Purpose–The deformation of the roadbed is easily influenced by the external environment to improve the accuracy of high-speed railway subgrade settlement prediction.Design/methodology/approach–A high-speed railway s...Purpose–The deformation of the roadbed is easily influenced by the external environment to improve the accuracy of high-speed railway subgrade settlement prediction.Design/methodology/approach–A high-speed railway subgrade settlement interval prediction method using the secretary bird optimization(SBOA)algorithm to optimize the BP neural network under the premise of gray relational analysis is proposed.Findings–Using the SBOA algorithm to optimize the BP neural network,the optimal weights and thresholds are obtained,and the best parameter prediction model is combined.The data were collected from the sensors deployed through the subgrade settlement monitoring system,and the gray relational analysis is used to verify that all four influencing factors had a great correlation to the subgrade settlement,and the collected data are verified using the model.Originality/value–The experimental results show that the SBOA-BP model has higher prediction accuracy than the BP model,and the SBOA-BP model has a wider range of prediction intervals for a given confidence level,which can provide higher guiding value for practical engineering applications.展开更多
The endpoint carbon content in the converter is critical for the quality of steel products,and accurately predicting this parameter is an effective way to reduce alloy consumption and improve smelting efficiency.Howev...The endpoint carbon content in the converter is critical for the quality of steel products,and accurately predicting this parameter is an effective way to reduce alloy consumption and improve smelting efficiency.However,most scholars currently focus on modifying methods to enhance model accuracy,while overlooking the extent to which input parameters influence accuracy.To address this issue,in this study,a prediction model for the endpoint carbon content in the converter was developed using factor analysis(FA)and support vector machine(SVM)optimized by improved particle swarm optimization(IPSO).Analysis of the factors influencing the endpoint carbon content during the converter smelting process led to the identification of 21 input parameters.Subsequently,FA was used to reduce the dimensionality of the data and applied to the prediction model.The results demonstrate that the performance of the FA-IPSO-SVM model surpasses several existing methods,such as twin support vector regression and support vector machine.The model achieves hit rates of 89.59%,96.21%,and 98.74%within error ranges of±0.01%,±0.015%,and±0.02%,respectively.Finally,based on the prediction results obtained by sequentially removing input parameters,the parameters were classified into high influence(5%-7%),medium influence(2%-5%),and low influence(0-2%)categories according to their varying degrees of impact on prediction accuracy.This classi-fication provides a reference for selecting input parameters in future prediction models for endpoint carbon content.展开更多
Tight sandstone reservoirs have strong heterogeneity and complex gas-water relationship,causing diffi culty in quantitatively predicting water saturation.Deep learning,combined with rock physics analysis and geostatis...Tight sandstone reservoirs have strong heterogeneity and complex gas-water relationship,causing diffi culty in quantitatively predicting water saturation.Deep learning,combined with rock physics analysis and geostatistics theory,was used to predict water saturation in tight sandstone,focusing on the P_(sh)^(8) in the GFZ area of the Ordos Basin.Results show that:Starting with actual wells where porosity and saturation results are obtained from log interpretations,the relationship between reservoir parameters(porosity and saturation)and elastic properties(P-wave velocity,S-wave velocity,and density)is established through the development of a rock physics model suitable for the region.Under the constraints of geostatistical laws,such as background trends of elastic and reservoir parameters and the vertical variations in logging curves,reservoir conditions(including porosity,saturation,and thickness)are simulated to generate numerous pseudowells and corresponding seismic gathers modeled using the Zoeppritz equation.A convolution neural network is used to train the target curve and predict the target body.The predicted water saturation of the P_(sh)^(8) shows strong agreement with the results from two blind wells,providing a reliable basis for understanding the water saturation(Sw)of tight sandstone.展开更多
In this study,a machine learning-based predictive model was developed for the Musa petti Wind Farm in Sri Lanka to address the need for localized forecasting solutions.Using data on wind speed,air temperature,nacelle ...In this study,a machine learning-based predictive model was developed for the Musa petti Wind Farm in Sri Lanka to address the need for localized forecasting solutions.Using data on wind speed,air temperature,nacelle position,and actual power,lagged features were generated to capture temporal dependencies.Among 24 evaluated models,the ensemble bagging approach achieved the best performance,with R^(2) values of 0.89 at 0 min and 0.75 at 60 min.Shapley Additive exPlanations(SHAP)analysis revealed that while wind speed is the primary driver for short-term predictions,air temperature and nacelle position become more influential at longer forecasting horizons.These findings underscore the reliability of short-term predictions and the potential benefits of integrating hybrid AI and probabilistic models for extended forecasts.Our work contributes a robust and explainable framework to support Sri Lanka’s renewable energy transition,and future research will focus on real-time deployment and uncertainty quantification.展开更多
