In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Landslide susceptibility mapping(LSM) is crucial for reducing disaster risk in complex mountainous regions. This study evaluated the impact of various sampling methods on the accuracy of LSM over the next decade in Bi...Landslide susceptibility mapping(LSM) is crucial for reducing disaster risk in complex mountainous regions. This study evaluated the impact of various sampling methods on the accuracy of LSM over the next decade in Bijie City, Guizhou Province, China. Datasets were collected from 614 landslides and 500 non-landslides, and four sampling methods were proposed. Recurrent Neural Network(RNN), Gated Recurrent Unit(GRU), K-Nearest Neighbor(KNN), and Extreme Gradient Boosting(XGB) models were assessed utilising 15 metrics(Elevation, Slope, Aspect, Plan curvature, Profile curvature, Stream Power Index, Sediment Transport Index, Vector Ruggedness Measurement, Topographic Roughness Index, Lithology, Land use, Normalized Difference Vegetation Index(NDVI), Rainfall, Distance from Road, Distance from River). The results demonstrated that the GRU model combined with a 5-m sample boundary from the interior of the landslide and non-landslide areas exhibited superior performance with F1, Accuracy, and Area Under Curve(AUC) scores of 0.9700, 0.9450, and 0.8925, respectively. LSM will be projected for the next decade by coupling the Geophysical Fluid Dynamics Laboratory Earth System Model version 4(GFDLESM4) with the Shared Socioeconomic Pathway(SSP119). This study provides valuable insights into landslide risk management in landslide-prone areas.展开更多
Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that as...Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that asynchronously report pixel-level brightness changes called’events’,stand out because of their ability to capture dynamic changes with minimal energy consumption,making them suitable for challenging conditions,such as low light or high-speed motion.However,current mapping and localization methods for event cameras depend primarily on point and line features,which struggle in sparse or low-feature environments and are unsuitable for static or slow-motion scenarios.We addressed these challenges by proposing a bio-inspired vision mapping and localization method using active LED markers(ALMs)combined with reprojection error optimization and asynchronous Kalman fusion.Our approach replaces traditional features with ALMs,thereby enabling accurate tracking under dynamic and low-feature conditions.The global mapping accuracy significantly improved by minimizing the reprojection error,with corner errors reduced from 16.8 cm to 3.1 cm after 400 iterations.The asynchronous Kalman fusion of multiple camera pose estimations from ALMs ensures precise localization with a high temporal efficiency.This method achieved a mean translation error of 0.078 m and a rotational error of 5.411°while evaluating dynamic motion.In addition,the method supported an output rate of 4.5 kHz while maintaining high localization accuracy in UAV spiral flight experiments.These results demonstrate the potential of the proposed approach for real-time robot localization in challenging environments.展开更多
Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimen...Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
In this paper, we show that geo-anomalies can be delineated for mineral deposit prediction according to singularity theories developed to characterize nonlinear mineralization processes. Associ- ating singularity and ...In this paper, we show that geo-anomalies can be delineated for mineral deposit prediction according to singularity theories developed to characterize nonlinear mineralization processes. Associ- ating singularity and geo-anomalies makes it possible to quantitatively study geo-anomalies with modern nonlinear theories and methods. This paper introduces a newly developed singularity analysis of nonlinear mineralization processes and nonlinear methods for characterizing and mapping geo-anomalies for mineral deposit prediction. Mineral deposits, as the products of singular mineralization processes caused by geo-anomalies, can be characterized by means of fractal or multifractal models. It has been shown that singularity can characterize the degree of geo-abnormality, and this has been demonstrated to be useful for mapping anomalies of undiscovered mineral deposits. The study of mineralization and mineral deposits from a nonlinear process point of view is a new but promising research direction. This study emphasizes the relationships between geo-anomalies and singularity, including singular processes resulting in singularity and geo-anomalies, the characterization of singularity and geo-anomalies and the identification of geo-anomalies for mineral deposit prediction. The concepts and methods are demon- strated using a case study of Sn mineral deposit prediction in the Gejiu mineral district in Yunnan, China.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect c...The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect coalmine goaf areas based on rock resistivity. The data processing using wavelet transform, three point smoothing, RES2 DINV and Maxwell processing software to obtain 2D resistivity structure. The results showed that the layers with maximum resistivity values(30e33 U m on Line 1, 30e31 U m on Line 2, 32e40 U m on Line3) are founded at station 1e7, and 14e20 on Line 1,13e18 on Line 2, and 8e13 and 16e20 on Line 3 which is predicted as goaf layer, and the minimum resistivity values(20e26 U m of TEM, 45e75 U m of HDRM) at the other layers. This resistivity difference was caused by the geology and characteristics of the study area which is located close by the cleugh with rich coal, so the goaf area distinguishable with aquifer layer and coal seam. The results were also significant accidents and serious destruction of ecological environment.展开更多
