期刊文献+
共找到1,426,612篇文章
< 1 2 250 >
每页显示 20 50 100
Carbon Footprint and Economic Analysis of LNG-fueled Fishing Vessel Using Real Engine Performance Simulation
1
作者 Momir Sjerić Maja Perčić +1 位作者 Ivana Jovanović Nikola Vladimir 《哈尔滨工程大学学报(英文版)》 2026年第1期259-276,共18页
Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This st... Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions. 展开更多
关键词 1D/0D simulation Carbon footprint Fishing vessels Life cycle assessment Life cycle cost assessment Liquefied natural gas
在线阅读 下载PDF
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
2
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Changes in shale microstructure and fluid flow under high temperature:Experimental analysis and fluid-structure interaction simulation 被引量:1
3
作者 Xiang-Ru Chen Xin Tang +4 位作者 Rui-Gang Zhang Heng Yang Qiu-Qi Chen Zhang-Ping Yan Lei Zhang 《Petroleum Science》 2025年第4期1699-1711,共13页
Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production eff... Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation. 展开更多
关键词 High temperature treatment Oil shale Longmaxi Formation Fluidestructure interaction Fluid simulation
原文传递
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
4
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
原文传递
Research on a Simulation Platform for Typical Internal Corrosion Defects in Natural Gas Pipelines Based on Big Data Analysis
5
作者 Changchao Qi Lingdi Fu +2 位作者 Ming Wen Hao Qian Shuai Zhao 《Structural Durability & Health Monitoring》 2025年第4期1073-1087,共15页
The accuracy and reliability of non-destructive testing(NDT)approaches in detecting interior corrosion problems are critical,yet research in this field is limited.This work describes a novel way to monitor the structu... The accuracy and reliability of non-destructive testing(NDT)approaches in detecting interior corrosion problems are critical,yet research in this field is limited.This work describes a novel way to monitor the structural integrity of steel gas pipelines that uses advanced numerical modeling techniques to anticipate fracture development and corrosion effects.The objective is to increase pipeline dependability and safety through more precise,real-time health evaluations.Compared to previous approaches,our solution provides higher accuracy in fault detection and quantification,making it ideal for pipeline integritymonitoring in real-world applications.To solve this issue,statistical analysis was conducted on the size and directional distribution features of about 380,000 sets of internal corrosion faults,as well as simulations of erosion and wear patterns on bent pipes.Using real defectmorphologies,we developed a modeling framework for typical interior corrosion flaws.We evaluated and validated the applicability and effectiveness of in-service inspection processes,as well as conducted on-site comparison tests.The results show that(1)the length and width of corrosion defects follow a log-normal distribution,the clock orientation follows a normal distribution,and the peak depth follows a Freundlich EX function distribution pattern;(2)pipeline corrosion defect data can be classified into three classes using the K-means clustering algorithm,allowing rapid and convenient acquisition of typical size and orientation characteristics of internal corrosion defects;(3)the applicability range and boundary conditions of various NDT techniques were verified,establishing comprehensive selection principles for internal corrosion defect detection technology;(4)on-site inspection results showed a 31%The simulation and validation platform for typical interior corrosion issues greatly enhances the accuracy and reliability of detection data. 展开更多
关键词 Internal corrosion non-destructive testing techniques cluster analysis defect simulation feature analysis typical defects
在线阅读 下载PDF
Highly efficient contact detection strategy of 3D discontinuous deformation analysis in continuous-discontinuous simulation
6
作者 Jingyu Kang Xiaodong Fu +5 位作者 Qian Sheng Xing Wang Haifeng Ding Xuehan Zhao Tian Xi Shangwei Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期6977-6992,共16页
Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this stud... Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this study,aiming at the continuous-discontinuous simulation of 3D-DDA,a highly efficient contact detection strategy is proposed.Firstly,the global direct search(GDS)method is integrated into the 3D-DDA framework to address intricate contact scenarios.Subsequently,all geometric elements,including blocks,faces,edges,and vertices are divided into searchable and unsearchable parts.Contacts between unsearchable geometric elements would be directly inherited,while only searchable geometric elements are involved in contact detection.This strategy significantly reduces the number of geometric elements involved in contact detection,thereby markedly enhancing the computation efficiency.Several examples are adopted to demonstrate the accuracy and efficiency of the improved 3D-DDA method.The rock pillars with different mesh sizes are simulated under self-weight.The deformation and stress are consistent with the analytical results,and the smaller the mesh size,the higher the accuracy.The maximum speedup ratio is 38.46 for this case.Furthermore,the Brazilian splitting test on the discs with different flaws is conducted.The results show that the failure pattern of the samples is consistent with the results obtained by other methods and experiments,and the maximum speedup ratio is 266.73.Finally,a large-scale impact test is performed,and approximately 3.2 times enhanced efficiency is obtained.The proposed contact detection strategy significantly improves efficiency when the rock has not completely failed,which is more suitable for continuous-discontinuous simulation. 展开更多
关键词 3D discontinuous deformation analysis Contact detection Computation efficiency Continuous-discontinuous simulation FRACTURE
在线阅读 下载PDF
Factors affecting the perceived stress and anxiety of novice nursing students in high-fidelity simulation education:a secondary qualitative analysis of focus group interviews
7
作者 Natalie Lee Po-man Alice Chan Mei-ling Florence Wong Mei-Fung 《Frontiers of Nursing》 2025年第3期325-332,共8页
Objective:To gain insight into the potential factors that may cause perceived stress and anxiety in simulation education.Methods:A secondary qualitative analysis study using qualitative thematic synthesis.A local high... Objective:To gain insight into the potential factors that may cause perceived stress and anxiety in simulation education.Methods:A secondary qualitative analysis study using qualitative thematic synthesis.A local higher education institution that conducted pre-registration nursing programs.A total of 189 undergraduate nursing students that were never attained any clinical placement prior to the parent study.Focus group interviews were conducted to collect data that were then transcribed and analyzed through the qualitative thematic synthesis approach to develop themes.Results:Three themes were emerged from the participants’simulation experiences in terms of peoples(the observers vs the observed),actions(the prepared vs the unprepared),and settings(the realism vs the simulation).Conclusions:By considering and reviewing the current design and development of the simulation practice,the findings of this study contribute to the body of knowledge with valuable insights on stress and anxiety that may affect students’learning in simulation. 展开更多
关键词 high-fidelity simulation novice nursing students perceived anxiety perceived stress secondary qualitative analysis simulation-based education
在线阅读 下载PDF
Landscape Stability Assessment and Simulation Analysis Under Urban Expansion:A Case Study of Hangzhou,China 被引量:1
8
作者 PEI Hui ZHANG Lin +4 位作者 ZHOU Minli NIE Wenbin ZHOU Shihao SHI Yan PAN Jianyun 《Chinese Geographical Science》 2025年第2期311-325,共15页
In recent years,rapid urbanization has had a profound impact on landscape stability.As a typical example of China's rapid urbanization,Hangzhou has also experienced significant landscape changes,which have profoun... In recent years,rapid urbanization has had a profound impact on landscape stability.As a typical example of China's rapid urbanization,Hangzhou has also experienced significant landscape changes,which have profoundly affected its ecological stability.Taking Hangzhou as an example,this study integrates land use change data from 1980 to 2020,combines dynamic simulation and ecological modeling techniques,and carries out a comprehensive analysis of historical trends and future predictions,to provide valuable insights into the complex interactions between urban expansion and landscape stability.The results indicate that:1)between 1980 and2020,Hangzhou experienced a significant increase in construction land at the expense of arable land,leading to a gradual decline in landscape stability,though the downward trend has slowed in recent years.2)The spatial distribution of landscape stability shows clear aggregation patterns,with lower stability concentrated in economically active flatlands and higher stability in the mountainous western regions.3)By 2040,further urban expansion is predicted to occur alongside increased landscape integration,reflecting the positive effects of ecological protection strategies.This study highlights the universal challenges of balancing economic growth with ecological stability in rapidly urbanizing regions.The combination of advanced simulation models and spatiotemporal analysis demonstrates a replicable framework for assessing urban expansion's ecological impacts.These findings underscore the importance of tailoring urban planning and ecological policies to address regional disparities,providing valuable insights for sustainable urban development and landscape management globally. 展开更多