Slag viscosity plays a crucial role in the smelting process.A slag viscosity prediction model was developed by integrating hyperparameter optimization algorithms,machine learning,and SHapley Additive exPlanations(SHAP...Slag viscosity plays a crucial role in the smelting process.A slag viscosity prediction model was developed by integrating hyperparameter optimization algorithms,machine learning,and SHapley Additive exPlanations(SHAP)analysis.The developed slag viscosity prediction models were evaluated using multiple statistical metrics,leading to the identification of the optimal model—Bayesian optimization-based categorical boosting(BO-CatBoost).And this model was further compared with existing models,including NPL model,FactSage+Roscoe-Einstein(RE)equation,artificial neural network model+RE equation,Riboud model+RE equation,and Zhang model.The results indicate that the slag viscosity prediction model based on BO-CatBoost outperforms all other models,achieving a coefficient of determination of 0.9897,a root mean square error of 1.0619,a mean absolute error of 0.6133,and a hit ratio of 95.1%.The global interpretability analysis of SHAP analysis was used to reveal the importance degree of different features on slag viscosity.The local interpretability analysis of SHAP analysis was used to obtain the quantitative influence of different features on slag viscosity in specific samples.The high-accuracy and interpretable slag viscosity prediction model developed is beneficial to the intelligent design of slag composition.展开更多
BACKGROUND Colorectal cancer(CRC)remains one of the leading causes of cancer-related morbidity and mortality worldwide.Growing evidence suggests that gut microbial dysbiosis plays a crucial role in tumorigenesis and c...BACKGROUND Colorectal cancer(CRC)remains one of the leading causes of cancer-related morbidity and mortality worldwide.Growing evidence suggests that gut microbial dysbiosis plays a crucial role in tumorigenesis and can influence therapeutic responses.AIM To explore the associations between serum S100A12 and soluble CD14(sCD14)levels and gut microbiota alterations in patients with CRC,and to assess the predictive utility of these biomarkers in forecasting chemotherapy response.METHODS A retrospective analysis was conducted on 104 patients diagnosed with advanced CRC(CRC group)and 104 age-matched and sex-matched healthy controls.Serum concentrations of S100A12 and sCD14 were measured using enzyme-linked immunosorbent assay.Fecal samples collected before chemotherapy were subjected to 16S rRNA sequencing to profile gut microbial composition.Pearson correlation analysis was used to evaluate the relationship between biomarker levels and microbial abundance.Receiver operating characteristic(ROC)curves were used to assess the predictive performance of S100A12 and sCD14 for chemotherapy response.RESULTS CRC patients exhibited significantly higher serum levels of S100A12 and sCD14 compared to healthy individuals(P<0.05).Patients with moderate to severe gut dysbiosis showed the highest elevations of these biomarkers(P<0.05).Elevated levels of S100A12 and sCD14 were positively correlated with Fusobacterium nucleatum and Prevotella abundance,and negatively correlated with Faecalibacterium prausnitzii and Akkermansia muciniphila(P<0.05).Both biomarkers significantly decreased following chemotherapy(P<0.05).Non-responders to chemotherapy had higher pre-treatment levels of S100A12 and sCD14 compared to responders(P<0.05).Combined ROC analysis showed improved diagnostic accuracy compared to either marker alone.CONCLUSION Serum S100A12 and sCD14 levels are closely associated with gut microbiota imbalance and chemotherapy response in CRC patients.These markers may serve as promising predictive indicators for treatment efficacy and offer potential value in individualized treatment strategies.展开更多
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'...Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.展开更多
Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macro...Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.展开更多
Soil desiccation cracking is ubiquitous in nature and has significantpotential impacts on the engineering geological properties of soils.Previous studies have extensively examined various factors affecting soil cracki...Soil desiccation cracking is ubiquitous in nature and has significantpotential impacts on the engineering geological properties of soils.Previous studies have extensively examined various factors affecting soil cracking behavior through a numerous small-sample experiments.However,experimental studies alone cannot accurately describe soil cracking behavior.In this study,we firstly propose a modeling framework for predicting the surface crack ratio of soil desiccation cracking based on machine learning and interpretable analysis.The framework utilizes 1040 sets of soil cracking experimental data and employs random forest(RF),extreme gradient boosting(XGBoost),and artificialneural network(ANN)models to predict the surface crack ratio of soil desiccation cracking.To clarify the influenceof input features on soil cracking behavior,feature importance and Shapley additive explanations(SHAP)are applied for interpretability analysis.The results reveal that ensemble methods(RF and XGBoost)provide better predictive performance than the deep learning model(ANN).The feature importance analysis shows that soil desiccation cracking is primarily influencedby initial water content,plasticity index,finalwater content,liquid limit,sand content,clay content and thickness.Moreover,SHAP-based interpretability analysis further explores how soil cracking responds to various input variables.This study provides new insight into the evolution of soil cracking behavior,enhancing the understanding of its physical mechanisms and facilitating the assessment of potential regional development of soil desiccation cracking.展开更多
Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations...Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations,and functional implications of RIPK family members across various cancers.Methods:We collected multi-omics data from The Cancer Genome Atlas and other public databases,including gene expression,copy number variation(CNV),mutation,methylation,tumor mutation burden(TMB),and microsatellite instability(MSI).Differential expression and survival analyses were performed using DESeq2 and Cox proportional hazards models.CNV and mutation data were analyzed with GISTIC2 and Mutect2,and methylation data with the ChAMP package.Correlations with TMB and MSI were assessed using Pearson coefficients,and gene set enrichment analysis was conducted with the MSigDB Hallmark gene sets.Results:RIPK family members show significant differential expression in various cancers,with RIPK1 and RIPK4 frequently altered.Survival analysis reveals heterogeneous impacts on overall survival.CNV and mutation analyses identify high alteration frequencies for RIPK2 and RIPK7,affecting gene expression.RIPK1 and RIPK7 are hypermethylated in several cancers,inversely correlating with RIPK3 expression.RIPK1,RIPK2,RIPK5,RIPK6,and RIPK7 correlate positively with TMB,while RIPK3 shows negative correlations in some cancers.MSI analysis indicates associations with DNA mismatch repair.G ene set enrichment analysis highlights immune-related pathway enrichment for RIPK1,RIPK2,RIPK3,and RIPK6,and cell proliferation and DNA repair pathways for RIPK4 and RIPK5.RIPK family members showed heterogeneous alterations across cancers:for example,RIPK7 was mutated in up to~15%of u terine c orpus e ndometrial c arcinoma and l ung s quamous c ell c arcinoma cases,and RIPK1 and RIPK7 exhibited frequent promoter hypermethylation in multiple tumor types.Several genes displayed context-dependent associations with overall survival and with TMB/MSI.Conclusion:This pan-cancer analysis of the RIPK family reveals their diverse roles and potential as biomarkers and therapeutic targets.The findings emphasize the importance of RIPK genes in tumorigenesis and suggest context-dependent functions across cancer types.Further studies are needed to explore their mechanisms in cancer development and clinical applications.展开更多
BACKGROUND Laparoscopic distal pancreatectomy(LDP)has emerged as the preferred approach for both benign and malignant lesions located in the pancreatic body and tail.Nevertheless,a notable deficiency persists in the a...BACKGROUND Laparoscopic distal pancreatectomy(LDP)has emerged as the preferred approach for both benign and malignant lesions located in the pancreatic body and tail.Nevertheless,a notable deficiency persists in the absence of a standardized,procedure-specific metric for evaluating and comparing surgical quality.A composite measure termed“textbook outcome(TO)”,which encompasses key short-term endpoints,has been validated in laparoscopic pancreatoduodenectomy but has not yet been established in dedicated LDP cohorts.The definition and prediction of TO in this context could aid in facilitating cross-institutional benchmarking and fostering advancements in quality improvement.AIM To establish procedure-specific criteria for TO and identify independent predictors of TO failure in patients undergoing LDP.METHODS Consecutive patients who underwent LDP at a single high-volume pancreatic center between January 2015 and August 2022 were retrospectively analyzed.TO was defined as the absence of clinically relevant postoperative pancreatic fistula(grade B/C),post-pancreatectomy hemorrhage(grade B/C),severe complications(Clavien-Dindo≥III),readmission within 30 days,and in-hospital or 30-day mortality.Multivariable logistic regression was employed to identify independent predictors of TO failure,and a nomogram was constructed and internally validated.RESULTS Among 405 eligible patients,286(70.6%)attained TO.Multivariable analysis revealed that female sex[odds ratio(OR)=0.62,95%confidence interval(CI):0.39-0.99]conferred a protective effect,while preoperative endoscopic ultrasound-guided fine-needle aspiration(OR=2.66,95%CI:1.05-6.73),pancreatic portal hypertension(OR=2.81,95%CI:1.06-7.45),and cystic-solid(OR=2.51,95%CI:1.34-4.69)or solid lesions(OR=1.91,95%CI:1.06-3.44)were independently associated with TO failure(all P<0.05).The derived nomogram exhibited modest discrimination and calibration when assessed in both the training and validation datasets.CONCLUSION The proposed LDP-specific definition of TO is feasible and discriminative,and the developed nomogram provides an objective tool for individualized risk assessment.展开更多
The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare I...The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare IoT(H-IoT)technology,which also provides proactive statistical findings and precise medical diagnoses that enhance healthcare performance.This study examines how ML might support IoT-based health care systems,namely in the areas of prognostic systems,disease detection,patient tracking,and healthcare operations control.The study looks at the benefits and drawbacks of several machine learning techniques for H-IoT applications.It also examines the fundamental problems,such as data security and cyberthreats,as well as the high processing demands that these systems face.Alongside this,the essay discusses the advantages of all the technologies,including machine learning,deep learning,and the Internet of Things,as well as the significant difficulties and problems that arise when integrating the technology into healthcare forecasts.展开更多
The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.A...The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
AIM:To explore the causal relationship between several possible behavioral factors and high myopia(HM)using multivariable Mendelian randomization(MVMR)approach and to find the mediators among them with mediation analy...AIM:To explore the causal relationship between several possible behavioral factors and high myopia(HM)using multivariable Mendelian randomization(MVMR)approach and to find the mediators among them with mediation analysis.METHODS:The causal effects of several behavioral factors,including screen time,education time,time spent outdoors,and physical activity,on the risk of HM using univariable Mendelian randomization(MR)and MVMR analyses were first assessed.Genome-wide association study summary statistics of serum metabolites were also used in mediation analysis to determine the extent to which serum metabolites mediate the effects of behavioral factors on HM.RESULTS:MR analyses indicated that both increased time spent outdoors and a higher frequency of moderate physical activity significantly reduced the risk of HM.Further MVMR analysis confirmed that moderate physical activity independently contributed to a lower risk of HM.Additionally,MR analyses identified 13 serum metabolites significantly associated with HM,of which 12 were lipids and one was an amino acid derivative.Mediation analysis revealed that six lipid metabolites mediated the protective effects of moderate physical activity on HM,with the highest mediation proportion observed for 1-(1-enyl-palmitoyl)-GPC(p-16:0;30.83%).CONCLUSION:This study suggests that in addition to outdoor time,moderate physical activity habits may have an independent protective effect against HM and pointed to lipid metabolites as priority targets for the prevention due to low physical activity.These results emphasize the importance of physical activity and metabolic health in HM and underscore the need for further study of these complex associations.展开更多
AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 ...AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 and 2022,were retrieved from the Web of Science Core Collection.Bibliometric analyses were performed using VOSviewer and CiteSpace software to explore publication trends,as well as the contributions and collaborative networks of countries/regions,authors,institutions,and journals.RESULTS:The annual number of publications on strabismus showed a consistent upward trend.The United States(USA)maintained a leading position in this research field while Republic of Korea and China emerged as rapidly advancing contributors over the last decade.The University of California,Los Angeles ranked as the most productive institution,and Jonathan M.Holmes from USA was the most productive author.Journal of AAPOS was the leading journal with the most strabismus publications,whereas the two most highly cited articles were both published in Ophthalmology.Co-occurrence analysis identified pivotal keywords and burst terms,including intermittent exotropia(IXT),acute acquired comitant esotropia(AACE),functional magnetic resonance imaging(fMRI),and surgical treatment,which were confirmed as predominant and frontier topics.CONCLUSION:This study provides a comprehensive bibliometric analysis of strabismus research,revealing the evolution of research hotspots over the past 30y and outlining several cutting-edge directions for future investigation.展开更多
The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ...The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.展开更多
Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections...Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections,cluster analysis and stepwise regression are integrated to predict the traffic volume of lanes at non-detector isolated controlled intersections.First cluster analysis is used to cluster the lanes of non-detector isolated signal-controlled intersections and the lanes of all signal-controlled intersections with detectors.Then, by the results of cluster analysis,the traffic volume samples are selected randomly and stepwise regression is used to predict the traffic volume of lanes at non-detector isolated signal-controlled intersections.The method is tested by the traffic volume data of lanes of the road network of Nanjing city.The problem of predicting the traffic volume of lanes at non-detector isolated signal-controlled intersections was resolved and can be widely used in urban traffic flow guidance and urban traffic control in cities without enough intersections equipped with detectors.展开更多
Objective: To investigate the value of whole-lesion texture analysis on preoperative gadoxetic acid enhanced magnetic resonance imaging(MRI) for predicting tumor Ki-67 status after curative resection in patients with ...Objective: To investigate the value of whole-lesion texture analysis on preoperative gadoxetic acid enhanced magnetic resonance imaging(MRI) for predicting tumor Ki-67 status after curative resection in patients with hepatocellular carcinoma(HCC).Methods: This study consisted of 89 consecutive patients with surgically confirmed HCC. Texture features were extracted from multiparametric MRI based on whole-lesion regions of interest. The Ki-67 status was immunohistochemical determined and classified into low Ki-67(labeling index ≤15%) and high Ki-67(labeling index >15%) groups. Least absolute shrinkage and selection operator(LASSO) and multivariate logistic regression were applied for generating the texture signature, clinical nomogram and combined nomogram. The discrimination power, calibration and clinical usefulness of the three models were evaluated accordingly. Recurrence-free survival(RFS) rates after curative hepatectomy were also compared between groups.Results: A total of 13 texture features were selected to construct a texture signature for predicting Ki-67 status in HCC patients(C-index: 0.878, 95% confidence interval: 0.791-0.937). After incorporating texture signature to the clinical nomogram which included significant clinical variates(AFP, BCLC-stage, capsule integrity, tumor margin,enhancing capsule), the combined nomogram showed higher discrimination ability(C-index: 0.936 vs. 0.795,P<0.001), good calibration(P>0.05 in Hosmer-Lemeshow test) and higher clinical usefulness by decision curve analysis. RFS rate was significantly lower in the high Ki-67 group compared with the low Ki-67 group after curative surgery(63.27% vs. 85.00%, P<0.05).Conclusions: Texture analysis on gadoxetic acid enhanced MRI can serve as a noninvasive approach to preoperatively predict Ki-67 status of HCC after curative resection. The combination of texture signature and clinical factors demonstrated the potential to further improve the prediction performance.展开更多
A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a n...A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators.展开更多
文摘Purpose–The deformation of the roadbed is easily influenced by the external environment to improve the accuracy of high-speed railway subgrade settlement prediction.Design/methodology/approach–A high-speed railway subgrade settlement interval prediction method using the secretary bird optimization(SBOA)algorithm to optimize the BP neural network under the premise of gray relational analysis is proposed.Findings–Using the SBOA algorithm to optimize the BP neural network,the optimal weights and thresholds are obtained,and the best parameter prediction model is combined.The data were collected from the sensors deployed through the subgrade settlement monitoring system,and the gray relational analysis is used to verify that all four influencing factors had a great correlation to the subgrade settlement,and the collected data are verified using the model.Originality/value–The experimental results show that the SBOA-BP model has higher prediction accuracy than the BP model,and the SBOA-BP model has a wider range of prediction intervals for a given confidence level,which can provide higher guiding value for practical engineering applications.