Fatigue failure is a common failure mode under the action of cyclic loads in engineering applications,which often occurs with no obvious signal.The maximum structural stress is far below the allowable stress when the ...Fatigue failure is a common failure mode under the action of cyclic loads in engineering applications,which often occurs with no obvious signal.The maximum structural stress is far below the allowable stress when the structures are damaged.Aiming at the lightweight structure,fatigue topology optimization design is investigated to avoid the occurrence of fatigue failure in the structural conceptual design beforehand.Firstly,the fatigue life is expressed by topology variables and the fatigue life filter function.The continuum fatigue optimization model is established with the independent continuous mapping(ICM)method.Secondly,fatigue life constraints are transformed to distortion energy constraints explicitly by taking advantage of the distortion energy theory.Thirdly,the optimization formulation is solved by the dual sequence quadratic programming(DSQP).And the design scheme of lightweight structure considering the fatigue characteristics is obtained.Finally,numerical examples illustrate the practicality and effectiveness of the fatigue optimization method.This method further expands the theoretical application of the ICM method and provides a novel approach for the fatigue optimization problem.展开更多
Extracting the three-dimensional(3D)information including location and height of a pedestrian is important for vision-based intelligent traffic monitoring systems.This paper tackles the relationship between pixels′ac...Extracting the three-dimensional(3D)information including location and height of a pedestrian is important for vision-based intelligent traffic monitoring systems.This paper tackles the relationship between pixels′actual size and pixels′spatial resolution through a new method named pixel-resolution mapping(P-RM).The proposed P-RM method derives the equations for pixels′spatial resolutions(XY-direction)and object′s height(Z-direction)in the real world,while introducing new tilt angle and mounting height calibration methods that do not require special calibration patterns placed in the real world.Both controlled laboratory and actual world experiments were performed and reported.The tests on 3D mensuration using proposed P-RM method showed overall better than 98.7%accuracy in laboratory environments and better than 96%accuracy in real world pedestrian height estimations.The 3D reconstructed images for measured points were also determined with the proposed P-RM method which shows that the proposed method provides a general algorithm for 3D information extraction.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Objective:To evaluate the value of rehabilitation nursing based on mind mapping model combined with psychological intervention for patients with nephrotic syndrome(NS).Methods:A total of 60 patients with NS who visite...Objective:To evaluate the value of rehabilitation nursing based on mind mapping model combined with psychological intervention for patients with nephrotic syndrome(NS).Methods:A total of 60 patients with NS who visited our hospital from January 2024 to December 2024 were selected as samples and randomly divided into groups.The observation group received rehabilitation nursing based on the mind mapping model combined with psychological intervention,while the control group received routine intervention.The differences in emotional scores,self-care ability scores,compliance,and complications were compared between the two groups.Results:The anxiety(SAS)and depression(SDS)scores of the observation group were lower than those of the control group,while the self-care ability scale(ESCA)score was higher than that of the control group(P<0.05).The compliance rate of the observation group was higher than that of the control group(P<0.05).The complication rate of NS in the observation group was lower than that in the control group(P<0.05).Conclusion:Rehabilitation nursing based on the mind mapping model combined with psychological intervention can enhance self-care ability,reduce negative emotions,and reduce complications in NS nursing,which is efficient and feasible.展开更多
The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The...The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The Mapping methods, the division method of geological tectonic units and the main geological tectonic units are mainly discussed. The strata from Pliocene to Holocene are peeled off so as to display the Pre-Pliocene structures. In basins, isopaches are drawn for the Cenozoic deposits. The plate tectonic theory and present tectonic pattern are adopted as the priorities in tectonic division. As to the division of intraplate tectonic units, it is a revision, complement and improvement of previous dividing systems, and the nomenclature for each tectonic unit follows the current system in China. The first-order tectonic unit is plate (Pacific Plate, Eurasian Plate and Philippine Sea Plate). The second-order tectonic unit is tectonic domain (East