This study investigates the application of large language models in analyzing sentiment features within the exchange rate markets.Traditional natural language processing methods,such as LDA and BERT,are effective in e...This study investigates the application of large language models in analyzing sentiment features within the exchange rate markets.Traditional natural language processing methods,such as LDA and BERT,are effective in extracting topics from text;however,they fail to assess the relative importance of these topics in relation to target exchange rates.To bridge this gap,this paper employs ChatGPT to extract topics from texts and evaluate their importance scores,further enhancing exchange rate forecasting by integrating topic importance into the sentiment analysis framework.Through empirical analysis,the superiority of ChatGPT over LDA and BERT in both topic extraction and importance assessment is demonstrated.Furthermore,this study utilizes the topic importance scores generated by ChatGPT to develop a novel interval-valued sentiment index(TIS index).This index not only accounts for the relative importance of various events influencing exchange rate fluctuations but also captures the dynamic evolution of market sentiment within an interval.Empirical results highlight that the TIS Index significantly enhances the forecasting accuracy of interval models such as TARI and IMLP for exchange rates.These findings further demonstrate the advantages of ChatGPT in sentiment analysis within the foreign exchange market.These findings offer new insights into the application of ChatGPT in financial text research.展开更多
Organizations often use sentiment analysis-based systems or even resort to simple manual analysis to try to extract useful meaning from their customers’general digital“chatter”.Driven by the need for a more accurat...Organizations often use sentiment analysis-based systems or even resort to simple manual analysis to try to extract useful meaning from their customers’general digital“chatter”.Driven by the need for a more accurate way to qualitatively extract valuable product and brand-oriented consumer-generated texts,this paper experimentally tests the ability of an NLP-based analytics approach to extract information from highly unstructured texts.The results show that natural language processing outperforms sentiment analysis for detecting issues from social media data.Surprisingly,the experiment shows that sentiment analysis is not only better than manual analysis of social media data for the goal of supporting organizational decision-making,but may also be disadvantageous for such efforts.展开更多
In the effort to enhance cardiovascular diagnostics,deep learning-based heart sound classification presents a promising solution.This research introduces a novel preprocessing method:iterative k-means clustering combi...In the effort to enhance cardiovascular diagnostics,deep learning-based heart sound classification presents a promising solution.This research introduces a novel preprocessing method:iterative k-means clustering combined with silhouette score analysis,aimed at downsampling.This approach ensures optimal cluster formation and improves data quality for deep learning models.The process involves applying k-means clustering to the dataset,calculating the average silhouette score for each cluster,and selecting the clusterwith the highest score.We evaluated this method using 10-fold cross-validation across various transfer learningmodels fromdifferent families and architectures.The evaluation was conducted on four datasets:a binary dataset,an augmented binary dataset,amulticlass dataset,and an augmentedmulticlass dataset.All datasets were derived from the Heart Wave heart sounds dataset,a novelmulticlass dataset introduced by our research group.To increase dataset sizes and improve model training,data augmentation was performed using heartbeat cycle segmentation.Our findings highlight the significant impact of the proposed preprocessing approach on the HeartWave datasets.Across all datasets,model performance improved notably with the application of our method.In augmented multiclass classification,the MobileNetV2 model showed an average weighted F1-score improvement of 27.10%.In binary classification,ResNet50 demonstrated an average accuracy improvement of 8.70%,reaching 92.40%compared to its baseline performance.These results underscore the effectiveness of clustering with silhouette score analysis as a preprocessing step,significantly enhancing model accuracy and robustness.They also emphasize the critical role of preprocessing in addressing class imbalance and advancing precision medicine in cardiovascular diagnostics.展开更多
The crude and processed Paeoniae Radix Alba-Atractylodis Macrocephalae Rhizoma herbal pairs, originated from Bai-zhu-shao-yao-san, are used to treat different diseases clinically. In order to evaluate the crude and pr...The crude and processed Paeoniae Radix Alba-Atractylodis Macrocephalae Rhizoma herbal pairs, originated from Bai-zhu-shao-yao-san, are used to treat different diseases clinically. In order to evaluate the crude and processed Paeoniae Radix-Atractylodis Macrocephalae Rhizoma herbal pairs, a simple, easy, and sensitive high-performance liquid chromatography coupled with diode array detectors was developed for simultaneous determination of nine bioactive components in the herbal pairs. The calibration curve exhibited good linearity(r2≥0.9992). The LODs and LOQs were ≤7.30 and 11.53 μg/m L, respectively. The intra-, inter-day and repeatability RSD values of the nine compounds were less than 3.86%, 2.71%, and 4.29%, respectively. The RSD stability values were less than 3.64%. The recovery of the method was in the range of 96.70%–102.10%, with RSD values less than 3.52%. The developed method can be applied to the intrinsic quality control of crude and processed Paeoniae Radix-Atractylodis Macrocephalae Rhizoma herbal pairs.展开更多
Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macro...Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations...Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations,and functional implications of RIPK family members across various cancers.Methods:We collected multi-omics data from The Cancer Genome Atlas and other public databases,including gene expression,copy number variation(CNV),mutation,methylation,tumor mutation burden(TMB),and microsatellite instability(MSI).Differential expression and survival analyses were performed using DESeq2 and Cox proportional hazards models.CNV and mutation data were analyzed with GISTIC2 and Mutect2,and methylation data with the ChAMP package.Correlations with TMB and MSI were assessed using Pearson coefficients,and gene set enrichment analysis was conducted with the MSigDB Hallmark gene sets.Results:RIPK family members show significant differential expression in various cancers,with RIPK1 and RIPK4 frequently altered.Survival analysis reveals heterogeneous impacts on overall survival.CNV and mutation analyses identify high alteration frequencies for RIPK2 and RIPK7,affecting gene expression.RIPK1 and RIPK7 are hypermethylated in several cancers,inversely correlating with RIPK3 expression.RIPK1,RIPK2,RIPK5,RIPK6,and RIPK7 correlate positively with TMB,while RIPK3 shows negative correlations in some cancers.MSI analysis indicates associations with DNA mismatch repair.G ene set enrichment analysis highlights immune-related pathway enrichment for RIPK1,RIPK2,RIPK3,and RIPK6,and cell proliferation and DNA repair pathways for RIPK4 and RIPK5.RIPK family members showed heterogeneous alterations across cancers:for example,RIPK7 was mutated in up to~15%of u terine c orpus e ndometrial c arcinoma and l ung s quamous c ell c arcinoma cases,and RIPK1 and RIPK7 exhibited frequent promoter hypermethylation in multiple tumor types.Several genes displayed context-dependent associations with overall survival and with TMB/MSI.Conclusion:This pan-cancer analysis of the RIPK family reveals their diverse roles and potential as biomarkers and therapeutic targets.The findings emphasize the importance of RIPK genes in tumorigenesis and suggest context-dependent functions across cancer types.Further studies are needed to explore their mechanisms in cancer development and clinical applications.展开更多
The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.A...The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
AIM:To explore the causal relationship between several possible behavioral factors and high myopia(HM)using multivariable Mendelian randomization(MVMR)approach and to find the mediators among them with mediation analy...AIM:To explore the causal relationship between several possible behavioral factors and high myopia(HM)using multivariable Mendelian randomization(MVMR)approach and to find the mediators among them with mediation analysis.METHODS:The causal effects of several behavioral factors,including screen time,education time,time spent outdoors,and physical activity,on the risk of HM using univariable Mendelian randomization(MR)and MVMR analyses were first assessed.Genome-wide association study summary statistics of serum metabolites were also used in mediation analysis to determine the extent to which serum metabolites mediate the effects of behavioral factors on HM.RESULTS:MR analyses indicated that both increased time spent outdoors and a higher frequency of moderate physical activity significantly reduced the risk of HM.Further MVMR analysis confirmed that moderate physical activity independently contributed to a lower risk of HM.Additionally,MR analyses identified 13 serum metabolites significantly associated with HM,of which 12 were lipids and one was an amino acid derivative.Mediation analysis revealed that six lipid metabolites mediated the protective effects of moderate physical activity on HM,with the highest mediation proportion observed for 1-(1-enyl-palmitoyl)-GPC(p-16:0;30.83%).CONCLUSION:This study suggests that in addition to outdoor time,moderate physical activity habits may have an independent protective effect against HM and pointed to lipid metabolites as priority targets for the prevention due to low physical activity.These results emphasize the importance of physical activity and metabolic health in HM and underscore the need for further study of these complex associations.展开更多
AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 ...AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 and 2022,were retrieved from the Web of Science Core Collection.Bibliometric analyses were performed using VOSviewer and CiteSpace software to explore publication trends,as well as the contributions and collaborative networks of countries/regions,authors,institutions,and journals.RESULTS:The annual number of publications on strabismus showed a consistent upward trend.The United States(USA)maintained a leading position in this research field while Republic of Korea and China emerged as rapidly advancing contributors over the last decade.The University of California,Los Angeles ranked as the most productive institution,and Jonathan M.Holmes from USA was the most productive author.Journal of AAPOS was the leading journal with the most strabismus publications,whereas the two most highly cited articles were both published in Ophthalmology.Co-occurrence analysis identified pivotal keywords and burst terms,including intermittent exotropia(IXT),acute acquired comitant esotropia(AACE),functional magnetic resonance imaging(fMRI),and surgical treatment,which were confirmed as predominant and frontier topics.CONCLUSION:This study provides a comprehensive bibliometric analysis of strabismus research,revealing the evolution of research hotspots over the past 30y and outlining several cutting-edge directions for future investigation.展开更多
Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of prec...Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.展开更多
Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industr...Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industries.The global production of primary magnesium has reached approximately 1.2 million tons per year,with anticipated diversification in future applications and significant market demand.Nevertheless,approximately 80%of the world’s primary magnesium is still manufactured through the Pidgeon process,grappling with formidable issues including high energy consumption,massive carbon emission,significant resource depletion,and environmental pollution.The implementation of the relative vacuum method shows potential in breaking through technological challenges in the Pidgeon process,facilitating clean,low-carbon continuous magnesium smelting.This paper begins by introducing the principles of the relative vacuum method.Subsequently,it elucidates various innovative process routes,including relative vacuum ferrosilicon reduction,aluminum thermal reduction co-production of spinel,and aluminum thermal reduction co-production of calcium aluminate.Finally,and thermodynamic foundations of the relative vacuum,a quantitative analysis of the material,energy flows,carbon emission,and production cost for several new processes is conducted,comparing and analyzing them against the Pidgeon process.The study findings reveal that,with identical raw materials,the relative vacuum silicon thermal reduction process significantly decreases raw material consumption,energy consumption,and carbon dioxide emissions by 15.86%,30.89%,and 26.27%,respectively,compared to the Pidgeon process.The relative vacuum process,using magnesite as the raw material and aluminum as the reducing agent,has the lowest magnesium-to-feed ratio,at only 3.385.Additionally,its energy consumption and carbon dioxide emissions are the lowest,at 1.817 tce/t Mg and 7.782 t CO_(2)/t Mg,respectively.The energy consumption and carbon emissions of the relative vacuum magnesium smelting process co-producing calcium aluminate(12CaO·7Al_(2)O_(3),3CaO·Al_(2)O_(3),and CaO·Al_(2)O_(3))are highly correlated with the consumption of dolomite in the raw materials.When the reduction temperature is around 1473.15 K,the critical volume fraction of magnesium vapor for different processes varies within the range of 5%–40%.Production cost analysis shows that the relative vacuum primary magnesium smelting process has significant economic benefits.This paper offers essential data support and theoretical guidance for achieving energy efficiency,carbon reduction in magnesium smelting,and the industrial adoption of innovative processes.展开更多
Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently d...Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.展开更多
Genetic diversity of 18 processing apple varieties and two fresh varieties were evaluated using 12 simple sequence repeats (SSR) primer pairs previously identified in Malus domestica Borkh. A total of 87 alleles in ...Genetic diversity of 18 processing apple varieties and two fresh varieties were evaluated using 12 simple sequence repeats (SSR) primer pairs previously identified in Malus domestica Borkh. A total of 87 alleles in 10 loci were detected using 10 polymorphic SSR markers selected within the range of 5-14 alleles per locus. All the 20 varieties could be distinguished using two primer pairs and they were divided into four groups using cluster analysis. The genetic similarity (GS) of groups analyzed using cluster analysis varied from 0.14 to 0.83. High acid variety Avrolles separated from other varieties with GS less than 0.42. The second group contained Longfeng and Dolgo from Northeast of China, the inherited genes of Chinese crab apple. The five cider varieties with high tannin contents, namely, Dabinette, Frequin rouge, Kermerrien, M.Menard, and D.Coetligne were clustered into the third group. The fourth group was mainly composed of 12 juice and fresh varieties. Principal coordinate analysis (PCO) also divided all the varieties into four groups. Juice and fresh apple varieties, Longfeng and Dolgo were clustered together, respectively, using both the analyses. Both the analyses showed there was much difference between cider and juice varieties, cider and fresh varieties, as well as Chinese crab apple and western European crab apple, whereas juice varieties and fresh varieties had a similar genetic background. The genetic diversity and differentiation could be sufficiently reflected by combining the two analytical methods.展开更多