基金financially supported by the National Natural Science Foundation of China(No.52174297).
文摘The endpoint carbon content in the converter is critical for the quality of steel products,and accurately predicting this parameter is an effective way to reduce alloy consumption and improve smelting efficiency.However,most scholars currently focus on modifying methods to enhance model accuracy,while overlooking the extent to which input parameters influence accuracy.To address this issue,in this study,a prediction model for the endpoint carbon content in the converter was developed using factor analysis(FA)and support vector machine(SVM)optimized by improved particle swarm optimization(IPSO).Analysis of the factors influencing the endpoint carbon content during the converter smelting process led to the identification of 21 input parameters.Subsequently,FA was used to reduce the dimensionality of the data and applied to the prediction model.The results demonstrate that the performance of the FA-IPSO-SVM model surpasses several existing methods,such as twin support vector regression and support vector machine.The model achieves hit rates of 89.59%,96.21%,and 98.74%within error ranges of±0.01%,±0.015%,and±0.02%,respectively.Finally,based on the prediction results obtained by sequentially removing input parameters,the parameters were classified into high influence(5%-7%),medium influence(2%-5%),and low influence(0-2%)categories according to their varying degrees of impact on prediction accuracy.This classi-fication provides a reference for selecting input parameters in future prediction models for endpoint carbon content.
基金Supported by:CNPC Major Project "Research on Key Technologies for Enhanced Oil Recovery in Tight Sandstone Gas Reservoirs"(No. 2023ZZ25)Gansu Provincial Science and Technology Major Project"Research and Application of Key Technologies for Geophysical Prediction of Natural Gas Reservoirs in Longdong Area"(No. 23ZDGA004)PetroChina Changqing Oilfield Company'Qingshimao gas field water-bearing gas reservoir 3D seismic fine interpretation and well position support'(No.2023QCPJ33)。
文摘Tight sandstone reservoirs have strong heterogeneity and complex gas-water relationship,causing diffi culty in quantitatively predicting water saturation.Deep learning,combined with rock physics analysis and geostatistics theory,was used to predict water saturation in tight sandstone,focusing on the P_(sh)^(8) in the GFZ area of the Ordos Basin.Results show that:Starting with actual wells where porosity and saturation results are obtained from log interpretations,the relationship between reservoir parameters(porosity and saturation)and elastic properties(P-wave velocity,S-wave velocity,and density)is established through the development of a rock physics model suitable for the region.Under the constraints of geostatistical laws,such as background trends of elastic and reservoir parameters and the vertical variations in logging curves,reservoir conditions(including porosity,saturation,and thickness)are simulated to generate numerous pseudowells and corresponding seismic gathers modeled using the Zoeppritz equation.A convolution neural network is used to train the target curve and predict the target body.The predicted water saturation of the P_(sh)^(8) shows strong agreement with the results from two blind wells,providing a reliable basis for understanding the water saturation(Sw)of tight sandstone.
文摘In this study,a machine learning-based predictive model was developed for the Musa petti Wind Farm in Sri Lanka to address the need for localized forecasting solutions.Using data on wind speed,air temperature,nacelle position,and actual power,lagged features were generated to capture temporal dependencies.Among 24 evaluated models,the ensemble bagging approach achieved the best performance,with R^(2) values of 0.89 at 0 min and 0.75 at 60 min.Shapley Additive exPlanations(SHAP)analysis revealed that while wind speed is the primary driver for short-term predictions,air temperature and nacelle position become more influential at longer forecasting horizons.These findings underscore the reliability of short-term predictions and the potential benefits of integrating hybrid AI and probabilistic models for extended forecasts.Our work contributes a robust and explainable framework to support Sri Lanka’s renewable energy transition,and future research will focus on real-time deployment and uncertainty quantification.
基金funded by the National Natural Science Foundation of China(No.52374321)the National Key Research and Development Program of China(No.2024YFB3713602)the Youth Science and Technology Innovation Fund of Jianlong Group-University of Science and Technology Beijing(No.20231235).