Asian continental tectonic domain,East Asian continental margin tectonic domain and west Pacific tectonic domain). The Philippine Sea Plate and the west part of the Pacific Plate are called the West Pacific tectonic domain. The part of the Eurasian Plate involved in this study area can be further divided into East Asian continental tectonic domain and East Asian continental margin tectonic domain. The East Asian continental margin domain is composed of the Ryukyu island arc, the Okinawa Trough back-arc basin and the back-arc basin of Sea of Japan. The East Asian continental tectonic domain in this study area is composed of the Sino-Korea Massif, the Changjiang River (Yangtze) Massif and South China Massif. In turn, these massifs consist of basins, folded belts or uplift zones. The basins,the folded belts or the uplift zones are further divided into uplifts and depressions made up of sags and swells.展开更多
Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E and {An}n∈N be a family of monotone and Lipschitz continuos mappings of C into E*. In this article, we consider th...Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E and {An}n∈N be a family of monotone and Lipschitz continuos mappings of C into E*. In this article, we consider the improved gradient method by the hybrid method in mathematical programming [i0] for solving the variational inequality problem for {AN} and prove strong convergence theorems. And we get several results which improve the well-known results in a real 2-uniformly convex and uniformly smooth Banach space and a real Hilbert space.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method wa...The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method was implemented to map regional soil texture (in terms of sand, silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input. To examine this hypothesis, the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period, i.e., after a heavy rainfall between autumn harvest and autumn sowing, were classified using fuzzy-c-means (FCM) clustering. Six classes were generated, and for each class, the sand (〉 0.05 mm), silt (0.002-0.05 mm) and clay (〈 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class. A weighted average model was then used to digitally map soil texture. The results showed that the predicted map quite accurately reflected the regional soil variation. A validation dataset produced estimates of error for the predicted maps of sand, silt and clay contents at root mean of squared error values of 8.4%, 7.8% and 2.3%, respectively, which is satisfactory in a practical context. This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence...Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.展开更多
We present a statistical method to derive the stellar density profiles of the Milky Way from spectroscopic survey data,taking into account selection effects.We assume the selection function,which can be altered during...We present a statistical method to derive the stellar density profiles of the Milky Way from spectroscopic survey data,taking into account selection effects.We assume the selection function,which can be altered during observations and data reductions,of the spectroscopic survey is based on photometric colors and magnitude.Then the underlying selection function for a line-of-sight can be recovered well by comparing the distribution of the spectroscopic stars in a color-magnitude plane with that of the photometric dataset.Subsequently,the stellar density profile along a line-of-sight can be derived from the spectroscopically measured stellar density profile multiplied by the selection function.The method is validated using Galaxia mock data with two different selection functions.We demonstrate that the derived stellar density profiles reconstruct the true ones well not only for the full set of targets,but also for sub-populations selected from the full dataset.Finally,the method is applied to map the density pro-files for the Galactic disk and halo,using the LAMOST RGB stars.The Galactic disk extends to about R=19 kpc,where the disk still contributes about 10%to the total stellar surface density.Beyond this radius,the disk smoothly transitions to the halo without any truncation,bending or breaking.Moreover,no over-density corresponding to the Monoceros ring is found in the Galactic anti-center direction.The disk shows moderate north-south asymmetry at radii larger than 12 kpc.On the other hand,the R-Z tomographic map directly shows that the stellar halo is substantially oblate within a Galactocentric radius of 20 kpc and gradually becomes nearly spherical beyond 30 kpc.展开更多
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported by the Technological Innovation Center of Geological Disaster Prevention and ecological Restoration in the western region of the Ministry of Natural Resources opened the fund (Grant No.TICGP2023K003)the Project of Sichuan Disaster Economic Research Center (Grant No.ZHJJ2024YJS004)。