Green building construction typically incurs higher costs than conventional methods.To facilitate broader adoption by construction entities,cost optimization is essential.Firms must align with technological advancemen...Green building construction typically incurs higher costs than conventional methods.To facilitate broader adoption by construction entities,cost optimization is essential.Firms must align with technological advancements,judiciously apply emerging technologies,and ensure resource efficiency through context-specific strategies.Proactive and precise scheduling is critical to avert delays from unforeseen events.Additionally,construction units should enhance on-site safety training,promote mastery of innovative techniques,and foster environmental awareness among personnel.Finally,companies ought to capitalize on government incentives for green materials while adopting bulk procurement from local sources to minimize transportation costs and secure lower unit prices.展开更多
The textile industry,while creating material wealth,also exerts a significant impact on the environment.Particularly in the textile manufacturing phase,which is the most energy-intensive phase throughout the product l...The textile industry,while creating material wealth,also exerts a significant impact on the environment.Particularly in the textile manufacturing phase,which is the most energy-intensive phase throughout the product lifecycle,the problem of high energy usage is increasingly notable.Nevertheless,current analyses of carbon emissions in textile manufacturing emphasize the dynamic temporal characteristics while failing to adequately consider critical information such as material flows and energy consumption.A carbon emission analysis method based on a holographic process model(HPM)is proposed to address these issues.First,the system boundary in the textile manufacturing is defined,and the characteristics of carbon emissions are analyzed.Next,an HPM based on the object-centric Petri net(OCPN)is constructed,and simulation experiments are conducted on three different scenarios in the textile manufacturing.Subsequently,the constructed HPM is utilized to achieve a multi-perspective analysis of carbon emissions.Finally,the feasibility of the method is verified by using the production data of pure cotton products from a certain textile manufacturing enterprise.The results indicate that this method can analyze the impact of various factors on the carbon emissions of pure cotton product production,and by applying targeted optimization strategies,carbon emissions have been reduced by nearly 20%.This contributes to propelling the textile manufacturing industry toward sustainable development.展开更多
This paper conducted a more comprehensive review and comparative analysis of the two heavy to blizzard processes that occurred in the Beijing area during December 13-15,2023,and February 20-21,2024,in terms of compreh...This paper conducted a more comprehensive review and comparative analysis of the two heavy to blizzard processes that occurred in the Beijing area during December 13-15,2023,and February 20-21,2024,in terms of comprehensive weather situation diagnosis,forecasting,and decision-making services,and summarized the meteorological service support experience of such heavy snow weather processes.It was found that both blizzard processes were jointly influenced by the 700 hPa southwesterly warm and humid jet stream and the near-surface easterly backflow;the numerical forecast was relatively accurate in the overall description of the snowfall process,and the forecast bias of the position of the 700 hPa southwesterly warm and humid jet stream determined the bias of the snowfall magnitude forecast at a certain point;when a deviation was found between the actual snowfall and the forecast,the cause should be analyzed in a timely manner,and the warning and forecast conclusions should be updated.With the full cooperation of relevant departments,it can greatly make up for the deviation of the early forecast snowfall amount,and ensure the safety and efficiency of people's travel.展开更多
The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was...The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis.展开更多
基金supported by the National Natural Science Foundation of China under Grants No.72171223,No.71988101the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
文摘This study investigates the application of large language models in analyzing sentiment features within the exchange rate markets.Traditional natural language processing methods,such as LDA and BERT,are effective in extracting topics from text;however,they fail to assess the relative importance of these topics in relation to target exchange rates.To bridge this gap,this paper employs ChatGPT to extract topics from texts and evaluate their importance scores,further enhancing exchange rate forecasting by integrating topic importance into the sentiment analysis framework.Through empirical analysis,the superiority of ChatGPT over LDA and BERT in both topic extraction and importance assessment is demonstrated.Furthermore,this study utilizes the topic importance scores generated by ChatGPT to develop a novel interval-valued sentiment index(TIS index).This index not only accounts for the relative importance of various events influencing exchange rate fluctuations but also captures the dynamic evolution of market sentiment within an interval.Empirical results highlight that the TIS Index significantly enhances the forecasting accuracy of interval models such as TARI and IMLP for exchange rates.These findings further demonstrate the advantages of ChatGPT in sentiment analysis within the foreign exchange market.These findings offer new insights into the application of ChatGPT in financial text research.
