As known, the method to obtain a sequence space by using convergence field of an infinite matrix is an old method in the theory of sequence spaces. However, the study of convergence field of an infinite matrix in the ...As known, the method to obtain a sequence space by using convergence field of an infinite matrix is an old method in the theory of sequence spaces. However, the study of convergence field of an infinite matrix in the space of almost convergent sequences is so new (see [15]). The purpose of this paper is to introduce the new spaces ^ ~f and fo consisting of all sequences whose Ceshro transforms of order one are in the spaces f and ^ ~ f0, respectively. Also, in this paper, we show that ^ ~f and ^ ~f0 are linearly isomorphic to the spaces f and f0, respectively. The β- and γ-duals of the spaces ^ ~f and 2% are computed. Furthermore, the classes (^ ~f: μ) and (μ : f) of infinite matrices are characterized for any given sequence space μ, and determined the necessary and sufficient conditions on a matrix A to satisfy Bc-core(Ax) K-core(x), K-core(Ax) Bg-core(x), Bc-core(Ax) Be-core(x), Bc-core(Ax) t-core(x) for all x ∈ t∞.展开更多
文摘As known, the method to obtain a sequence space by using convergence field of an infinite matrix is an old method in the theory of sequence spaces. However, the study of convergence field of an infinite matrix in the space of almost convergent sequences is so new (see [15]). The purpose of this paper is to introduce the new spaces ^ ~f and fo consisting of all sequences whose Ceshro transforms of order one are in the spaces f and ^ ~ f0, respectively. Also, in this paper, we show that ^ ~f and ^ ~f0 are linearly isomorphic to the spaces f and f0, respectively. The β- and γ-duals of the spaces ^ ~f and 2% are computed. Furthermore, the classes (^ ~f: μ) and (μ : f) of infinite matrices are characterized for any given sequence space μ, and determined the necessary and sufficient conditions on a matrix A to satisfy Bc-core(Ax) K-core(x), K-core(Ax) Bg-core(x), Bc-core(Ax) Be-core(x), Bc-core(Ax) t-core(x) for all x ∈ t∞.