文摘Slag viscosity plays a crucial role in the smelting process.A slag viscosity prediction model was developed by integrating hyperparameter optimization algorithms,machine learning,and SHapley Additive exPlanations(SHAP)analysis.The developed slag viscosity prediction models were evaluated using multiple statistical metrics,leading to the identification of the optimal model—Bayesian optimization-based categorical boosting(BO-CatBoost).And this model was further compared with existing models,including NPL model,FactSage+Roscoe-Einstein(RE)equation,artificial neural network model+RE equation,Riboud model+RE equation,and Zhang model.The results indicate that the slag viscosity prediction model based on BO-CatBoost outperforms all other models,achieving a coefficient of determination of 0.9897,a root mean square error of 1.0619,a mean absolute error of 0.6133,and a hit ratio of 95.1%.The global interpretability analysis of SHAP analysis was used to reveal the importance degree of different features on slag viscosity.The local interpretability analysis of SHAP analysis was used to obtain the quantitative influence of different features on slag viscosity in specific samples.The high-accuracy and interpretable slag viscosity prediction model developed is beneficial to the intelligent design of slag composition.
文摘BACKGROUND Colorectal cancer(CRC)remains one of the leading causes of cancer-related morbidity and mortality worldwide.Growing evidence suggests that gut microbial dysbiosis plays a crucial role in tumorigenesis and can influence therapeutic responses.AIM To explore the associations between serum S100A12 and soluble CD14(sCD14)levels and gut microbiota alterations in patients with CRC,and to assess the predictive utility of these biomarkers in forecasting chemotherapy response.METHODS A retrospective analysis was conducted on 104 patients diagnosed with advanced CRC(CRC group)and 104 age-matched and sex-matched healthy controls.Serum concentrations of S100A12 and sCD14 were measured using enzyme-linked immunosorbent assay.Fecal samples collected before chemotherapy were subjected to 16S rRNA sequencing to profile gut microbial composition.Pearson correlation analysis was used to evaluate the relationship between biomarker levels and microbial abundance.Receiver operating characteristic(ROC)curves were used to assess the predictive performance of S100A12 and sCD14 for chemotherapy response.RESULTS CRC patients exhibited significantly higher serum levels of S100A12 and sCD14 compared to healthy individuals(P<0.05).Patients with moderate to severe gut dysbiosis showed the highest elevations of these biomarkers(P<0.05).Elevated levels of S100A12 and sCD14 were positively correlated with Fusobacterium nucleatum and Prevotella abundance,and negatively correlated with Faecalibacterium prausnitzii and Akkermansia muciniphila(P<0.05).Both biomarkers significantly decreased following chemotherapy(P<0.05).Non-responders to chemotherapy had higher pre-treatment levels of S100A12 and sCD14 compared to responders(P<0.05).Combined ROC analysis showed improved diagnostic accuracy compared to either marker alone.CONCLUSION Serum S100A12 and sCD14 levels are closely associated with gut microbiota imbalance and chemotherapy response in CRC patients.These markers may serve as promising predictive indicators for treatment efficacy and offer potential value in individualized treatment strategies.
文摘Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.
基金supported by Qingdao Key Medical and Health Discipline ProjectThe Intramural Research Program of the Affiliated Hospital of Qingdao University,No. 4910Qingdao West Coast New Area Science and Technology Project,No. 2020-55 (all to SW)。
文摘Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFC3707900 and 2024YFC3012700)the National Natural Science Foundation of China(Grant No.42230710).
文摘Soil desiccation cracking is ubiquitous in nature and has significantpotential impacts on the engineering geological properties of soils.Previous studies have extensively examined various factors affecting soil cracking behavior through a numerous small-sample experiments.However,experimental studies alone cannot accurately describe soil cracking behavior.In this study,we firstly propose a modeling framework for predicting the surface crack ratio of soil desiccation cracking based on machine learning and interpretable analysis.The framework utilizes 1040 sets of soil cracking experimental data and employs random forest(RF),extreme gradient boosting(XGBoost),and artificialneural network(ANN)models to predict the surface crack ratio of soil desiccation cracking.To clarify the influenceof input features on soil cracking behavior,feature importance and Shapley additive explanations(SHAP)are applied for interpretability analysis.The results reveal that ensemble methods(RF and XGBoost)provide better predictive performance than the deep learning model(ANN).The feature importance analysis shows that soil desiccation cracking is primarily influencedby initial water content,plasticity index,finalwater content,liquid limit,sand content,clay content and thickness.Moreover,SHAP-based interpretability analysis further explores how soil cracking responds to various input variables.This study provides new insight into the evolution of soil cracking behavior,enhancing the understanding of its physical mechanisms and facilitating the assessment of potential regional development of soil desiccation cracking.
基金supported by grants from the Tianjin Health Technology Project(Grant no.2022QN106).