文摘Organizations often use sentiment analysis-based systems or even resort to simple manual analysis to try to extract useful meaning from their customers’general digital“chatter”.Driven by the need for a more accurate way to qualitatively extract valuable product and brand-oriented consumer-generated texts,this paper experimentally tests the ability of an NLP-based analytics approach to extract information from highly unstructured texts.The results show that natural language processing outperforms sentiment analysis for detecting issues from social media data.Surprisingly,the experiment shows that sentiment analysis is not only better than manual analysis of social media data for the goal of supporting organizational decision-making,but may also be disadvantageous for such efforts.
基金supported by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant No.IPP:533-611-2025DSR technical and financial support.
文摘In the effort to enhance cardiovascular diagnostics,deep learning-based heart sound classification presents a promising solution.This research introduces a novel preprocessing method:iterative k-means clustering combined with silhouette score analysis,aimed at downsampling.This approach ensures optimal cluster formation and improves data quality for deep learning models.The process involves applying k-means clustering to the dataset,calculating the average silhouette score for each cluster,and selecting the clusterwith the highest score.We evaluated this method using 10-fold cross-validation across various transfer learningmodels fromdifferent families and architectures.The evaluation was conducted on four datasets:a binary dataset,an augmented binary dataset,amulticlass dataset,and an augmentedmulticlass dataset.All datasets were derived from the Heart Wave heart sounds dataset,a novelmulticlass dataset introduced by our research group.To increase dataset sizes and improve model training,data augmentation was performed using heartbeat cycle segmentation.Our findings highlight the significant impact of the proposed preprocessing approach on the HeartWave datasets.Across all datasets,model performance improved notably with the application of our method.In augmented multiclass classification,the MobileNetV2 model showed an average weighted F1-score improvement of 27.10%.In binary classification,ResNet50 demonstrated an average accuracy improvement of 8.70%,reaching 92.40%compared to its baseline performance.These results underscore the effectiveness of clustering with silhouette score analysis as a preprocessing step,significantly enhancing model accuracy and robustness.They also emphasize the critical role of preprocessing in addressing class imbalance and advancing precision medicine in cardiovascular diagnostics.
基金The National Natural Science Foundation of China(Grant No.81202918)the Open Project of National First-Class Key Discipline for Science of Chinese Materia Medica,Nanjing University of Chinese Medicine(Grant No.2011ZYX2-006)+2 种基金the Science and Technology Project of Hangzhou,China(Grant No.20130533B68 and 20131813A23)the Chinese Medicine Research Program of Zhejiang Province,China(Grant No.2014ZQ008 and 2015ZQ011)the Science Foundation of Zhejiang Chinese Medical University(Grant No.2011ZY25 and 2013ZZ12)
文摘The crude and processed Paeoniae Radix Alba-Atractylodis Macrocephalae Rhizoma herbal pairs, originated from Bai-zhu-shao-yao-san, are used to treat different diseases clinically. In order to evaluate the crude and processed Paeoniae Radix-Atractylodis Macrocephalae Rhizoma herbal pairs, a simple, easy, and sensitive high-performance liquid chromatography coupled with diode array detectors was developed for simultaneous determination of nine bioactive components in the herbal pairs. The calibration curve exhibited good linearity(r2≥0.9992). The LODs and LOQs were ≤7.30 and 11.53 μg/m L, respectively. The intra-, inter-day and repeatability RSD values of the nine compounds were less than 3.86%, 2.71%, and 4.29%, respectively. The RSD stability values were less than 3.64%. The recovery of the method was in the range of 96.70%–102.10%, with RSD values less than 3.52%. The developed method can be applied to the intrinsic quality control of crude and processed Paeoniae Radix-Atractylodis Macrocephalae Rhizoma herbal pairs.
基金supported by Qingdao Key Medical and Health Discipline ProjectThe Intramural Research Program of the Affiliated Hospital of Qingdao University,No. 4910Qingdao West Coast New Area Science and Technology Project,No. 2020-55 (all to SW)。
文摘Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金supported by grants from the Tianjin Health Technology Project(Grant no.2022QN106).
文摘Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations,and functional implications of RIPK family members across various cancers.Methods:We collected multi-omics data from The Cancer Genome Atlas and other public databases,including gene expression,copy number variation(CNV),mutation,methylation,tumor mutation burden(TMB),and microsatellite instability(MSI).Differential expression and survival analyses were performed using DESeq2 and Cox proportional hazards models.CNV and mutation data were analyzed with GISTIC2 and Mutect2,and methylation data with the ChAMP package.Correlations with TMB and MSI were assessed using Pearson coefficients,and gene set enrichment analysis was conducted with the MSigDB Hallmark gene sets.Results:RIPK family members show significant differential expression in various cancers,with RIPK1 and RIPK4 frequently altered.Survival analysis reveals heterogeneous impacts on overall survival.CNV and mutation analyses identify high alteration frequencies for RIPK2 and RIPK7,affecting gene expression.RIPK1 and RIPK7 are hypermethylated in several cancers,inversely correlating with RIPK3 expression.RIPK1,RIPK2,RIPK5,RIPK6,and RIPK7 correlate positively with TMB,while RIPK3 shows negative correlations in some cancers.MSI analysis indicates associations with DNA mismatch repair.G ene set enrichment analysis highlights immune-related pathway enrichment for RIPK1,RIPK2,RIPK3,and RIPK6,and cell proliferation and DNA repair pathways for RIPK4 and RIPK5.RIPK family members showed heterogeneous alterations across cancers:for example,RIPK7 was mutated in up to~15%of u terine c orpus e ndometrial c arcinoma and l ung s quamous c ell c arcinoma cases,and RIPK1 and RIPK7 exhibited frequent promoter hypermethylation in multiple tumor types.Several genes displayed context-dependent associations with overall survival and with TMB/MSI.Conclusion:This pan-cancer analysis of the RIPK family reveals their diverse roles and potential as biomarkers and therapeutic targets.The findings emphasize the importance of RIPK genes in tumorigenesis and suggest context-dependent functions across cancer types.Further studies are needed to explore their mechanisms in cancer development and clinical applications.
基金financially supported by the National Natural Science Foundation of China(Nos.52034002 and U2202254)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-19-001)。
文摘The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
基金Supported by the Central High Level Hospital Clinical Research Funding(No.BJ-2024-089).
文摘AIM:To explore the causal relationship between several possible behavioral factors and high myopia(HM)using multivariable Mendelian randomization(MVMR)approach and to find the mediators among them with mediation analysis.METHODS:The causal effects of several behavioral factors,including screen time,education time,time spent outdoors,and physical activity,on the risk of HM using univariable Mendelian randomization(MR)and MVMR analyses were first assessed.Genome-wide association study summary statistics of serum metabolites were also used in mediation analysis to determine the extent to which serum metabolites mediate the effects of behavioral factors on HM.RESULTS:MR analyses indicated that both increased time spent outdoors and a higher frequency of moderate physical activity significantly reduced the risk of HM.Further MVMR analysis confirmed that moderate physical activity independently contributed to a lower risk of HM.Additionally,MR analyses identified 13 serum metabolites significantly associated with HM,of which 12 were lipids and one was an amino acid derivative.Mediation analysis revealed that six lipid metabolites mediated the protective effects of moderate physical activity on HM,with the highest mediation proportion observed for 1-(1-enyl-palmitoyl)-GPC(p-16:0;30.83%).CONCLUSION:This study suggests that in addition to outdoor time,moderate physical activity habits may have an independent protective effect against HM and pointed to lipid metabolites as priority targets for the prevention due to low physical activity.These results emphasize the importance of physical activity and metabolic health in HM and underscore the need for further study of these complex associations.
基金Supported by National Natural Science Foundation of China(No.82020108006,No.81730025).
文摘AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 and 2022,were retrieved from the Web of Science Core Collection.Bibliometric analyses were performed using VOSviewer and CiteSpace software to explore publication trends,as well as the contributions and collaborative networks of countries/regions,authors,institutions,and journals.RESULTS:The annual number of publications on strabismus showed a consistent upward trend.The United States(USA)maintained a leading position in this research field while Republic of Korea and China emerged as rapidly advancing contributors over the last decade.The University of California,Los Angeles ranked as the most productive institution,and Jonathan M.Holmes from USA was the most productive author.Journal of AAPOS was the leading journal with the most strabismus publications,whereas the two most highly cited articles were both published in Ophthalmology.Co-occurrence analysis identified pivotal keywords and burst terms,including intermittent exotropia(IXT),acute acquired comitant esotropia(AACE),functional magnetic resonance imaging(fMRI),and surgical treatment,which were confirmed as predominant and frontier topics.CONCLUSION:This study provides a comprehensive bibliometric analysis of strabismus research,revealing the evolution of research hotspots over the past 30y and outlining several cutting-edge directions for future investigation.
文摘Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.
基金supported by the China Postdoctoral Science Foundation(No.2023T160088)the Youth Fund of the National Natural Science Foundation of China(No.52304324).
文摘Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industries.The global production of primary magnesium has reached approximately 1.2 million tons per year,with anticipated diversification in future applications and significant market demand.Nevertheless,approximately 80%of the world’s primary magnesium is still manufactured through the Pidgeon process,grappling with formidable issues including high energy consumption,massive carbon emission,significant resource depletion,and environmental pollution.The implementation of the relative vacuum method shows potential in breaking through technological challenges in the Pidgeon process,facilitating clean,low-carbon continuous magnesium smelting.This paper begins by introducing the principles of the relative vacuum method.Subsequently,it elucidates various innovative process routes,including relative vacuum ferrosilicon reduction,aluminum thermal reduction co-production of spinel,and aluminum thermal reduction co-production of calcium aluminate.Finally,and thermodynamic foundations of the relative vacuum,a quantitative analysis of the material,energy flows,carbon emission,and production cost for several new processes is conducted,comparing and analyzing them against the Pidgeon process.The study findings reveal that,with identical raw materials,the relative vacuum silicon thermal reduction process significantly decreases raw material consumption,energy consumption,and carbon dioxide emissions by 15.86%,30.89%,and 26.27%,respectively,compared to the Pidgeon process.The relative vacuum process,using magnesite as the raw material and aluminum as the reducing agent,has the lowest magnesium-to-feed ratio,at only 3.385.Additionally,its energy consumption and carbon dioxide emissions are the lowest,at 1.817 tce/t Mg and 7.782 t CO_(2)/t Mg,respectively.The energy consumption and carbon emissions of the relative vacuum magnesium smelting process co-producing calcium aluminate(12CaO·7Al_(2)O_(3),3CaO·Al_(2)O_(3),and CaO·Al_(2)O_(3))are highly correlated with the consumption of dolomite in the raw materials.When the reduction temperature is around 1473.15 K,the critical volume fraction of magnesium vapor for different processes varies within the range of 5%–40%.Production cost analysis shows that the relative vacuum primary magnesium smelting process has significant economic benefits.This paper offers essential data support and theoretical guidance for achieving energy efficiency,carbon reduction in magnesium smelting,and the industrial adoption of innovative processes.
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(62225303)the National Natural Science Fundation of China(62303039,62433004)+2 种基金the China Postdoctoral Science Foundation(BX20230034,2023M730190)the Fundamental Research Funds for the Central Universities(buctrc202201,QNTD2023-01)the High Performance Computing Platform,College of Information Science and Technology,Beijing University of Chemical Technology
文摘Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.