文摘Landslide susceptibility mapping(LSM) is crucial for reducing disaster risk in complex mountainous regions. This study evaluated the impact of various sampling methods on the accuracy of LSM over the next decade in Bijie City, Guizhou Province, China. Datasets were collected from 614 landslides and 500 non-landslides, and four sampling methods were proposed. Recurrent Neural Network(RNN), Gated Recurrent Unit(GRU), K-Nearest Neighbor(KNN), and Extreme Gradient Boosting(XGB) models were assessed utilising 15 metrics(Elevation, Slope, Aspect, Plan curvature, Profile curvature, Stream Power Index, Sediment Transport Index, Vector Ruggedness Measurement, Topographic Roughness Index, Lithology, Land use, Normalized Difference Vegetation Index(NDVI), Rainfall, Distance from Road, Distance from River). The results demonstrated that the GRU model combined with a 5-m sample boundary from the interior of the landslide and non-landslide areas exhibited superior performance with F1, Accuracy, and Area Under Curve(AUC) scores of 0.9700, 0.9450, and 0.8925, respectively. LSM will be projected for the next decade by coupling the Geophysical Fluid Dynamics Laboratory Earth System Model version 4(GFDLESM4) with the Shared Socioeconomic Pathway(SSP119). This study provides valuable insights into landslide risk management in landslide-prone areas.
基金Supported by Beijing Natural Science Foundation(Grant No.L231004)Young Elite Scientists Sponsorship Program by CAST(Grant No.2022QNRC001)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.2025JBMC039)National Key Research and Development Program(Grant No.2022YFC2805200)National Natural Science Foundation of China(Grant No.52371338).
文摘Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that asynchronously report pixel-level brightness changes called’events’,stand out because of their ability to capture dynamic changes with minimal energy consumption,making them suitable for challenging conditions,such as low light or high-speed motion.However,current mapping and localization methods for event cameras depend primarily on point and line features,which struggle in sparse or low-feature environments and are unsuitable for static or slow-motion scenarios.We addressed these challenges by proposing a bio-inspired vision mapping and localization method using active LED markers(ALMs)combined with reprojection error optimization and asynchronous Kalman fusion.Our approach replaces traditional features with ALMs,thereby enabling accurate tracking under dynamic and low-feature conditions.The global mapping accuracy significantly improved by minimizing the reprojection error,with corner errors reduced from 16.8 cm to 3.1 cm after 400 iterations.The asynchronous Kalman fusion of multiple camera pose estimations from ALMs ensures precise localization with a high temporal efficiency.This method achieved a mean translation error of 0.078 m and a rotational error of 5.411°while evaluating dynamic motion.In addition,the method supported an output rate of 4.5 kHz while maintaining high localization accuracy in UAV spiral flight experiments.These results demonstrate the potential of the proposed approach for real-time robot localization in challenging environments.
基金supported by grants from the National Natural Science Foundation of China(Nos.12172159 and 12362019).
文摘Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
基金supported by several Chinese grants:a Distinguished Young Researcher Grant(40525009)a Strategic Research Grant(40638041)the Natural Science Foundation of China,and grants from the Ministry of Education of China(No. IRT0755 and No.104244)
文摘In this paper, we show that geo-anomalies can be delineated for mineral deposit prediction according to singularity theories developed to characterize nonlinear mineralization processes. Associ- ating singularity and geo-anomalies makes it possible to quantitatively study geo-anomalies with modern nonlinear theories and methods. This paper introduces a newly developed singularity analysis of nonlinear mineralization processes and nonlinear methods for characterizing and mapping geo-anomalies for mineral deposit prediction. Mineral deposits, as the products of singular mineralization processes caused by geo-anomalies, can be characterized by means of fractal or multifractal models. It has been shown that singularity can characterize the degree of geo-abnormality, and this has been demonstrated to be useful for mapping anomalies of undiscovered mineral deposits. The study of mineralization and mineral deposits from a nonlinear process point of view is a new but promising research direction. This study emphasizes the relationships between geo-anomalies and singularity, including singular processes resulting in singularity and geo-anomalies, the characterization of singularity and geo-anomalies and the identification of geo-anomalies for mineral deposit prediction. The concepts and methods are demon- strated using a case study of Sn mineral deposit prediction in the Gejiu mineral district in Yunnan, China.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金supported by the Institute of Seismology Foundation, China Earthquake Administration (201326126)
文摘The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect coalmine goaf areas based on rock resistivity. The data processing using wavelet transform, three point smoothing, RES2 DINV and Maxwell processing software to obtain 2D resistivity structure. The results showed that the layers with maximum resistivity values(30e33 U m on Line 1, 30e31 U m on Line 2, 32e40 U m on Line3) are founded at station 1e7, and 14e20 on Line 1,13e18 on Line 2, and 8e13 and 16e20 on Line 3 which is predicted as goaf layer, and the minimum resistivity values(20e26 U m of TEM, 45e75 U m of HDRM) at the other layers. This resistivity difference was caused by the geology and characteristics of the study area which is located close by the cleugh with rich coal, so the goaf area distinguishable with aquifer layer and coal seam. The results were also significant accidents and serious destruction of ecological environment.
基金This work was supported by the National Natural Science Foundation of China(11872080)Beijing Natural Science Foundation(3192005).
文摘Fatigue failure is a common failure mode under the action of cyclic loads in engineering applications,which often occurs with no obvious signal.The maximum structural stress is far below the allowable stress when the structures are damaged.Aiming at the lightweight structure,fatigue topology optimization design is investigated to avoid the occurrence of fatigue failure in the structural conceptual design beforehand.Firstly,the fatigue life is expressed by topology variables and the fatigue life filter function.The continuum fatigue optimization model is established with the independent continuous mapping(ICM)method.Secondly,fatigue life constraints are transformed to distortion energy constraints explicitly by taking advantage of the distortion energy theory.Thirdly,the optimization formulation is solved by the dual sequence quadratic programming(DSQP).And the design scheme of lightweight structure considering the fatigue characteristics is obtained.Finally,numerical examples illustrate the practicality and effectiveness of the fatigue optimization method.This method further expands the theoretical application of the ICM method and provides a novel approach for the fatigue optimization problem.
文摘Extracting the three-dimensional(3D)information including location and height of a pedestrian is important for vision-based intelligent traffic monitoring systems.This paper tackles the relationship between pixels′actual size and pixels′spatial resolution through a new method named pixel-resolution mapping(P-RM).The proposed P-RM method derives the equations for pixels′spatial resolutions(XY-direction)and object′s height(Z-direction)in the real world,while introducing new tilt angle and mounting height calibration methods that do not require special calibration patterns placed in the real world.Both controlled laboratory and actual world experiments were performed and reported.The tests on 3D mensuration using proposed P-RM method showed overall better than 98.7%accuracy in laboratory environments and better than 96%accuracy in real world pedestrian height estimations.The 3D reconstructed images for measured points were also determined with the proposed P-RM method which shows that the proposed method provides a general algorithm for 3D information extraction.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
文摘Objective:To evaluate the value of rehabilitation nursing based on mind mapping model combined with psychological intervention for patients with nephrotic syndrome(NS).Methods:A total of 60 patients with NS who visited our hospital from January 2024 to December 2024 were selected as samples and randomly divided into groups.The observation group received rehabilitation nursing based on the mind mapping model combined with psychological intervention,while the control group received routine intervention.The differences in emotional scores,self-care ability scores,compliance,and complications were compared between the two groups.Results:The anxiety(SAS)and depression(SDS)scores of the observation group were lower than those of the control group,while the self-care ability scale(ESCA)score was higher than that of the control group(P<0.05).The compliance rate of the observation group was higher than that of the control group(P<0.05).The complication rate of NS in the observation group was lower than that in the control group(P<0.05).Conclusion:Rehabilitation nursing based on the mind mapping model combined with psychological intervention can enhance self-care ability,reduce negative emotions,and reduce complications in NS nursing,which is efficient and feasible.
