increases by a few eV/(uc.GPa) from AA' to ABt, compared to 0.1 eV/(uc.GPa) from AB to [AB]. Moreover, we found that interlayer compressive stress can help enhance the transport properties of AA'. This study can help understand why inter-layer stress by dielectric gating materials can be an effective means to improving MoS2 on nanoelectronic applications. 展开更多
关键词 MOS2 stacking order climbing-image nudge-elastic band isobaric sliding
原文传递
Transmission Electron Microscopy of Stacking Irregularities in Synchisite-(Ce)
17
作者 杨主明 张培善 陶克捷 《Journal of Rare Earths》 SCIE EI CAS CSCD 1995年第4期286-289,共4页
Synchisite-(Ce) from the Kibina alkaline massive, Kola peninsula, Russia , has been studied using electron diffraction and lattice-images techniques. The synchisite-(Ce) with relatively ordered stacking shows a microt... Synchisite-(Ce) from the Kibina alkaline massive, Kola peninsula, Russia , has been studied using electron diffraction and lattice-images techniques. The synchisite-(Ce) with relatively ordered stacking shows a microtwin. The semirandom stacking is caused by the displacement of CO3 layers parallel to the basal planes. The irregular stacking crystals contain Ca layers adjacent to each other.The synchisite-(Ce) is considered as a polymatic mineral with short-range disorder. 展开更多
关键词 Synchisite- (Ce) Electron diffraction Lattice image Irregular stacking
在线阅读 下载PDF
Stacking Learning在高光谱图像分类中的应用
18
作者 徐凯 崔颖 《应用科技》 CAS 2018年第6期42-46,52,共6页
高光谱图像分类研究中,集成学习能够显著地提高分类效果。但是传统的并行多分类系统对基础分类器有较高要求,即要求差异性及分类均衡。为了解决这一问题,采用Stacking Learning的堆栈式学习方式,首先使用K-Fold和交叉验证的方式进行数... 高光谱图像分类研究中,集成学习能够显著地提高分类效果。但是传统的并行多分类系统对基础分类器有较高要求,即要求差异性及分类均衡。为了解决这一问题,采用Stacking Learning的堆栈式学习方式,首先使用K-Fold和交叉验证的方式进行数据分割和训练,将原始特征进行特征变换,重新构建二级特征。再使用新特征进行对Meta分类器进行训练得到判决分类器,用于样本的最后分类判断。实验结果表明,采用的Stacking Learning方法不依赖基础分类器,且相比较于传统的多分类系统具有更高的精度和良好的稳定性。 展开更多
关键词 高光谱图像 多分类系统 stackING LEARNING 集成学习 交叉验证 图像分类 特征变换 K-Fold
在线阅读 下载PDF
Brain Time Stack图像融合技术在CT中的应用
19
作者 史佩佩 张磊 +1 位作者 王芬 吴婷 《中外医学研究》 2024年第17期61-66,共6页
目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信... 目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信噪比(SNR)。比较四组图像主观质量评分。分析不同部位CT值、SD、SNR与图像主观质量评分的相关性。结果:B组的延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于A组;C组的延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值高于A组;D组延髓、额叶灰质、颞肌肌肉CT值明显低于A组,脑室、额叶白质、小脑外侧CT值明显高于A组;C组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于C组;D组脑室CT值明显高于C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值明显低于A组;C组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值均明显高于B组;C组额叶灰质SD明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、肌肉SD均明显低于B组、C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR均明显高于A组;C组、D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR值明显高于B组;C组、D组脑室SNR明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR明显高于C组,差异有统计学意义(P<0.05)。D组图像主观质量评分最高,差异有统计学意义(P<0.05)。延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧及颞肌肌肉SD与主观质量评分呈明显负相关,SNR与主观质量评分间呈明显正相关,差异有统计学意义(P<0.05)。结论:利用Brain Time Stack图像融合技术对头部CT扫描检查图像处理,动脉期结合前一期及后一期的图像数据在处理后具有更好的质量和更少的噪音。 展开更多
关键词 Brain Time stack 图像融合 头部CT 检查 扫描质量
暂未订购
一种基于多图像特征融合和GA-Stacking的恶意代码检测模型 被引量:1
20
作者 熊其冰 《通信技术》 2024年第12期1305-1310,共6页
随着互联网技术的不断进步,应用程序数量呈现出高速增长的态势,同时恶意软件的数量和种类不断增长,加剧了网络空间安全风险。基于多图像特征融合和GA-Stacking的恶意代码检测模型选取图像全局图像结构张量(Global Image Structure Tenso... 随着互联网技术的不断进步,应用程序数量呈现出高速增长的态势,同时恶意软件的数量和种类不断增长,加剧了网络空间安全风险。基于多图像特征融合和GA-Stacking的恶意代码检测模型选取图像全局图像结构张量(Global Image Structure Tensor,GIST)特征、图像方向梯度直方图(Histogram of Oriented Gradient,HOG)特征和图像灰度共生矩阵(Gray Level Co-occurrence Matrix,GLCM)特征等表征恶意代码,采用遗传算法(Genetic Algorithm,GA)和Stacking策略对支持向量机(Support Vector Machine,SVM)、K近邻(K Nearest Neighbors,KNN)、随机森林(Random Forest,RF)等基分类器进行两阶段递进优化,以增强模型的检测性能。在恶意代码数据集DataCon2020上的实验结果显示,该模型检测准确率达到98.13%,F1值达到97.13%,相较于对比模型,均有明显提升。 展开更多
关键词 图像特征 遗传算法 stacking集成 恶意代码检测
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部