关键词 landscape stability stability index Future Land Use simulation(FLUS)model Hangzhou China
在线阅读 下载PDF
An extended discontinuous deformation analysis for simulation of grouting reinforcement in a water-rich fractured rock tunnel 被引量:1
9
作者 Jingyao Gao Siyu Peng +1 位作者 Guangqi Chen Hongyun Fan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期168-186,共19页
Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numer... Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation. 展开更多
关键词 Discontinuous deformation analysis(DDA) Water-rich fractured rock tunnel Grouting reinforcement Water inrush disaster
在线阅读 下载PDF
Numerical Simulation and Analysis of Heat Treatment Processes on AISI 1025 Steel Produced by Laser Engineered Net Shaping
10
作者 Elphas Tum Rehema Ndeda +3 位作者 James Mutua Raghupatruni Prasad Eyitao Olakanmi Sisa Pityana 《Modeling and Numerical Simulation of Material Science》 2025年第1期1-15,共15页
Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing ... Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing a greater role in the performance of components. This paper investigates the effect of heat treatment on residual stresses induced in AISI 1025, manufactured using LENS. Finite element model was developed and simulated to analyze residual stress development. AISI 1025 samples suitable for tool and die applications in Fused Deposition Modelling (FDM) filament production, were fabricated using Laser Engineered Net Shaping (LENS) process, followed by heat treatment where annealing and quenching processes were done. The material’s microstructure, residual stress and hardness of heat-treated samples under investigation, were compared against the as-built samples. The results indicated that after annealing, tensile residual stresses were reduced by 93%, resulting in a reduced crack growth rate, compared to the as-built sample, although the hardness was reduced significantly by 25%. On the other hand, high tensile residual stresses of 425 ± 14 MPa were recorded after quenching process with an improvement of hardness by 21%. 展开更多
关键词 Heat Treatment Residual Stresses HARDNESS Microstructure Numerical simulation
在线阅读 下载PDF
Occupancy Based Building Energy Analysis Using Discrete Event Simulation
11
作者 Rupa Das Roseline Mostafa Bhaskaran Gopalakrishnan 《Energy Engineering》 2025年第7期2931-2956,共26页
Highly energy-efficient buildings have generated remarkable interest over the last few years.There is a need for simulation based effective control systems for efficient usage of electrical and fossil fuel driven devi... Highly energy-efficient buildings have generated remarkable interest over the last few years.There is a need for simulation based effective control systems for efficient usage of electrical and fossil fuel driven devices,as they contribute to energy-efficient buildings and assist in gaining flexibility for the human occupancy-based energy loads.In this context,the integrated energy profile of a building can be ascertained by effective research approaches,as this knowledge would be beneficial to understand the demographics with respect to human occupancy and activities,as well as estimate varying energy consumption over time.Utility data from Smart Meter(SM)readings can reveal detailed information that could be mapped to predict resident occupancy and the usage patterns of specific types of appliances over desired time intervals.This research develops a user-driven simulation tool with realistic data acquisition options and assumptions of potential human behavior to determine energy usage patterns over time without the utility billing information.In this work,factors such as level of human occupancy,the possibility of space being occupied,thermostat settings,building envelope infrastructural aspects,types of appliances used in households,appliance energy related capacities,and the probability of using each appliance is considered,along with variance in weather,and heating-cooling systems specifications.For five specific benchmarked scenarios,the range of the random numbers is specified based on assumed potential human behavior for occupancy and energy-consuming appliances usage probabilities,with respect to the time of the day,weekday,and weekends.The simulation is developed using the Visual Basic Application(VBA)^(R)in Microsoft Excel^(R),based on the discrete-event Monte Carlo Simulation(MCS).The simulated energy usage and the cost are reflected in the sensitivity analysis by comparing factors such as the level of human occupancy,appliance type,and time intervals. 展开更多