基金The National Natural Science Foundation of China under contract No 40876033the foundation of Geological Investigation Bureau of China under contract No HY126-03
文摘The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The Mapping methods, the division method of geological tectonic units and the main geological tectonic units are mainly discussed. The strata from Pliocene to Holocene are peeled off so as to display the Pre-Pliocene structures. In basins, isopaches are drawn for the Cenozoic deposits. The plate tectonic theory and present tectonic pattern are adopted as the priorities in tectonic division. As to the division of intraplate tectonic units, it is a revision, complement and improvement of previous dividing systems, and the nomenclature for each tectonic unit follows the current system in China. The first-order tectonic unit is plate (Pacific Plate, Eurasian Plate and Philippine Sea Plate). The second-order tectonic unit is tectonic domain (East Asian continental tectonic domain,East Asian continental margin tectonic domain and west Pacific tectonic domain). The Philippine Sea Plate and the west part of the Pacific Plate are called the West Pacific tectonic domain. The part of the Eurasian Plate involved in this study area can be further divided into East Asian continental tectonic domain and East Asian continental margin tectonic domain. The East Asian continental margin domain is composed of the Ryukyu island arc, the Okinawa Trough back-arc basin and the back-arc basin of Sea of Japan. The East Asian continental tectonic domain in this study area is composed of the Sino-Korea Massif, the Changjiang River (Yangtze) Massif and South China Massif. In turn, these massifs consist of basins, folded belts or uplift zones. The basins,the folded belts or the uplift zones are further divided into uplifts and depressions made up of sags and swells.
文摘Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E and {An}n∈N be a family of monotone and Lipschitz continuos mappings of C into E*. In this article, we consider the improved gradient method by the hybrid method in mathematical programming [i0] for solving the variational inequality problem for {AN} and prove strong convergence theorems. And we get several results which improve the well-known results in a real 2-uniformly convex and uniformly smooth Banach space and a real Hilbert space.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
基金Supported by the Basic Research Program of Jiangsu Province,China (No. BK2008058)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-409)
文摘The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method was implemented to map regional soil texture (in terms of sand, silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input. To examine this hypothesis, the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period, i.e., after a heavy rainfall between autumn harvest and autumn sowing, were classified using fuzzy-c-means (FCM) clustering. Six classes were generated, and for each class, the sand (〉 0.05 mm), silt (0.002-0.05 mm) and clay (〈 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class. A weighted average model was then used to digitally map soil texture. The results showed that the predicted map quite accurately reflected the regional soil variation. A validation dataset produced estimates of error for the predicted maps of sand, silt and clay contents at root mean of squared error values of 8.4%, 7.8% and 2.3%, respectively, which is satisfactory in a practical context. This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China(2011BAK12B09)China Special Project of Basic Work of Science and Technology(2011FY110100-2)
文摘Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.
基金supported by the Strategic Priority Research Program“The Emergence of Cosmological Structures”of the Chinese Academy of Sciences(Grant No.XDB09000000)the National Key Basic Research Program of China(2014CB845700)+1 种基金the National Natural Science Foundation of China(Grant Nos.11373032 and 11333003)a National Major Scientific Project built by the Chinese Academy of Sciences.Funding for the project has been provided by the project has been provided by the National Development and Reform Commission
文摘We present a statistical method to derive the stellar density profiles of the Milky Way from spectroscopic survey data,taking into account selection effects.We assume the selection function,which can be altered during observations and data reductions,of the spectroscopic survey is based on photometric colors and magnitude.Then the underlying selection function for a line-of-sight can be recovered well by comparing the distribution of the spectroscopic stars in a color-magnitude plane with that of the photometric dataset.Subsequently,the stellar density profile along a line-of-sight can be derived from the spectroscopically measured stellar density profile multiplied by the selection function.The method is validated using Galaxia mock data with two different selection functions.We demonstrate that the derived stellar density profiles reconstruct the true ones well not only for the full set of targets,but also for sub-populations selected from the full dataset.Finally,the method is applied to map the density pro-files for the Galactic disk and halo,using the LAMOST RGB stars.The Galactic disk extends to about R=19 kpc,where the disk still contributes about 10%to the total stellar surface density.Beyond this radius,the disk smoothly transitions to the halo without any truncation,bending or breaking.Moreover,no over-density corresponding to the Monoceros ring is found in the Galactic anti-center direction.The disk shows moderate north-south asymmetry at radii larger than 12 kpc.On the other hand,the R-Z tomographic map directly shows that the stellar halo is substantially oblate within a Galactocentric radius of 20 kpc and gradually becomes nearly spherical beyond 30 kpc.