文摘Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations,and functional implications of RIPK family members across various cancers.Methods:We collected multi-omics data from The Cancer Genome Atlas and other public databases,including gene expression,copy number variation(CNV),mutation,methylation,tumor mutation burden(TMB),and microsatellite instability(MSI).Differential expression and survival analyses were performed using DESeq2 and Cox proportional hazards models.CNV and mutation data were analyzed with GISTIC2 and Mutect2,and methylation data with the ChAMP package.Correlations with TMB and MSI were assessed using Pearson coefficients,and gene set enrichment analysis was conducted with the MSigDB Hallmark gene sets.Results:RIPK family members show significant differential expression in various cancers,with RIPK1 and RIPK4 frequently altered.Survival analysis reveals heterogeneous impacts on overall survival.CNV and mutation analyses identify high alteration frequencies for RIPK2 and RIPK7,affecting gene expression.RIPK1 and RIPK7 are hypermethylated in several cancers,inversely correlating with RIPK3 expression.RIPK1,RIPK2,RIPK5,RIPK6,and RIPK7 correlate positively with TMB,while RIPK3 shows negative correlations in some cancers.MSI analysis indicates associations with DNA mismatch repair.G ene set enrichment analysis highlights immune-related pathway enrichment for RIPK1,RIPK2,RIPK3,and RIPK6,and cell proliferation and DNA repair pathways for RIPK4 and RIPK5.RIPK family members showed heterogeneous alterations across cancers:for example,RIPK7 was mutated in up to~15%of u terine c orpus e ndometrial c arcinoma and l ung s quamous c ell c arcinoma cases,and RIPK1 and RIPK7 exhibited frequent promoter hypermethylation in multiple tumor types.Several genes displayed context-dependent associations with overall survival and with TMB/MSI.Conclusion:This pan-cancer analysis of the RIPK family reveals their diverse roles and potential as biomarkers and therapeutic targets.The findings emphasize the importance of RIPK genes in tumorigenesis and suggest context-dependent functions across cancer types.Further studies are needed to explore their mechanisms in cancer development and clinical applications.
文摘BACKGROUND Laparoscopic distal pancreatectomy(LDP)has emerged as the preferred approach for both benign and malignant lesions located in the pancreatic body and tail.Nevertheless,a notable deficiency persists in the absence of a standardized,procedure-specific metric for evaluating and comparing surgical quality.A composite measure termed“textbook outcome(TO)”,which encompasses key short-term endpoints,has been validated in laparoscopic pancreatoduodenectomy but has not yet been established in dedicated LDP cohorts.The definition and prediction of TO in this context could aid in facilitating cross-institutional benchmarking and fostering advancements in quality improvement.AIM To establish procedure-specific criteria for TO and identify independent predictors of TO failure in patients undergoing LDP.METHODS Consecutive patients who underwent LDP at a single high-volume pancreatic center between January 2015 and August 2022 were retrospectively analyzed.TO was defined as the absence of clinically relevant postoperative pancreatic fistula(grade B/C),post-pancreatectomy hemorrhage(grade B/C),severe complications(Clavien-Dindo≥III),readmission within 30 days,and in-hospital or 30-day mortality.Multivariable logistic regression was employed to identify independent predictors of TO failure,and a nomogram was constructed and internally validated.RESULTS Among 405 eligible patients,286(70.6%)attained TO.Multivariable analysis revealed that female sex[odds ratio(OR)=0.62,95%confidence interval(CI):0.39-0.99]conferred a protective effect,while preoperative endoscopic ultrasound-guided fine-needle aspiration(OR=2.66,95%CI:1.05-6.73),pancreatic portal hypertension(OR=2.81,95%CI:1.06-7.45),and cystic-solid(OR=2.51,95%CI:1.34-4.69)or solid lesions(OR=1.91,95%CI:1.06-3.44)were independently associated with TO failure(all P<0.05).The derived nomogram exhibited modest discrimination and calibration when assessed in both the training and validation datasets.CONCLUSION The proposed LDP-specific definition of TO is feasible and discriminative,and the developed nomogram provides an objective tool for individualized risk assessment.
文摘The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare IoT(H-IoT)technology,which also provides proactive statistical findings and precise medical diagnoses that enhance healthcare performance.This study examines how ML might support IoT-based health care systems,namely in the areas of prognostic systems,disease detection,patient tracking,and healthcare operations control.The study looks at the benefits and drawbacks of several machine learning techniques for H-IoT applications.It also examines the fundamental problems,such as data security and cyberthreats,as well as the high processing demands that these systems face.Alongside this,the essay discusses the advantages of all the technologies,including machine learning,deep learning,and the Internet of Things,as well as the significant difficulties and problems that arise when integrating the technology into healthcare forecasts.
基金financially supported by the National Natural Science Foundation of China(Nos.52034002 and U2202254)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-19-001)。
文摘The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
基金Supported by the Central High Level Hospital Clinical Research Funding(No.BJ-2024-089).
文摘AIM:To explore the causal relationship between several possible behavioral factors and high myopia(HM)using multivariable Mendelian randomization(MVMR)approach and to find the mediators among them with mediation analysis.METHODS:The causal effects of several behavioral factors,including screen time,education time,time spent outdoors,and physical activity,on the risk of HM using univariable Mendelian randomization(MR)and MVMR analyses were first assessed.Genome-wide association study summary statistics of serum metabolites were also used in mediation analysis to determine the extent to which serum metabolites mediate the effects of behavioral factors on HM.RESULTS:MR analyses indicated that both increased time spent outdoors and a higher frequency of moderate physical activity significantly reduced the risk of HM.Further MVMR analysis confirmed that moderate physical activity independently contributed to a lower risk of HM.Additionally,MR analyses identified 13 serum metabolites significantly associated with HM,of which 12 were lipids and one was an amino acid derivative.Mediation analysis revealed that six lipid metabolites mediated the protective effects of moderate physical activity on HM,with the highest mediation proportion observed for 1-(1-enyl-palmitoyl)-GPC(p-16:0;30.83%).CONCLUSION:This study suggests that in addition to outdoor time,moderate physical activity habits may have an independent protective effect against HM and pointed to lipid metabolites as priority targets for the prevention due to low physical activity.These results emphasize the importance of physical activity and metabolic health in HM and underscore the need for further study of these complex associations.
基金Supported by National Natural Science Foundation of China(No.82020108006,No.81730025).
文摘AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 and 2022,were retrieved from the Web of Science Core Collection.Bibliometric analyses were performed using VOSviewer and CiteSpace software to explore publication trends,as well as the contributions and collaborative networks of countries/regions,authors,institutions,and journals.RESULTS:The annual number of publications on strabismus showed a consistent upward trend.The United States(USA)maintained a leading position in this research field while Republic of Korea and China emerged as rapidly advancing contributors over the last decade.The University of California,Los Angeles ranked as the most productive institution,and Jonathan M.Holmes from USA was the most productive author.Journal of AAPOS was the leading journal with the most strabismus publications,whereas the two most highly cited articles were both published in Ophthalmology.Co-occurrence analysis identified pivotal keywords and burst terms,including intermittent exotropia(IXT),acute acquired comitant esotropia(AACE),functional magnetic resonance imaging(fMRI),and surgical treatment,which were confirmed as predominant and frontier topics.CONCLUSION:This study provides a comprehensive bibliometric analysis of strabismus research,revealing the evolution of research hotspots over the past 30y and outlining several cutting-edge directions for future investigation.
基金Project (50934006) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of ChinaProject (CX2011B119) supported by the Graduated Students’ Research and Innovation Fund Project of Hunan Province of China
文摘The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.
基金The National Natural Science Foundation of China(No.50378016).
文摘Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections,cluster analysis and stepwise regression are integrated to predict the traffic volume of lanes at non-detector isolated controlled intersections.First cluster analysis is used to cluster the lanes of non-detector isolated signal-controlled intersections and the lanes of all signal-controlled intersections with detectors.Then, by the results of cluster analysis,the traffic volume samples are selected randomly and stepwise regression is used to predict the traffic volume of lanes at non-detector isolated signal-controlled intersections.The method is tested by the traffic volume data of lanes of the road network of Nanjing city.The problem of predicting the traffic volume of lanes at non-detector isolated signal-controlled intersections was resolved and can be widely used in urban traffic flow guidance and urban traffic control in cities without enough intersections equipped with detectors.
基金supported by Science and Technology Support Program of Sichuan Province (No. 2017SZ0003)Research Grant of National Nature Science Foundation of China (No. 81471658)
文摘Objective: To investigate the value of whole-lesion texture analysis on preoperative gadoxetic acid enhanced magnetic resonance imaging(MRI) for predicting tumor Ki-67 status after curative resection in patients with hepatocellular carcinoma(HCC).Methods: This study consisted of 89 consecutive patients with surgically confirmed HCC. Texture features were extracted from multiparametric MRI based on whole-lesion regions of interest. The Ki-67 status was immunohistochemical determined and classified into low Ki-67(labeling index ≤15%) and high Ki-67(labeling index >15%) groups. Least absolute shrinkage and selection operator(LASSO) and multivariate logistic regression were applied for generating the texture signature, clinical nomogram and combined nomogram. The discrimination power, calibration and clinical usefulness of the three models were evaluated accordingly. Recurrence-free survival(RFS) rates after curative hepatectomy were also compared between groups.Results: A total of 13 texture features were selected to construct a texture signature for predicting Ki-67 status in HCC patients(C-index: 0.878, 95% confidence interval: 0.791-0.937). After incorporating texture signature to the clinical nomogram which included significant clinical variates(AFP, BCLC-stage, capsule integrity, tumor margin,enhancing capsule), the combined nomogram showed higher discrimination ability(C-index: 0.936 vs. 0.795,P<0.001), good calibration(P>0.05 in Hosmer-Lemeshow test) and higher clinical usefulness by decision curve analysis. RFS rate was significantly lower in the high Ki-67 group compared with the low Ki-67 group after curative surgery(63.27% vs. 85.00%, P<0.05).Conclusions: Texture analysis on gadoxetic acid enhanced MRI can serve as a noninvasive approach to preoperatively predict Ki-67 status of HCC after curative resection. The combination of texture signature and clinical factors demonstrated the potential to further improve the prediction performance.
基金Project(9140A18010210KG01) supported by the Departmental Pre-Research Fund of China
文摘A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators.