The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This...With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.展开更多
This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can e...This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies.展开更多
With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter...With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.展开更多
The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic respo...The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic response information under a strong noise background is a crucial scientific task to be addressed.To solve the noise suppression problem of the controlled-source electromagnetic method in strong interference areas,we propose an approach based on complex-plane 2D k-means clustering for data processing.Based on the stability of the controlled-source signal response,clustering analysis is applied to classify the spectra of different sources and noises in multiple time segments.By identifying the power spectra with controlled-source characteristics,it helps to improve the quality of the controlled-source response extraction.This paper presents the principle and workflow of the proposed algorithm,and demonstrates feasibility and effectiveness of the new algorithm through synthetic and real data examples.The results show that,compared with the conventional Robust denoising method,the clustering algorithm has a stronger suppression effect on common noise,can identify high-quality signals,and improve the preprocessing data quality of the controlledsource electromagnetic method.展开更多
The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pr...The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days.展开更多
With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis o...With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.展开更多
Objective To identify core acupoint patterns and elucidate the molecular mechanisms of acupuncture for primary depressive disorder(PDD)through data mining and network analysis.Methods A comprehensive literature search...Objective To identify core acupoint patterns and elucidate the molecular mechanisms of acupuncture for primary depressive disorder(PDD)through data mining and network analysis.Methods A comprehensive literature search was conducted across PubMed,Embase,Ovid Technologies(OVID),Web of Science,Cochrane Library,China National Knowledge Infrastructure(CNKI),China National Knowledge Infrastructure Database(VIP),Wanfang Data,and SinoMed Database from database foundation to January 31,2025,for clinical studies on acupuncture treatment of PDD.Descriptive statistics,high-frequency acupoint analysis,degree and betweenness centrality evaluation,and core acupoint prescription mining identified predominant therapeutic combinations for PDD.Network acupuncture was used to predict therapeutic target for the core acupoint prescription.Subsequent protein-protein interaction(PPI)network and molecular complex detection(MCODE)analyses were conducted to identify the key targets and functional modules.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses explored the underlying biological mechanisms of the core acupoint prescription in treating PDD.Results A total of 57 acupoint prescriptions underwent systematic analysis.The core therapeutic combinations comprised Baihui(GV20),Yintang(GV29),Neiguan(PC6),Hegu(LI4),and Shenmen(HT7).Network acupuncture analysis identified 88 potential therapeutic targets(79 overlapping with PDD),while PPI network analysis revealed central regulatory nodes,including interleukin(IL)-6,IL-1β,tumor necrosis factor(TNF)-α,toll-like receptor 4(TLR4),IL-10,brain-derived neurotrophic factor(BDNF),transforming growth factor(TGF)-β1,C-XC motif chemokine ligand 10(CXCL10),mitogen-activated protein kinase 3(MAPK3),and nitric oxide synthase 1(NOS1).MCODE-based modular analysis further elucidated three functionally coherent clusters:inflammation-homeostasis(score=6.571),plasticity-neurotransmission(score=3.143),and oxidative stress(score=3.000).GO and KEGG analyses demonstrated significant enrichment of the MAPK,phosphoinositide 3-kinase/protein kinase B(PI3K/Akt),and hypoxia-inducible factor(HIF)-1 signaling pathways.These mechanistic insights suggested that the antidepressant effects mediated through mechanisms of neuroinflammatory regulation,neuroplasticity restoration,and immune-oxidative stress homeostasis.Conclusion This study reveals that acupuncture alleviates depression through a multi-level mechanism,primarily involving the neuroinflammation suppression,neuroplasticity enhancement,and oxidative stress regulation.These findings systematically clarify the underlying mechanisms of acupuncture’s antidepressant effects and identify novel therapeutic targets for further mechanistic research.展开更多
Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of...Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.展开更多
Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpe...Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.展开更多
In section‘Track decoding’of this article,one of the paragraphs was inadvertently missed out after the text'…shows the flow diagram of the Tr2-1121 track mode.'The missed paragraph is provided below.
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a ...In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method.展开更多
Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to huma...Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]).展开更多
The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utilit...The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources.展开更多
Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with t...Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.展开更多
A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. Wit...A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. With good features in treating singularities, Haar series solution converges rapidly for arbitrary distributions, especially for the case where the material properties change rapidly in some regions. Through numerical examples the influences of the ratio of material constants on the top and bottom surfaces and different material gradient distributions on the structural response of the plate to mechanical stimuli are studied.展开更多
A three-dimensional analysis model based on the finite element method (FEM) is developed, which can derive the evolution and distribution characteristics of heat flux deposited on the divertor plate from the surface...A three-dimensional analysis model based on the finite element method (FEM) is developed, which can derive the evolution and distribution characteristics of heat flux deposited on the divertor plate from the surface temperature measured by infrared thermography diagnostics. The numerical simulations of surface heating due to localized power bursts and the power deposition calculations demonstrate that this analysis can provide accurate results and useful information about localized hot spots compared with the normal one- and two-dimensional calculations. In this paper, the details of this three- dimensional analysis are presented, and some results in ohmic heating and electron cyclotron resonant heating (ECRH) discharge on HL-2A are given.展开更多
In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) veloci...In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) velocity discontinuity surfaces. According to the virtual work principle, the difference theorem and the variation method, the collapse surface of double-layer rock mass is determined based on the Hoek-Brown failure criterion. The formula can be degenerated to a single-layer rock collapsing problem when the rock mass is homogeneous. To estimate the validity of the result, the numerical simulation software PLAXIS 3D is used to simulate the collapse of shallow tunnels with double-layer rock mass, and the comparative analysis shows that numerical results are in good agreement with upper-bound solutions. According to the results of parametric analysis, the potential range of collapse of a double-layer rock mass above a shallow cavity decreases with a decrease in A1/A2,σci1/σci2 and σtm1/σtm2 and an increase in B1/B2,γ1/γ2. The range will decrease with a decrease in support pressure q and increase with a decrease in surface overload σs. Therefore, reinforced supporting is beneficial to improve the stability of the cavity during actual construction.展开更多
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
文摘With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.
文摘This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies.
文摘With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.
基金supported by the National Key Research and Development Program Project of China(Grant No.2023YFF0718003)the key research and development plan project of Yunnan Province(Grant No.202303AA080006).
文摘The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic response information under a strong noise background is a crucial scientific task to be addressed.To solve the noise suppression problem of the controlled-source electromagnetic method in strong interference areas,we propose an approach based on complex-plane 2D k-means clustering for data processing.Based on the stability of the controlled-source signal response,clustering analysis is applied to classify the spectra of different sources and noises in multiple time segments.By identifying the power spectra with controlled-source characteristics,it helps to improve the quality of the controlled-source response extraction.This paper presents the principle and workflow of the proposed algorithm,and demonstrates feasibility and effectiveness of the new algorithm through synthetic and real data examples.The results show that,compared with the conventional Robust denoising method,the clustering algorithm has a stronger suppression effect on common noise,can identify high-quality signals,and improve the preprocessing data quality of the controlledsource electromagnetic method.
文摘The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days.
文摘With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.
文摘Objective To identify core acupoint patterns and elucidate the molecular mechanisms of acupuncture for primary depressive disorder(PDD)through data mining and network analysis.Methods A comprehensive literature search was conducted across PubMed,Embase,Ovid Technologies(OVID),Web of Science,Cochrane Library,China National Knowledge Infrastructure(CNKI),China National Knowledge Infrastructure Database(VIP),Wanfang Data,and SinoMed Database from database foundation to January 31,2025,for clinical studies on acupuncture treatment of PDD.Descriptive statistics,high-frequency acupoint analysis,degree and betweenness centrality evaluation,and core acupoint prescription mining identified predominant therapeutic combinations for PDD.Network acupuncture was used to predict therapeutic target for the core acupoint prescription.Subsequent protein-protein interaction(PPI)network and molecular complex detection(MCODE)analyses were conducted to identify the key targets and functional modules.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses explored the underlying biological mechanisms of the core acupoint prescription in treating PDD.Results A total of 57 acupoint prescriptions underwent systematic analysis.The core therapeutic combinations comprised Baihui(GV20),Yintang(GV29),Neiguan(PC6),Hegu(LI4),and Shenmen(HT7).Network acupuncture analysis identified 88 potential therapeutic targets(79 overlapping with PDD),while PPI network analysis revealed central regulatory nodes,including interleukin(IL)-6,IL-1β,tumor necrosis factor(TNF)-α,toll-like receptor 4(TLR4),IL-10,brain-derived neurotrophic factor(BDNF),transforming growth factor(TGF)-β1,C-XC motif chemokine ligand 10(CXCL10),mitogen-activated protein kinase 3(MAPK3),and nitric oxide synthase 1(NOS1).MCODE-based modular analysis further elucidated three functionally coherent clusters:inflammation-homeostasis(score=6.571),plasticity-neurotransmission(score=3.143),and oxidative stress(score=3.000).GO and KEGG analyses demonstrated significant enrichment of the MAPK,phosphoinositide 3-kinase/protein kinase B(PI3K/Akt),and hypoxia-inducible factor(HIF)-1 signaling pathways.These mechanistic insights suggested that the antidepressant effects mediated through mechanisms of neuroinflammatory regulation,neuroplasticity restoration,and immune-oxidative stress homeostasis.Conclusion This study reveals that acupuncture alleviates depression through a multi-level mechanism,primarily involving the neuroinflammation suppression,neuroplasticity enhancement,and oxidative stress regulation.These findings systematically clarify the underlying mechanisms of acupuncture’s antidepressant effects and identify novel therapeutic targets for further mechanistic research.