文摘Genetic diversity of 18 processing apple varieties and two fresh varieties were evaluated using 12 simple sequence repeats (SSR) primer pairs previously identified in Malus domestica Borkh. A total of 87 alleles in 10 loci were detected using 10 polymorphic SSR markers selected within the range of 5-14 alleles per locus. All the 20 varieties could be distinguished using two primer pairs and they were divided into four groups using cluster analysis. The genetic similarity (GS) of groups analyzed using cluster analysis varied from 0.14 to 0.83. High acid variety Avrolles separated from other varieties with GS less than 0.42. The second group contained Longfeng and Dolgo from Northeast of China, the inherited genes of Chinese crab apple. The five cider varieties with high tannin contents, namely, Dabinette, Frequin rouge, Kermerrien, M.Menard, and D.Coetligne were clustered into the third group. The fourth group was mainly composed of 12 juice and fresh varieties. Principal coordinate analysis (PCO) also divided all the varieties into four groups. Juice and fresh apple varieties, Longfeng and Dolgo were clustered together, respectively, using both the analyses. Both the analyses showed there was much difference between cider and juice varieties, cider and fresh varieties, as well as Chinese crab apple and western European crab apple, whereas juice varieties and fresh varieties had a similar genetic background. The genetic diversity and differentiation could be sufficiently reflected by combining the two analytical methods.
文摘Green building construction typically incurs higher costs than conventional methods.To facilitate broader adoption by construction entities,cost optimization is essential.Firms must align with technological advancements,judiciously apply emerging technologies,and ensure resource efficiency through context-specific strategies.Proactive and precise scheduling is critical to avert delays from unforeseen events.Additionally,construction units should enhance on-site safety training,promote mastery of innovative techniques,and foster environmental awareness among personnel.Finally,companies ought to capitalize on government incentives for green materials while adopting bulk procurement from local sources to minimize transportation costs and secure lower unit prices.
基金National Key R&D Program of China(No.2019YFB1706300)。
文摘The textile industry,while creating material wealth,also exerts a significant impact on the environment.Particularly in the textile manufacturing phase,which is the most energy-intensive phase throughout the product lifecycle,the problem of high energy usage is increasingly notable.Nevertheless,current analyses of carbon emissions in textile manufacturing emphasize the dynamic temporal characteristics while failing to adequately consider critical information such as material flows and energy consumption.A carbon emission analysis method based on a holographic process model(HPM)is proposed to address these issues.First,the system boundary in the textile manufacturing is defined,and the characteristics of carbon emissions are analyzed.Next,an HPM based on the object-centric Petri net(OCPN)is constructed,and simulation experiments are conducted on three different scenarios in the textile manufacturing.Subsequently,the constructed HPM is utilized to achieve a multi-perspective analysis of carbon emissions.Finally,the feasibility of the method is verified by using the production data of pure cotton products from a certain textile manufacturing enterprise.The results indicate that this method can analyze the impact of various factors on the carbon emissions of pure cotton product production,and by applying targeted optimization strategies,carbon emissions have been reduced by nearly 20%.This contributes to propelling the textile manufacturing industry toward sustainable development.
文摘This paper conducted a more comprehensive review and comparative analysis of the two heavy to blizzard processes that occurred in the Beijing area during December 13-15,2023,and February 20-21,2024,in terms of comprehensive weather situation diagnosis,forecasting,and decision-making services,and summarized the meteorological service support experience of such heavy snow weather processes.It was found that both blizzard processes were jointly influenced by the 700 hPa southwesterly warm and humid jet stream and the near-surface easterly backflow;the numerical forecast was relatively accurate in the overall description of the snowfall process,and the forecast bias of the position of the 700 hPa southwesterly warm and humid jet stream determined the bias of the snowfall magnitude forecast at a certain point;when a deviation was found between the actual snowfall and the forecast,the cause should be analyzed in a timely manner,and the warning and forecast conclusions should be updated.With the full cooperation of relevant departments,it can greatly make up for the deviation of the early forecast snowfall amount,and ensure the safety and efficiency of people's travel.
文摘The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis.