AIM:To investigate the impact of preoperative anterior corneal topographic parameters on the morphology of the postoperative effective optical zone(EOZ)in patients undergoing keratorefractive lenticule extraction(KLEx...AIM:To investigate the impact of preoperative anterior corneal topographic parameters on the morphology of the postoperative effective optical zone(EOZ)in patients undergoing keratorefractive lenticule extraction(KLEx)and wavefront-guided LASIK(WG-LASIK).METHODS:This retrospective study included 310 eyes from patients who underwent either KLEx(via small incision lenticule extraction,171 eyes)or WG-LASIK(139 eyes).Patients were stratified into subgroups based on the median values of spherical equivalent(SE)and anterior corneal topographic parameters.Postoperative EOZ parameters were measured 1mo after surgery and compared across subgroups.Correlation analysis and multivariable linear regression analysis were performed to explore the associations between preoperative anterior corneal topographic parameters and EOZ parameters.RESULTS:A total of 310 eyes were included(KLEx:171 eyes from 88 patients;WG-LASIK:139 eyes from 82 patients).The mean age was 30.65±5.67y in the KLEx cohort and 29.06±5.94y in the WG-LASIK cohort.In the KLEx cohort,SE,preoperative mean keratometry(Km),steep keratometry(K2),and anterior corneal astigmatism(K2-K1)were positively correlated with the postoperative optical zone reduction ratio(RR=EOZ/planned optical zone×100%;all P<0.01).Multivariable regression identified SE[β=0.027,95%confidence interval(CI):0.022-0.032,P<0.001],Km(β=0.009,95%CI:0.002-0.016,P=0.014),and anterior corneal astigmatism(β=0.031,95%CI:0.013-0.049,P<0.001)as significant predictors of RR(R²=0.456,P<0.001).In the WG-LASIK cohort,SE was positively correlated with RR(P<0.01);K2 and anterior corneal astigmatism were positively correlated with both RR(P<0.05)and EOZ eccentricity(P<0.01).Multivariable regression showed SE(β=0.015,95%CI:0.007-0.023,P<0.001)and anterior corneal astigmatism(β=0.029,95%CI:0.012-0.047,P=0.001)were significant predictors of RR(R²=0.121,P<0.001).CONCLUSION:Preoperative anterior corneal topographic parameters,particularly anterior corneal astigmatism,significantly affect postoperative EOZ morphology in both KLEx and WG-LASIK.Additionally,Km is a predictor of EOZ reduction specifically in KLEx.展开更多
Intersubband transition in ZnO/MgZnO quantum well has been exploited for infrared and terahertz optoelectronic applications due to its large band offset and fascinating material properties.Here,we theoretically demons...Intersubband transition in ZnO/MgZnO quantum well has been exploited for infrared and terahertz optoelectronic applications due to its large band offset and fascinating material properties.Here,we theoretically demonstrate piezophototronic effect as another way to control the intersubband absorption wavelength through quantum-confined Stark effect.The intersubband optical absorption properties under different stresses are obtained by solving the eight-band k·p Hamiltonian and coupled Schr¨odinger-Poisson equations self-consistently.By combining stress control and quantum well structure,the absorption wavelength can show infrared blueshift or redshift phenomena in a wide range.This work can provide an effective avenue to control and utilize quantum-confined Stark effect in intersubband infrared absorption and promote the relative potential optoelectronic devices.展开更多
Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafas...Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafast and coherent method of manipulating matter states,which,however,has not been demonstrated in moirématerials.Here,we report the valleyselective optical Stark effect of moiréexcitons in the WSe_(2)/WS_(2)superlattice by using transient reflection spectroscopy.Prominent valley-selective energy shifts up to 7.8 meV have been observed for moiréexcitons,corresponding to pseudomagnetic fields as large as 34 T.Our results provide a route to coherently manipulate exotic states in moirésuperlattices.展开更多
We present a 1 × 4 Y-branch digital optical switch in which S-bend variable optical attenuators are integrated. The S-bend waveguides, which are always introduced to connect the switch and the standard fiber arra...We present a 1 × 4 Y-branch digital optical switch in which S-bend variable optical attenuators are integrated. The S-bend waveguides, which are always introduced to connect the switch and the standard fiber array, are made use of and designed as variable optical attenuators. A compact device with low crosstalk and larger branching-angle is obtained. The device is fabricated on the thermo-optic polymer materials,and the performance of the device is measured. With an applied driving power of less than 200mW, the device has a low crosstalk of less than - 35dB at a wavelength of 1.55 μm.展开更多
We present a detailed routing algorithm considering the optical proximity effect. The light intensity is calculated beforehand and stored in look-up tables. These costs are used as a constraint to guide the sequential...We present a detailed routing algorithm considering the optical proximity effect. The light intensity is calculated beforehand and stored in look-up tables. These costs are used as a constraint to guide the sequential routing. The routing algorithm is based on constructed force directed Steiner tree routing to enhance routing efficien- cy. Experimental results on industrial benchmark circuits show that the presented routing algorithm can obtain much improvement considering optical effects short runtime.展开更多
The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related ...The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related to the position of the light source and the detector. It can be used to evaluate the effective detection depth. The sensitivity matrix is defined as the multiplication of the source and detector hght distribution. Six different groups about ix parameters including the source diameter and detector fibers, the core-to-core distance between the source and detector fibers, the opotode depth, the absorption, and reduced scattering coefficient, are used as experimental models. The relationship between the six parameters and the effective detection depth is analyzed. Resuits can be used to study the spatial resolution and the depth of multi-fibers.展开更多
The polaron effect on the optical rectification in spherical quantum dots with a shallow hydrogenic impurity in the presence of electric field is theoretically investigated by taking into account the interactions of t...The polaron effect on the optical rectification in spherical quantum dots with a shallow hydrogenic impurity in the presence of electric field is theoretically investigated by taking into account the interactions of the electrons with both confined and surface optical phonons. Besides, the interaction between impurity and phonons is also considered. Numerical calculations are presented for typical Zn1-xCdxSe/ZnSe material. It is found that the polaronic effect or electric field leads to the redshifted resonant peaks of the optical rectification coefficients. It is also found that the peak values of the optical rectification coefficients with the polaronic effect are larger than without the polaronic effect, especially for smaller Cd concentrations or stronger electric field.展开更多
By recording the fluorescence fraction of the cold atoms remaining in the magneto-optical trap (MOT) as a function of the release time, the release-and-recapture (R&R) method is utilized to evaluate the effective...By recording the fluorescence fraction of the cold atoms remaining in the magneto-optical trap (MOT) as a function of the release time, the release-and-recapture (R&R) method is utilized to evaluate the effective temperature of the cold atomic ensemble. We prepare a single atom in a large-magnetic-gradient MOT and then transfer the trapped single atom into a 1064-nm microscopic optical tweezer. The energy of the single atom trapped in the tweezer is further reduced by polarization gradient cooling (PGC) and the effective temperature is evaluated by extending the R-R technique to a single atom tweezer. The typical effective temperature of a single atom in the tweezer is improved from about 105 μK to about 17 μK by applying the optimum PGC phase.展开更多
The Raman–Nath diffraction in acousto–optic effect was studied theoretically and experimentally in the paper. Up to now, each order of diffracted light in Raman–Nath diffraction was still considered simply to be ju...The Raman–Nath diffraction in acousto–optic effect was studied theoretically and experimentally in the paper. Up to now, each order of diffracted light in Raman–Nath diffraction was still considered simply to be just frequency-shifted and to be a plane wave. However, we find that the phase and frequency shifts occur simultaneously and individually in Raman–Nath diffraction. The findings demonstrate that, in addition to the frequency shift, the optical phase of each order of diffracted light is also shifted by the sound wave and fluctuates with the sound wave and is related to the location in the acoustic field from which the diffracted light originates. As a result, the wavefront of each order of diffracted light is modulated to fluctuate spatially and temporally with the sound wave. Obviously, these findings are significant for applications of Raman–Nath diffraction in acousto–optic effect because the optical phase plays an important role in optical coherence technology.展开更多
We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion...We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.展开更多
Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time re...Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time related ultra-short optical pulse trains in an optical fibre are numerically simulated by adopting the split-step Fourier algorithm. The results show that the self-steepening effect can cause the characteristic of the pulse trains to vary with time, which is different from the self-steepening-free case where the generated pulse trains consist of single pulses which are identical in width, intensity, and interval, namely when pulses move a certain distance, they turn into the pulse trains within a certain time range. Moreover, each single pulse may split into several sub-pulses. And as time goes on, the number of the sub-pulses will decrease gradually and the pulse width and the pulse intensity will change too. With the increase of the self-steepening parameter, the distance needed to generate time-dependent pulse trains will shorten. In addition, for a large self-steepening parameter and at the distance where more sub-pulses appear, the corresponding frequency spectra of pulse trains are also wider.展开更多
For actively modulated In-line Sagnac interferential all optic fiber current transformers (AOFCTs), the accuracies are directly affected by the amplitude of the modulation signal. In order to deeply undertand the func...For actively modulated In-line Sagnac interferential all optic fiber current transformers (AOFCTs), the accuracies are directly affected by the amplitude of the modulation signal. In order to deeply undertand the function of the modulator, a theoretical model of modulation effect to AOFCTs is built up in this paper. The effect of the amplitude of the modulation signal to the output intensity of AOFCTs is theoretically formulated and numerical calculated. The results show that the modulation voltage variation could affect the output accuracies significantly. This might be some references on the investigation for practical applications of AOFCTs.展开更多
The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying ...The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying nitrogen pressures from 0.05 to 15.00 Pa, the photoluminescence is gradually increased and optical transmittance is gradually decreased. Atomic force microscopy (AFM) is used to observe the surface morphology of the DLC films. The results indicate that the surface becomes unsmoothed and there a...展开更多
A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemen...A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Crystal data for the title compound are as follows: orthorhombic system, space group P212121 with a = 13.8287(7), b = 14.0715(7), c = 25.7403(12) A^°, V = 5008.8(4) A^°3, Mr = 1333.08, Z = 4, F(000) = 2644, Dc = 1.768 g/cm^3, μ(MoKα) = 3.189 mm^-1, the final R = 0.0351 and wR = 0.0814 (I 〉 2σ(I)). Compound 1 displays an 8-connected bcu topology 3D framework and hydrogen-bonding interactions stabilize the solid-state structure. The vibrational circular dichroism (VCD) spectrum and second-order nonlinear optical effect of compound 1 have been studied in the solid state.展开更多
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fab...We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.展开更多
The chaotic ratchet effect for Bos-Einstein condensed atoms in an optical lattice is investigated. By using the direct perturbation method we obtain the chaotic solution of the condensed system. Theoretical analysis r...The chaotic ratchet effect for Bos-Einstein condensed atoms in an optical lattice is investigated. By using the direct perturbation method we obtain the chaotic solution of the condensed system. Theoretical analysis reveals that the transport of the condensed atoms in the ratchet potential is a chaotic one, and corresponding numerical results agree well with the theoretical results.展开更多
The electronic structures, the effective masses, and optical properties of spinel CdCr_2S_4 are studied by using the fullpotential linearized augmented planewave method and a modified Becke–Johnson exchange functiona...The electronic structures, the effective masses, and optical properties of spinel CdCr_2S_4 are studied by using the fullpotential linearized augmented planewave method and a modified Becke–Johnson exchange functional within the densityfunctional theory. Most importantly, the effects of the spin–orbit coupling(SOC) on the electronic structures and carrier effective masses are investigated. The calculated band structure shows a direct band gap. The electronic effective mass and the hole effective mass are analytically determined by reproducing the calculated band structures near the BZ center.SOC substantially changes the valence band top and the hole effective masses. In addition, we calculated the corresponding optical properties of the spinel structure CdCr_2S_4. These should be useful to deeply understand spinel CdCr_2S_4 as a ferromagnetic semiconductor for possible semiconductor spintronic applications.展开更多
The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviat...The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviation of real laser beams from ideal phase matching conditions. Our theoretical model is based on the decomposition of the Gaussian beam and assumes each component has a single deviation angle and thus a particular wave vector mismatch. We take into account the variable intensity profile in the spatial and temporal domains of the Gaussian beam, the pump depletion effects for large-signal processes as well as the oscillatory effects of the three waves. Two nonlinear crystals β-BaB2O4 (BBO) and LiB305 (LBO) have been investigated in detail. The results indicate that the degree of beam divergence strongly influences the maximum pump intensity, optimum crystal length and OPO conversion efficiency. The impact of beam divergence is much more severe in the case of critical phase-matching for BBO than in the case of non-critical phase-matching for LBO. The results provide a way to choose the optimum parameters for a high power ns OPO such as the nonlinear material, the crystal length and the pump intensity, etc. Good agreement is obtained with our experimental results.展开更多
In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linew...In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.展开更多
In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption(NSA) of graphene oxide(GO) membranes. The third-order optical nonlinearities are characterized by the can...In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption(NSA) of graphene oxide(GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser(wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution(~λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.展开更多
文摘AIM:To investigate the impact of preoperative anterior corneal topographic parameters on the morphology of the postoperative effective optical zone(EOZ)in patients undergoing keratorefractive lenticule extraction(KLEx)and wavefront-guided LASIK(WG-LASIK).METHODS:This retrospective study included 310 eyes from patients who underwent either KLEx(via small incision lenticule extraction,171 eyes)or WG-LASIK(139 eyes).Patients were stratified into subgroups based on the median values of spherical equivalent(SE)and anterior corneal topographic parameters.Postoperative EOZ parameters were measured 1mo after surgery and compared across subgroups.Correlation analysis and multivariable linear regression analysis were performed to explore the associations between preoperative anterior corneal topographic parameters and EOZ parameters.RESULTS:A total of 310 eyes were included(KLEx:171 eyes from 88 patients;WG-LASIK:139 eyes from 82 patients).The mean age was 30.65±5.67y in the KLEx cohort and 29.06±5.94y in the WG-LASIK cohort.In the KLEx cohort,SE,preoperative mean keratometry(Km),steep keratometry(K2),and anterior corneal astigmatism(K2-K1)were positively correlated with the postoperative optical zone reduction ratio(RR=EOZ/planned optical zone×100%;all P<0.01).Multivariable regression identified SE[β=0.027,95%confidence interval(CI):0.022-0.032,P<0.001],Km(β=0.009,95%CI:0.002-0.016,P=0.014),and anterior corneal astigmatism(β=0.031,95%CI:0.013-0.049,P<0.001)as significant predictors of RR(R²=0.456,P<0.001).In the WG-LASIK cohort,SE was positively correlated with RR(P<0.01);K2 and anterior corneal astigmatism were positively correlated with both RR(P<0.05)and EOZ eccentricity(P<0.01).Multivariable regression showed SE(β=0.015,95%CI:0.007-0.023,P<0.001)and anterior corneal astigmatism(β=0.029,95%CI:0.012-0.047,P=0.001)were significant predictors of RR(R²=0.121,P<0.001).CONCLUSION:Preoperative anterior corneal topographic parameters,particularly anterior corneal astigmatism,significantly affect postoperative EOZ morphology in both KLEx and WG-LASIK.Additionally,Km is a predictor of EOZ reduction specifically in KLEx.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2430204,U23A20567,and U2230119)the Outstanding Youth Science and Technology Talents Program of Sichuan Province,China(Grant No.22JCQN0005).
文摘Intersubband transition in ZnO/MgZnO quantum well has been exploited for infrared and terahertz optoelectronic applications due to its large band offset and fascinating material properties.Here,we theoretically demonstrate piezophototronic effect as another way to control the intersubband absorption wavelength through quantum-confined Stark effect.The intersubband optical absorption properties under different stresses are obtained by solving the eight-band k·p Hamiltonian and coupled Schr¨odinger-Poisson equations self-consistently.By combining stress control and quantum well structure,the absorption wavelength can show infrared blueshift or redshift phenomena in a wide range.This work can provide an effective avenue to control and utilize quantum-confined Stark effect in intersubband infrared absorption and promote the relative potential optoelectronic devices.
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFA1402400 and 2022YFA1405400)the National Natural Science Foundation of China(Grant Nos.11934011 and 12274365)+3 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LR24A040001)Open project of Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education)of Shanghai Jiao Tong Universitysupport from the JSPS KAKENHI(Grant Nos.20H00354 and 23H02052)World Premier International Research Center Initiative(WPI),MEXT,Japan。
文摘Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafast and coherent method of manipulating matter states,which,however,has not been demonstrated in moirématerials.Here,we report the valleyselective optical Stark effect of moiréexcitons in the WSe_(2)/WS_(2)superlattice by using transient reflection spectroscopy.Prominent valley-selective energy shifts up to 7.8 meV have been observed for moiréexcitons,corresponding to pseudomagnetic fields as large as 34 T.Our results provide a route to coherently manipulate exotic states in moirésuperlattices.
文摘We present a 1 × 4 Y-branch digital optical switch in which S-bend variable optical attenuators are integrated. The S-bend waveguides, which are always introduced to connect the switch and the standard fiber array, are made use of and designed as variable optical attenuators. A compact device with low crosstalk and larger branching-angle is obtained. The device is fabricated on the thermo-optic polymer materials,and the performance of the device is measured. With an applied driving power of less than 200mW, the device has a low crosstalk of less than - 35dB at a wavelength of 1.55 μm.
文摘We present a detailed routing algorithm considering the optical proximity effect. The light intensity is calculated beforehand and stored in look-up tables. These costs are used as a constraint to guide the sequential routing. The routing algorithm is based on constructed force directed Steiner tree routing to enhance routing efficien- cy. Experimental results on industrial benchmark circuits show that the presented routing algorithm can obtain much improvement considering optical effects short runtime.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2009371)the National High Technology Research and Development Program of China ("863" Program) (2008AA02Z438)~~
文摘The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related to the position of the light source and the detector. It can be used to evaluate the effective detection depth. The sensitivity matrix is defined as the multiplication of the source and detector hght distribution. Six different groups about ix parameters including the source diameter and detector fibers, the core-to-core distance between the source and detector fibers, the opotode depth, the absorption, and reduced scattering coefficient, are used as experimental models. The relationship between the six parameters and the effective detection depth is analyzed. Resuits can be used to study the spatial resolution and the depth of multi-fibers.
基金supported by the National Natural Science Foundation of China(Grant No.11364028)the Major Projects of the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2013ZD02)the Project of "Prairie Excellent" Engineering in Inner Mongolia Autonomous Region,China
文摘The polaron effect on the optical rectification in spherical quantum dots with a shallow hydrogenic impurity in the presence of electric field is theoretically investigated by taking into account the interactions of the electrons with both confined and surface optical phonons. Besides, the interaction between impurity and phonons is also considered. Numerical calculations are presented for typical Zn1-xCdxSe/ZnSe material. It is found that the polaronic effect or electric field leads to the redshifted resonant peaks of the optical rectification coefficients. It is also found that the peak values of the optical rectification coefficients with the polaronic effect are larger than without the polaronic effect, especially for smaller Cd concentrations or stronger electric field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60978017,61078051 and 10974125)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No.60821004)the Program for New Century Excellent Talents of Ministry of Education of China (Grant No.NCET-07-0524)
文摘By recording the fluorescence fraction of the cold atoms remaining in the magneto-optical trap (MOT) as a function of the release time, the release-and-recapture (R&R) method is utilized to evaluate the effective temperature of the cold atomic ensemble. We prepare a single atom in a large-magnetic-gradient MOT and then transfer the trapped single atom into a 1064-nm microscopic optical tweezer. The energy of the single atom trapped in the tweezer is further reduced by polarization gradient cooling (PGC) and the effective temperature is evaluated by extending the R-R technique to a single atom tweezer. The typical effective temperature of a single atom in the tweezer is improved from about 105 μK to about 17 μK by applying the optimum PGC phase.
基金Project supported by the National Natural Science Foundation of China(Grant No.61178089)the Science and Technology Program of the Educational Office of Fujian Province of China(Grant Nos.JB12012 and JB13003)
文摘The Raman–Nath diffraction in acousto–optic effect was studied theoretically and experimentally in the paper. Up to now, each order of diffracted light in Raman–Nath diffraction was still considered simply to be just frequency-shifted and to be a plane wave. However, we find that the phase and frequency shifts occur simultaneously and individually in Raman–Nath diffraction. The findings demonstrate that, in addition to the frequency shift, the optical phase of each order of diffracted light is also shifted by the sound wave and fluctuates with the sound wave and is related to the location in the acoustic field from which the diffracted light originates. As a result, the wavefront of each order of diffracted light is modulated to fluctuate spatially and temporally with the sound wave. Obviously, these findings are significant for applications of Raman–Nath diffraction in acousto–optic effect because the optical phase plays an important role in optical coherence technology.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60978013)the Shanghai Rising Star Project,China (Grant No. 11QA1407400)
文摘We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.
基金supported by Key Program of Natural Science Foundation of Educational Commission of Sichuan Province, China (GrantNo 2006A124)the Fundamental Application Research Project of the Department of Science and Technology of Sichuan Province,China (Grant No 05JY029-084)the Foundation of Science and Technology Development of Chengdu University of Information Technology, China (Grant No KYTZ20060604)
文摘Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time related ultra-short optical pulse trains in an optical fibre are numerically simulated by adopting the split-step Fourier algorithm. The results show that the self-steepening effect can cause the characteristic of the pulse trains to vary with time, which is different from the self-steepening-free case where the generated pulse trains consist of single pulses which are identical in width, intensity, and interval, namely when pulses move a certain distance, they turn into the pulse trains within a certain time range. Moreover, each single pulse may split into several sub-pulses. And as time goes on, the number of the sub-pulses will decrease gradually and the pulse width and the pulse intensity will change too. With the increase of the self-steepening parameter, the distance needed to generate time-dependent pulse trains will shorten. In addition, for a large self-steepening parameter and at the distance where more sub-pulses appear, the corresponding frequency spectra of pulse trains are also wider.
文摘For actively modulated In-line Sagnac interferential all optic fiber current transformers (AOFCTs), the accuracies are directly affected by the amplitude of the modulation signal. In order to deeply undertand the function of the modulator, a theoretical model of modulation effect to AOFCTs is built up in this paper. The effect of the amplitude of the modulation signal to the output intensity of AOFCTs is theoretically formulated and numerical calculated. The results show that the modulation voltage variation could affect the output accuracies significantly. This might be some references on the investigation for practical applications of AOFCTs.
基金supported by the Natural Science Foundationof Shandong Province (Grant No. Y2002A09).
文摘The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying nitrogen pressures from 0.05 to 15.00 Pa, the photoluminescence is gradually increased and optical transmittance is gradually decreased. Atomic force microscopy (AFM) is used to observe the surface morphology of the DLC films. The results indicate that the surface becomes unsmoothed and there a...
基金supported by National Natural Science Foundation of China(21401147)Basic Research Program of Natural Science from Shaanxi Provincial Government(2015JQ2032)+2 种基金Scientific Research Program from Education Department of Shaanxi Provincial Government(2013JK0654)Opening Foundation from State Key Laboratory of Coordination Chemistry in Nanjing University(201219)the Program for Distinguished Young Scholars of Xi’an Polytechnic University(201403)
文摘A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Crystal data for the title compound are as follows: orthorhombic system, space group P212121 with a = 13.8287(7), b = 14.0715(7), c = 25.7403(12) A^°, V = 5008.8(4) A^°3, Mr = 1333.08, Z = 4, F(000) = 2644, Dc = 1.768 g/cm^3, μ(MoKα) = 3.189 mm^-1, the final R = 0.0351 and wR = 0.0814 (I 〉 2σ(I)). Compound 1 displays an 8-connected bcu topology 3D framework and hydrogen-bonding interactions stabilize the solid-state structure. The vibrational circular dichroism (VCD) spectrum and second-order nonlinear optical effect of compound 1 have been studied in the solid state.
基金We are grateful for financial supports from the National Key Research and Development Program of China(2019YFB2203904)the National Natural Science Foundation of China(U21A20506,62105122,61827820,62005233)+1 种基金the Shenzhen STIC Funding(RCBS20200714114819032)the Local Innovative and Research Teams Project of Guangdong Pear River Talents Program(2019BT02X105).
文摘We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.
基金the Key Research Foundation of the Education Bureau of Hunan Province of China under Grant No.08A015the Natural Science Foundation of Hunan Province of China under Grant No.06JJ2014 and 04JJ40006the National Natural Science Foundation of China under Grant No.10575034
文摘The chaotic ratchet effect for Bos-Einstein condensed atoms in an optical lattice is investigated. By using the direct perturbation method we obtain the chaotic solution of the condensed system. Theoretical analysis reveals that the transport of the condensed atoms in the ratchet potential is a chaotic one, and corresponding numerical results agree well with the theoretical results.
基金Project supported by the Joint Fund of the National Natural Science Foundation of Chinathe China Academy of Engineering Physics(Grant Nos.U1430117and U1230201)
文摘The electronic structures, the effective masses, and optical properties of spinel CdCr_2S_4 are studied by using the fullpotential linearized augmented planewave method and a modified Becke–Johnson exchange functional within the densityfunctional theory. Most importantly, the effects of the spin–orbit coupling(SOC) on the electronic structures and carrier effective masses are investigated. The calculated band structure shows a direct band gap. The electronic effective mass and the hole effective mass are analytically determined by reproducing the calculated band structures near the BZ center.SOC substantially changes the valence band top and the hole effective masses. In addition, we calculated the corresponding optical properties of the spinel structure CdCr_2S_4. These should be useful to deeply understand spinel CdCr_2S_4 as a ferromagnetic semiconductor for possible semiconductor spintronic applications.
文摘The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviation of real laser beams from ideal phase matching conditions. Our theoretical model is based on the decomposition of the Gaussian beam and assumes each component has a single deviation angle and thus a particular wave vector mismatch. We take into account the variable intensity profile in the spatial and temporal domains of the Gaussian beam, the pump depletion effects for large-signal processes as well as the oscillatory effects of the three waves. Two nonlinear crystals β-BaB2O4 (BBO) and LiB305 (LBO) have been investigated in detail. The results indicate that the degree of beam divergence strongly influences the maximum pump intensity, optimum crystal length and OPO conversion efficiency. The impact of beam divergence is much more severe in the case of critical phase-matching for BBO than in the case of non-critical phase-matching for LBO. The results provide a way to choose the optimum parameters for a high power ns OPO such as the nonlinear material, the crystal length and the pump intensity, etc. Good agreement is obtained with our experimental results.
基金supported by the National Basic Research Program of China (Grant No. 2011CB921601)the National Natural Science Foundation of China for Excellent Research Team (Grant No. 61121064)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401130001)the Graduate Outstanding Innovation Item of Shanxi Province, China (Grant No. 20113001)
文摘In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.
基金supported by the National Natural Science Foundation of China(Nos.61575139,51602213 and 11604236)the Young Science Foundation of Taiyuan University of Technology(No.2015QN066)
文摘In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption(NSA) of graphene oxide(GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser(wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution(~λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.