基金Projects(51278382,51479050)supported by the National Natural Science Foundation of ChinaProject(2015CB057901)supported by the National Key Basic Research Program of China+3 种基金Project(201501035-03)supported by the Public Service Sector R&D Project of Ministry of Water Resource of ChinaProject(2014B06814)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(B13024)supported by the"111"ProjectProject(YK913004)supported by the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earthrock Dam of the Ministry of Water Resources,China
文摘Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.
基金supported in part by the National Key Research and Development Program of China under Grant 2024YFE0200600in part by the National Natural Science Foundation of China under Grant 62071425+3 种基金in part by the Zhejiang Key Research and Development Plan under Grant 2022C01093in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LR23F010005in part by the National Key Laboratory of Wireless Communications Foundation under Grant 2023KP01601in part by the Big Data and Intelligent Computing Key Lab of CQUPT under Grant BDIC-2023-B-001.
文摘Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.
文摘In section‘Track decoding’of this article,one of the paragraphs was inadvertently missed out after the text'…shows the flow diagram of the Tr2-1121 track mode.'The missed paragraph is provided below.
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
基金supported by the Key Project of Chinese National Programs for Fundamental Research and Development(2010CB731502)the National Natural Science Foundation of China(50978745)
文摘In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method.
基金supported by a project funded by the Hebei Provincial Central Guidance Local Science and Technology Development Fund(236Z7714G)。
文摘Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]).
基金by the National Key Research and Development Program of China(2023YFC3303701-02 and 2024YFC3306701)the National Natural Science Foundation of China(T2425014 and 32270667)+3 种基金the Natural Science Foundation of Fujian Province of China(2023J06013)the Major Project of the National Social Science Foundation of China granted to Chuan-Chao Wang(21&ZD285)Open Research Fund of State Key Laboratory of Genetic Engineering at Fudan University(SKLGE-2310)Open Research Fund of Forensic Genetics Key Laboratory of the Ministry of Public Security(2023FGKFKT07).
文摘The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources.
基金financially supported by the National Natural Science Foundation of China(No.41573130)BNU Interdisciplinary Research Foundation for First-Year Doctoral Candidates(No.BNUXKJC1802)
文摘Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.
基金Project supported by the National Natural Sciences Foundation of China(No.10432030).
文摘A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. With good features in treating singularities, Haar series solution converges rapidly for arbitrary distributions, especially for the case where the material properties change rapidly in some regions. Through numerical examples the influences of the ratio of material constants on the top and bottom surfaces and different material gradient distributions on the structural response of the plate to mechanical stimuli are studied.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10805016)the National Magnetic Confinement Fusion Science Program,China (Grant No. 2009GB104008).
文摘A three-dimensional analysis model based on the finite element method (FEM) is developed, which can derive the evolution and distribution characteristics of heat flux deposited on the divertor plate from the surface temperature measured by infrared thermography diagnostics. The numerical simulations of surface heating due to localized power bursts and the power deposition calculations demonstrate that this analysis can provide accurate results and useful information about localized hot spots compared with the normal one- and two-dimensional calculations. In this paper, the details of this three- dimensional analysis are presented, and some results in ohmic heating and electron cyclotron resonant heating (ECRH) discharge on HL-2A are given.
基金Projects(51478477,51878074)supported by the National Natural Science Foundation of ChinaProject(2017-123-033)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProjects(2018zzts663,2018zzts656)supported by the Fundamental Research Funds for the Central Universities,China
文摘In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) velocity discontinuity surfaces. According to the virtual work principle, the difference theorem and the variation method, the collapse surface of double-layer rock mass is determined based on the Hoek-Brown failure criterion. The formula can be degenerated to a single-layer rock collapsing problem when the rock mass is homogeneous. To estimate the validity of the result, the numerical simulation software PLAXIS 3D is used to simulate the collapse of shallow tunnels with double-layer rock mass, and the comparative analysis shows that numerical results are in good agreement with upper-bound solutions. According to the results of parametric analysis, the potential range of collapse of a double-layer rock mass above a shallow cavity decreases with a decrease in A1/A2,σci1/σci2 and σtm1/σtm2 and an increase in B1/B2,γ1/γ2. The range will decrease with a decrease in support pressure q and increase with a decrease in surface overload σs. Therefore, reinforced supporting is beneficial to improve the stability of the cavity during actual construction.