关键词 Utility bill ENERGY simulation residential house
在线阅读 下载PDF
Simulation and Experimental Analysis of Mechanical Properties of a Bidirectional Adjustable Magnetorheological Fluid Damper
12
作者 YANG Zhi−rong YE Zhong−min +2 位作者 LIU Jin−liang RAO Zhu−shi XIAO Wang−qiang 《船舶力学》 北大核心 2025年第6期1000-1012,共13页
The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achie... The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers. 展开更多
关键词 magnetorheological fluid(MRF) DAMPER permanent magnet finite element analysis test of mechanical properties
在线阅读 下载PDF
Progress on Multi-Field Coupling Simulation Methods in Deep Strata Rock Breaking Analysis
13
作者 Baoping Zou Chenhao Pei +3 位作者 Qizhi Chen Yansheng Deng Yongguo Chen Xu Long 《Computer Modeling in Engineering & Sciences》 2025年第3期2457-2485,共29页
The utilization of multi-field coupling simulation methods has become a pivotal approach for the investigation of intricate fracture behavior and interaction mechanisms of rock masses in deep strata.The high temperatu... The utilization of multi-field coupling simulation methods has become a pivotal approach for the investigation of intricate fracture behavior and interaction mechanisms of rock masses in deep strata.The high temperatures,pressures and complex geological environments of deep strata frequently result in the coupling of multiple physical fields,including mechanical,thermal and hydraulic fields,during the fracturing of rocks.This review initially presents an overview of the coupling mechanisms of these physical fields,thereby elucidating the interaction processes ofmechanical,thermal,and hydraulic fields within rockmasses.Secondly,an in-depth analysis ofmulti-field coupling is conducted from both spatial and temporal perspectives,with the introduction of simulation methods for a range of scales.It emphasizes cross-scale coupling methodologies for the transfer of rock properties and physical field data,including homogenization techniques,nested coupling strategies and data-driven approaches.To address the discontinuous characteristics of the rock fracture process,the review provides a detailed explanation of continuousdiscontinuous couplingmethods,to elucidate the evolution of rock fracturing and deformationmore comprehensively.In conclusion,the review presents a summary of the principal points,challenges and future directions of multi-field coupling simulation research.It also puts forward the potential of integrating intelligent algorithms with multi-scale simulation techniques to enhance the accuracy and efficiency of multi-field coupling simulations.This offers novel insights into multi-field coupling simulation analysis in deep rock masses. 展开更多
关键词 Multi-field coupling numerical simulation MULTI-SCALE information transfer DISCONTINUITY
在线阅读 下载PDF
Numerical Simulation and Diagnostic Analysis for the Maintenance Mechanism of the “3·31” Squall Line Event in Jiangxi Province
14
作者 XU Yuan WU Jing +2 位作者 DONG Meng ZHAO Xin-yu TIAN Gao-shan 《Journal of Tropical Meteorology》 2025年第6期622-636,共15页
The “3·31” severe squall line event in eastern China was notable for its exceptional intensity and persistence,posing significant challenges to forecast accuracy. This study analyzed the maintenance stage of th... The “3·31” severe squall line event in eastern China was notable for its exceptional intensity and persistence,posing significant challenges to forecast accuracy. This study analyzed the maintenance stage of this event using highresolution convection-permitting numerical simulations, with a focus on vorticity budgets of the environmental flow, multiscale synoptic diagnostics, and Rotunno-Klemp-Weisman(RKW) theory. These analyses aimed to elucidate the mechanisms governing the morphological transition, the generation of associated convective gales, and the prolonged maintenance of the squall line event. The results show that the numerical simulation accurately reproduced the development and evolution of the squall line, particularly its location, with surface wind errors remaining within a reasonable range. The development of a mesoscale vortex modulated the dynamic and water vapor fields, providing favorable mesoscale environmental conditions for the organization and maintenance of the squall line. Vorticity budget analysis indicates that the divergence and tilting terms were the primary contributors to vorticity tendency. After the squall line entered Jiangxi Province, it exhibited a sharper leading edge and enhanced upward motion. Dry intrusion from the mid-toupper troposphere led to rapid downward momentum transfer at the meso-γ scale, thereby generating convective gales. In addition, the enhancement of the rear-inflow jet(RIJ) was related to the pressure difference between the interior and exterior of system, which resulted from the phase change of condensate within tilted updrafts. The RIJ was orthogonal to the squall line, causing it to transform from a linear into a bowing shape. Diagnosis based on the RKW theory underscore the important roles in both low-level and deep vertical wind shear in maintenaning the squall line. The ratios of the cold pool propagation velocity to the vertical wind shear were close to 1, which balanced with the ambient horizontal vorticity that allowed the convection to remain upright, thus sustaining the squall line's intensity for an extended period. In summary, the squall line event was sustained by a favorable environment created by the environmental vortex. The dry intrusion from the mid-to-upper troposphere and intensified RIJ resulted in the severe convective winds, while the balance between cold pool and ambient vertical wind shear promoted the system's prolonged maintenance. These findings provide an effective reference for the short-range forecasting of squall lines throughout their lifecycle. 展开更多
关键词 squall line bow echo convective gales numerical simulation maintenance mechanism
在线阅读 下载PDF
Omnidirectional simulation analysis of thermomechanical coupling mechanism in inertia friction welding of Ni-based superalloy
15
作者 Chang-an LI Guoliang QIN Hao WANG 《Chinese Journal of Aeronautics》 2025年第1期202-216,共15页
The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to si... The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to simulate the IFW process of a Ni-based superalloy and reveal the omnidirectional thermo-mechanical coupling mechanism of the friction interface.The numerical model successfully simulated the deceleration,deformation processes,and peak torsional moments in IFW and captured the evolution of temperature,contact pressure,and stress.The simulated results were validated through measured thermal history,optical macrography,and axial shortening.The results indicated that interfacial friction heat was the primary heat source,and plastic deformation energy only accounted for 4%of the total.The increase in initial rotational speed and friction pressure elevated the peak temperature,reaching a maximum of 1525.5K at an initial rotational speed of 2000 r/min and friction pressure of 400 MPa.The interface heat generation could form an axial temperature gradient exceeding 320K/mm.The radial inhomogeneities of heat generation and temperature were manifested in a concentric ring distribution with maximum heat flux and temperature ranging from 2/5 to 2/3 radius.The radial inhomogeneities were caused by increasing linear velocity along the radius and an opposite distribution of contact pressure,which could reach 1.7 times the set pressure at the center.The circumferential inhomogeneity of thermomechanical distribution during rotary friction welding was revealed for the first time,benefiting from the 3D model.The deflection and transformation of distribution in contact pressure and Mises stress were indicators of plastic deformation and transition of quasi-steady state welding.The critical Mises stress was 0.5 times the friction pressure in this study.The presented modeling provides a reliable insight into the thermo-mechanical coupling mechanism of IFW and lays a solid foundation for predicting the microstructures and mechanical properties of inertia friction welded joints. 展开更多
关键词 Inertia friction welding Thermo-mechanical coupling INHOMOGENEITY Numerical simulation Ni-based superalloy
原文传递
Numerical simulation analysis of particle motion behavior and key structures inside a novel cyclone separator
16
作者 Jie Kou Hang Qiu Chenyang Wang 《Chinese Journal of Chemical Engineering》 2025年第9期114-127,共14页
This study proposes a novel cyclone separator with a conical inner core to enhance particle classification efficiency in oil and gas wellhead-recovered liquids.Particle motion and force dynamics are analyzed to optimi... This study proposes a novel cyclone separator with a conical inner core to enhance particle classification efficiency in oil and gas wellhead-recovered liquids.Particle motion and force dynamics are analyzed to optimize key structural parameters,including inlet diameter(D_i),overflow pipe diameter(D_(e)),insertion depth(L_(e)),and bottom flow pipe diameter(D_(z)).Numerical simulations employ the Reynolds stress turbulence model,SIMPLEC algorithm,and discrete phase model to evaluate separation performance in a gas-liquid two-phase system.Results indicate that a smaller D_i improves fine particle separation but increases turbulence;an optimal range of D_i/D_(c)=0.35-0.4 is recommended.Larger D_(e) enhances the diversion ratio,aiding fine particle discharge(D_(e)/D_(c)=0.25-0.35).Increased Le facilitates fine particle overflow but induces vortices,whereas a smaller L_(e) stabilizes the bottom flow for larger particle separation(L_(e)/D_(c)=0.5-0.75).A reduced D_(z) enhances centrifugal force and separation efficiency but may cause turbulence;an optimal D_(z)/D_(c) of 0.6-0.65 is suggested for stability.These findings provide valuable design guidelines for improving cyclone separator performance in multiphase flow applications. 展开更多
关键词 Particle motion Gas-liquid-solid separation Hydro cyclone Integrated separation Numerical simulation
在线阅读 下载PDF
An Electro⁃thermal De⁃icing Model and Simulation Analysis Considering Ice Shedding
17
作者 ZHANG Yingying YUAN Xiansheng +1 位作者 XIONG Jingjiang BU Xueqin 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第2期162-177,共16页
The electro⁃thermal anti/de-icing systems have high heating efficiency and relatively simple structures,marking them as a key development direction for future icing protection.Existing simulation algorithms for electr... The electro⁃thermal anti/de-icing systems have high heating efficiency and relatively simple structures,marking them as a key development direction for future icing protection.Existing simulation algorithms for electrothermal de-icing seldom delve into comprehensive ice accretion-melting-deicing models that account for ice shedding.Therefore,the detachment behavior of ice layers during the heating process requires in-depth research and discussion.This paper physically models the phenomenon of ice shedding,incorporates the detachment behavior of ice layers during heating,improves the existing mathematical model for electro-thermal de-icing calculations,establishes an ice accretion-melting-deicing model for electro-thermal de-icing systems,and conducts numerical simulation,verification and optimization analysis of electro-thermal de-icing considering ice shedding.Through multi-condition de-icing numerical simulations of a specific wing model,it is found that ambient temperature can serve as a factor for adapting the electro heating anti/de-icing strategy to the environment.An optimization of heating heat flux density and heating/cooling time is conducted for the wing de-icing control law under the calculated conditions.The improved electrothermal de-icing model and algorithm developed in this paper provide solid technical support for the design of electrothermal de-icing systems. 展开更多
关键词 aircraft icing electro-thermal de-icing ice shedding electro-thermal control law numerical simulation
在线阅读 下载PDF
Inter-hemispheric couplings in the middle atmosphere exhibited by principal component analysis of the SD-WACCM-X simulations
18
作者 Sheng-Yang Gu YuBo Zeng +3 位作者 Jin Hu YuSong Qin Liang Tang YuXuan Liu 《Earth and Planetary Physics》 2025年第4期925-937,共13页
This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric... This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric warming(SSW)events.IHC in both hemispheres leads to a cold anomaly in the equatorial stratosphere,a warm anomaly in the equatorial mesosphere,and increased temperatures in the mesosphere and lower thermosphere(MLT)region of the summer hemisphere.However,the IHC features during boreal winter period are significantly weaker than during the austral winter period,primarily due to weaker stationary planetary wave activity in the Southern Hemisphere(SH).During the austral winter period,IHC results in a warm anomaly in the polar mesosphere of the SH,which does not occur in the NH during boreal winter period.This study also examines the possible influence of quasi-two-day waves(QTDWs)on IHC.We found that the largest temperature anomaly in the summer polar MLT region is associated with a large wind instability area,and a well-developed critical layer structure of QTDW in January.In contrast,during July,despite favorable conditions for QTDW propagation in the Northern Hemisphere,weaker IHC response is observed,suggesting that IHC features and the relationship with QTDWs during July would be more complex than during January. 展开更多
关键词 inter-hemispheric coupling principal component analysis middle atmosphere quasi-two-day waves
在线阅读 下载PDF
Multi-target inhibition property of Persicaria hydropiper phytochemicals against gram-positive and gram-negative bacteria via molecular docking,dynamics simulation,and ADMET analysis
19
作者 Golak Majumdar Shyamapada Mandal 《Digital Chinese Medicine》 2025年第1期76-89,共14页
Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Method... Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Methods Six bioactive compounds from P.hydropiper were investigated:catechin(CAT1),hyperin(HYP1),ombuin(OMB1),pinosylvin(PSV1),quercetin 3-sulfate(QSF1),and scutellarein(SCR1).Their binding affinities and potential binding pockets were assessed through MD against four bacterial target proteins with Protein Data Bank identifiers(PDB IDs):topoisomerase IV from Escherichia coli(E.coli)(PDB ID:3FV5),Staphylococcus aureus(S.aureus)gyrase ATPase binding domain(PDB ID:3U2K),CviR from Chromobacterium violaceum(C.violaceum)(PDB ID:3QP1),and glycosyl hydrolase from Pseudomonas aeruginosa(P.aeruginosa)(PDB ID:5BX9).Molecular dynamics simulations(MDS)were performed on the most promising compound-protein complexes for 50 nanoseconds(ns).Drug-likeness was evaluated using Lipinski's Rule of Five(RO5),followed by absorption,distribution,metabolism,excretion,and toxicity(ADMET)analysis using SwissADME and pkCSM web servers.Antibacterial activity was evaluated through disc diffusion assays,testing both individual compounds and combinations with conventional antibiotics[cefotaxime(CTX1,30μg/disc),ceftazidime(CAZ1,30μg/disc),and piperacillin(PIP1,100μg/disc)].Results MD revealed strong binding affinity(ranging from-9.3 to-5.9 kcal/mol)for all compounds,with CAT1 showing exceptional binding to 3QP1(-9.3 kcal/mol)and 5BX9(-8.4 kcal/mol).MDS confirmed the stability of CAT1-protein complexes with binding free energies of-84.71 kJ/mol(5BX9-CAT1)and-95.59 kJ/mol(3QP1-CAT1).Five compounds(CAT1,SCR1,PSV1,OMB1,and QSF1)complied with Lipinski's RO5 and showed favorable ADMET profiles.All compounds were non-carcinogenic,with CAT1 classified in the lowest toxicity class(VI).In antibacterial assays,CAT1 demonstrated significant activity against both gram-positive bacteria[Streptococcus pneumoniae(S.pneumoniae),S.aureus,and Bacillus cereus(B.cereus)][zone diameter of inhibition(ZDI):10-22 mm]and gram-negative bacteria[Acinetobacter baumannii(A.baumannii),E.coli,and P.aeruginosa](ZDI:14-27 mm).Synergistic effects were observed when CAT1 was combined with antibiotics and the growth inhibitory indices(GII)was 0.69-1.00.Conclusion P.hydropiper bioactive compounds,particularly CAT1,show promising antibacterial potential through multiple mechanisms,including direct inhibition of bacterial virulence proteins and synergistic activity with conventional antibiotics.The favorable pharmacological properties and low toxicity profiles support their potential development as therapeutic agents against bacterial infections. 展开更多
关键词 Persicaria hydropiper phytochemicals Molecular docking Molecular dynamics simulation Bacterial pathogenicity-related proteins PHARMACOKINETICS
暂未订购
Numerical simulation analysis of E-Ex mode of the wide-field electromagnetic method for identifying deep,low-resistance thin layers
20
作者 Liu Guang-Di Tian Hong-Jun 《Applied Geophysics》 2025年第4期1125-1140,1495,共17页
Shale gas reservoirs have large burial depths,thin thickness,and low resistance,which lead to problems with weak surface observation,abnormal information,and multiple inversion solutions.The traditional electromagneti... Shale gas reservoirs have large burial depths,thin thickness,and low resistance,which lead to problems with weak surface observation,abnormal information,and multiple inversion solutions.The traditional electromagnetic method cannot effectively identify information from deep,low-resistance thin layers in terms of detection depth and accuracy.Wide field electromagnetic method(WFEM)with large depth and high precision has become the main method for deep earth exploration.This method has been widely used in the exploration of deep oil and gas energy,as well as mineral resources.However,an in-depth analysis of the various factors that affect the deep detection ability of WFEM is lacking.Therefore,the analysis of system parameters has significant theoretical importance and practical value for studying the effectiveness of WFEM in deep-layer identification.In this study,a multilayer geoelectric model is established in this study using the measured well data.The influence characteristics of different observation system parameters on the resolution of specific deep-seated targets under the WFEM_E-Ex mode are analyzed in detail through forward modeling and inversion.Results show that the resolution ability of WFEM for deep,low-resistance thin layers is affected by factors such as transceiver distance,target layer thickness,and resistivity difference between the target body and the surrounding rock,but the influence range differs.This study analyzes the influence characteristics of various system parameters.It provides targeted work scheme design and feasibility analysis for deep shale gas exploration.It also offers an important theoretical basis for optimizing construction schemes and improving the recognition ability of WFEM for deep,low-resistance targets. 展开更多
关键词 E-Ex mode Deep detection System parameters Low-resistance thin layer Numerical simulation Identification ability
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部