期刊文献+
共找到32,500篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
1
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Research on a Simulation Platform for Typical Internal Corrosion Defects in Natural Gas Pipelines Based on Big Data Analysis
2
作者 Changchao Qi Lingdi Fu +2 位作者 Ming Wen Hao Qian Shuai Zhao 《Structural Durability & Health Monitoring》 2025年第4期1073-1087,共15页
The accuracy and reliability of non-destructive testing(NDT)approaches in detecting interior corrosion problems are critical,yet research in this field is limited.This work describes a novel way to monitor the structu... The accuracy and reliability of non-destructive testing(NDT)approaches in detecting interior corrosion problems are critical,yet research in this field is limited.This work describes a novel way to monitor the structural integrity of steel gas pipelines that uses advanced numerical modeling techniques to anticipate fracture development and corrosion effects.The objective is to increase pipeline dependability and safety through more precise,real-time health evaluations.Compared to previous approaches,our solution provides higher accuracy in fault detection and quantification,making it ideal for pipeline integritymonitoring in real-world applications.To solve this issue,statistical analysis was conducted on the size and directional distribution features of about 380,000 sets of internal corrosion faults,as well as simulations of erosion and wear patterns on bent pipes.Using real defectmorphologies,we developed a modeling framework for typical interior corrosion flaws.We evaluated and validated the applicability and effectiveness of in-service inspection processes,as well as conducted on-site comparison tests.The results show that(1)the length and width of corrosion defects follow a log-normal distribution,the clock orientation follows a normal distribution,and the peak depth follows a Freundlich EX function distribution pattern;(2)pipeline corrosion defect data can be classified into three classes using the K-means clustering algorithm,allowing rapid and convenient acquisition of typical size and orientation characteristics of internal corrosion defects;(3)the applicability range and boundary conditions of various NDT techniques were verified,establishing comprehensive selection principles for internal corrosion defect detection technology;(4)on-site inspection results showed a 31%The simulation and validation platform for typical interior corrosion issues greatly enhances the accuracy and reliability of detection data. 展开更多
关键词 Internal corrosion non-destructive testing techniques cluster analysis defect simulation feature analysis typical defects
在线阅读 下载PDF
Highly efficient contact detection strategy of 3D discontinuous deformation analysis in continuous-discontinuous simulation
3
作者 Jingyu Kang Xiaodong Fu +5 位作者 Qian Sheng Xing Wang Haifeng Ding Xuehan Zhao Tian Xi Shangwei Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期6977-6992,共16页
Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this stud... Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this study,aiming at the continuous-discontinuous simulation of 3D-DDA,a highly efficient contact detection strategy is proposed.Firstly,the global direct search(GDS)method is integrated into the 3D-DDA framework to address intricate contact scenarios.Subsequently,all geometric elements,including blocks,faces,edges,and vertices are divided into searchable and unsearchable parts.Contacts between unsearchable geometric elements would be directly inherited,while only searchable geometric elements are involved in contact detection.This strategy significantly reduces the number of geometric elements involved in contact detection,thereby markedly enhancing the computation efficiency.Several examples are adopted to demonstrate the accuracy and efficiency of the improved 3D-DDA method.The rock pillars with different mesh sizes are simulated under self-weight.The deformation and stress are consistent with the analytical results,and the smaller the mesh size,the higher the accuracy.The maximum speedup ratio is 38.46 for this case.Furthermore,the Brazilian splitting test on the discs with different flaws is conducted.The results show that the failure pattern of the samples is consistent with the results obtained by other methods and experiments,and the maximum speedup ratio is 266.73.Finally,a large-scale impact test is performed,and approximately 3.2 times enhanced efficiency is obtained.The proposed contact detection strategy significantly improves efficiency when the rock has not completely failed,which is more suitable for continuous-discontinuous simulation. 展开更多
关键词 3D discontinuous deformation analysis Contact detection Computation efficiency Continuous-discontinuous simulation FRACTURE
在线阅读 下载PDF
Factors affecting the perceived stress and anxiety of novice nursing students in high-fidelity simulation education:a secondary qualitative analysis of focus group interviews
4
作者 Natalie Lee Po-man Alice Chan Mei-ling Florence Wong Mei-Fung 《Frontiers of Nursing》 2025年第3期325-332,共8页
Objective:To gain insight into the potential factors that may cause perceived stress and anxiety in simulation education.Methods:A secondary qualitative analysis study using qualitative thematic synthesis.A local high... Objective:To gain insight into the potential factors that may cause perceived stress and anxiety in simulation education.Methods:A secondary qualitative analysis study using qualitative thematic synthesis.A local higher education institution that conducted pre-registration nursing programs.A total of 189 undergraduate nursing students that were never attained any clinical placement prior to the parent study.Focus group interviews were conducted to collect data that were then transcribed and analyzed through the qualitative thematic synthesis approach to develop themes.Results:Three themes were emerged from the participants’simulation experiences in terms of peoples(the observers vs the observed),actions(the prepared vs the unprepared),and settings(the realism vs the simulation).Conclusions:By considering and reviewing the current design and development of the simulation practice,the findings of this study contribute to the body of knowledge with valuable insights on stress and anxiety that may affect students’learning in simulation. 展开更多
关键词 high-fidelity simulation novice nursing students perceived anxiety perceived stress secondary qualitative analysis simulation-based education
在线阅读 下载PDF
Development,hotspots and trend directions of groundwater numerical simulation:A bibliometric and visualization analysis 被引量:1
5
作者 Liu Yang Yan-pei Cheng +1 位作者 Xue-ru Wen Jun Liu 《Journal of Groundwater Science and Engineering》 2024年第4期411-427,共17页
Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater res... Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater research.This study uses bibliometric visualization analysis to examine the progress and trends in groundwater numerical simulation methods.By analyzing literature indexed in the Web of Science database from January 1990 to February 2023,and employing tools such as Citespace and VOSviewer,we assessed publication volume,research institutions and their collaborations,prolific scholars,keyword clustering,and emerging trends.The findings indicate an overall upward trend in both the number of publications and citations concerning groundwater numerical simulations.Since 2010,the number of publications has tripled compared to the total before 2010,underscoring the increasing significance and potential of numerical simulation methods in groundwater science.China,in particular,has shown remarkable growth in this field over the past decade,surpassing the United States,Canada,and Germany.This progress is closely linked to strong national support and active participation from research institutions,especially the contributions from teams at Hohai University,China University of Geosciences,and the University of Science and Technology of China.Collaboration between research teams is primarily seen between China and the United States,with less noticeable cooperation among other countries,resulting in a diverse and dispersed development pattern.Keyword analysis highlights that international research hotspots include groundwater recharge,karst water,geothermal water migration,seawater intrusion,variable density flow,contaminant and solute transport,pollution remediation,and land subsidence.Looking ahead,groundwater numerical simulations are expected to play a more prominent role in areas such as climate change,surface water-groundwater interactions,the impact of groundwater nitrates on the environment and health,submarine groundwater discharge,ecological water use,groundwater management,and risk prevention. 展开更多
关键词 CLUSTERING Visualization analysis Groundwater numerical simulation Ecological water use Groundwater management
在线阅读 下载PDF
Flow Field Simulation and Parameter Analysis of Hydraulic Unbalanced Bionic Self-recovery Actuator for Rotary Equipment
6
作者 Wei Li Xin Pan +1 位作者 Dehong Ge Jinji Gao 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期325-343,共19页
The rotor is the most important component of rotating machinery,and the vibration produced by its mass unbalance has a serious influence on the secure and steady operation of the machine,so an effective online suppres... The rotor is the most important component of rotating machinery,and the vibration produced by its mass unbalance has a serious influence on the secure and steady operation of the machine,so an effective online suppression technology is urgently needed.A new hydraulic unbalanced bionic self-recovery system is introduced,imitating the way of manually repairing faulty equipment.To accomplish the effect of actuator mass redistribution,the technology employs pressurized air to drive the quantitative transfer of liquid in the reservoir cavity at opposite positions.It can complete the online adjustment of the equipment's balancing state and suppress the unbalanced vibration of equipment in real time,which gives the equipment the ability to maintain an autonomous health state and improve equipment performance.The composition and working principle of the system are introduced in detail,and the key performance parameters,such as the minimum running speed and the balancing liquid transfer speed,are analyzed theoretically.The fluid-solid coupling model of the actuator was established,and the two-phase flow from inside the hydraulic unbalanced bionic self-recovery actuator was simulated under multiple working conditions and the performance parameters were quantitatively analyzed.A balancing simulation test bed was built,and its effectiveness was verified by performance parameter tests and unbalanced bionic self-recovery experiments.The experimental results show that the mass distribution adjustment of the balancing disk can be achieved using different viscosity balancing liquid,and the response of liquid viscosity 10 cSt is faster than that of liquid viscosity 100 cSt in the process of balancing liquid transfer,and the time is reduced by more than 75%;the system can reduce the simulated rotor amplitude from 18.3μm to 10.6μm online in real time,which provides technical support for the subsequent development of a new generation of bionic intelligent equipment. 展开更多
关键词 Engineering self-recovery-Bionics simulation analysis Self-recovery regulation
在线阅读 下载PDF
Simulation Method and Feature Analysis of Shutdown Pressure Evolution During Multi-Cluster Fracturing Stimulation
7
作者 Huaiyin He Longqing Zou +5 位作者 Yanchao Li Yixuan Wang Junxiang Li Huan Wen Bei Chang Lijun Liu 《Energy Engineering》 EI 2024年第1期111-123,共13页
Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown a... Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters. 展开更多
关键词 Multistage multi-cluster hydraulic fracturing pump shutdown pressure feature analysis numerical simulation
在线阅读 下载PDF
Thermal stress simulation analysis of aerospace optical fibers and connectors and related extensions to high-speed railway area
8
作者 Feng Zhou Siyuan Yu +3 位作者 Zeren Gao Jie Kan Hao Xu Mengjie Liu 《High-Speed Railway》 2024年第2期122-132,共11页
Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They ca... Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways. 展开更多
关键词 Aerospace optical fiber Aerospace optic connector simulation analysis
在线阅读 下载PDF
Characterization of petrophysical and seismic properties for CO_(2)storage with sensitivity analysis 被引量:1
9
作者 Yan-Jiao Dong Yi Shen +4 位作者 Kai Guo Xiao-Qin Wu Qiang Mao Wen-Yue Sun Zhi-Qiang Wang 《Petroleum Science》 2025年第1期193-209,共17页
Saline aquifers are considered as highly favored reservoirs for CO_(2)sequestration due to their favorable properties.Understanding the impact of saline aquifer properties on the migration and distribution of CO_(2)pl... Saline aquifers are considered as highly favored reservoirs for CO_(2)sequestration due to their favorable properties.Understanding the impact of saline aquifer properties on the migration and distribution of CO_(2)plume is crucial.This study focuses on four key parameters-permeability,porosity,formation pressure,and temperature-to characterize the reservoir and analyse the petrophysical and elastic response of CO_(2).First,we performed reservoir simulations to simulate CO_(2)saturation,using multiple sets of these four parameters to examine their significance on CO_(2)saturation and the plume migration speed.Subsequently,the effect of these parameters on the elastic properties is tested using rock physics theory.We established a relationship of compressional wave velocity(V_(p))and quality factor(Q_(p))with the four key parameters,and conducted a sensitivity analysis to test their sensitivity to V_(p) and Q_(p).Finally,we utilized visco-acoustic wave equation simulated time-lapse seismic data based on the computed V_(p) and Q_(p) models,and analysed the impact of CO_(2) saturation changes on seismic data.As for the above nu-merical simulations and analysis,we conducted sensitivity analysis using both homogeneous and heterogeneous models.Consistent results are found between homogeneous and heterogeneous models.The permeability is the most sensitive parameter to the CO_(2)saturation,while porosity emerges as the primary factor affecting both Q_(p) and V_(p).Both Q_(p) and V_(p) increase with the porosity,which contradicts the observations in gas reservoirs.The seismic simulations highlight significant variations in the seismic response to different parameters.We provided analysis for these observations,which serves as a valuable reference for comprehensive CO_(2)integrity analysis,time-lapse monitoring,injection planning and site selection. 展开更多
关键词 CO_(2)storage Time-lapse seismic CO_(2)plume Sensitivity analysis Rock physics Reservoir simulation Saline aquifer
原文传递
Land use/cover change and ecological network in Gansu Province,China during 2000-2020 and their simulations in 2050 被引量:1
10
作者 MA Xinshu XIN Cunlin +6 位作者 CHEN Ning XIN Shunjie CHEN Hongxiang ZHANG Bo KANG Ligang WANG Yu JIAO Jirong 《Journal of Arid Land》 2025年第1期43-57,共15页
Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and t... Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making. 展开更多
关键词 patch-generating land use simulation(PLUS)model morphological spatial pattern analysis(MSPA) circuit theory ecological source ecological resistance surface ecological corridor ecological pinch point
在线阅读 下载PDF
Structural Performance Evaluation of Lift-and-Transverse Type Parking Equipment Based on the Synergy of Experiment and Simulation
11
作者 Chuang Meng Yutong Bi +2 位作者 Bingji Zhang Wentao Fu Guang Chen 《Structural Durability & Health Monitoring》 2025年第6期1681-1694,共14页
The lift-and-transverse type parking equipment, with its core advantages such as high space utilization, modular and flexible layout, and intelligent operation, has become an efficient solution to alleviate the urban ... The lift-and-transverse type parking equipment, with its core advantages such as high space utilization, modular and flexible layout, and intelligent operation, has become an efficient solution to alleviate the urban parking problem. However, existing research still lacks a systematic evaluation of its structural performance, particularly in areas such as the fatigue characteristics of steel frame materials, stress distribution under dynamic loads, and resonance risk analysis. The stress amplitude (S) and fatigue life (N) relationship curve of Q235 steel, the material used in the steel frame of the lift-and-transverse type parking equipment, was obtained through fatigue testing methods. The finite element simulation model of the steel frame structure of the lift-and-transverse type parking equipment was established using ABAQUS simulation software. Through static simulation analysis, the deformation and stress distribution under various operating conditions, including full load, partial load, and no load, was obtained. The fatigue life under full load and partial load was determined through FE-Safe fatigue analysis. Modal analysis was conducted to get the natural frequencies of the steel frame structure at various modes, which were compared with the operating frequency of the equipment to avoid resonance. This paper examines the evaluation methods for the structural performance of lift-and-transverse type parking equipment, providing a reliable research basis for the design and fatigue life analysis of this specialized structure. 展开更多
关键词 Lift-and-transverse type parking equipment finite element simulation modal analysis hydrostatic division fatigue analysis
在线阅读 下载PDF
Oxygen distribution in bed and safety analysis during hydrogen purification process from oxygen-containing feed gas
12
作者 Lingbing Bu Li Guo +3 位作者 Yingqi Luo Wenhua Yin Yi Wu Hongyu Zhang 《Chinese Journal of Chemical Engineering》 2025年第2期24-32,共9页
In order to analysis the oxygen distribution in the adsorption bed during the hydrogen purification process from oxygen-containing feed gas and the safety of device operation, this article established a non-isothermal... In order to analysis the oxygen distribution in the adsorption bed during the hydrogen purification process from oxygen-containing feed gas and the safety of device operation, this article established a non-isothermal model for the pressure swing adsorption (PSA) separation process of 4-component (H_(2)/O_(2)/N_(2)/CH_(4)), and adopted a composite adsorption bed of activated carbon and molecular sieve. In this article, the oxygen distribution in the adsorption bed under different feed gas oxygen contents, different adsorption pressures, and different product hydrogen purity was studied for both vacuuming process and purging process. The study shows that during the process from the end of adsorption to the end of providing purging, the peak value of oxygen concentration in the adsorption bed gradually increases, with the highest value exceeding 30 times the oxygen content of the feed gas. Moreover, the concentration multiplier of oxygen in the adsorption bed increases with the increase of the adsorption pressure, decreases with the increase of the oxygen content in the feed gas, and increases with the decrease of the hydrogen product purity. When the oxygen content in the feed gas reaches 0.3% (vol), the peak value of oxygen concentration in the adsorption bed exceeds 10% (vol), which will make the front part of the oxygen concentration peak fall in an explosion limit range. As the decrease of product hydrogen content, the oxygen concentration peak in the adsorption bed will gradually move forward to the adsorption bed outlet, and even penetrate through the adsorption bed. And during the process of the oxygen concentration peak moving forward, the oxygen will enter the pipeline at the outlet of the adsorption bed, which will make the pipeline space of high-speed gas flow into an explosion range, bringing great risk to the device. The preferred option for safe operation of PSA for hydrogen purification from oxygen-containing feed gas is to deoxygenate the feed gas. When deoxygenation is not available, a lower adsorption pressure and a higher product hydrogen purity (greater than or equal to 99.9% (vol)) can be used to avoid the gas in the adsorption bed outlet pipeline being in the explosion range. 展开更多
关键词 Pressure swing adsorption HYDROGEN Numerical simulation Safety analysis
在线阅读 下载PDF
Numerical simulation of 3D supersonic asymmetric truncated nozzle based on k-kL algebraic stress model
13
作者 Gang WANG Shuai ZHANG +1 位作者 Jifa ZHANG Yao ZHENG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第3期238-251,共14页
The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbule... The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbulence models struggle to make accurate predictions for subsonic and supersonic flows in nozzles.In this study,we explored a novel model,the algebraic stress model k-kL-ARSM+J,to enhance the accuracy of turbulence numerical simulations.This new model was used to conduct numerical simulations of the design and off-design performance of a 3D supersonic asymmetric truncated nozzle designed in our laboratory,with the aim of providing a realistic pattern of changes.The research indicates that,compared to linear eddy viscosity turbulence models such as k-kL and shear stress transport(SST),the k-kL-ARSM+J algebraic stress model shows better accuracy in predicting the performance of supersonic nozzles.Its predictions were identical to the experimental values,enabling precise calculations of the nozzle.The performance trends of the nozzle are as follows:as the inlet Mach number increases,both thrust and pitching moment increase,but the rate of increase slows down.Lift peaks near the design Mach number and then rapidly decreases.With increasing inlet pressure,the nozzle thrust,lift,and pitching moment all show linear growth.As the flight altitude rises,the internal flow field within the nozzle remains relatively consistent due to the same supersonic nozzle inlet flow conditions.However,external to the nozzle,the change in external flow pressure results in the nozzle exit transitioning from over-expanded to under-expanded,leading to a shear layer behind the nozzle that initially converges towards the nozzle center and then diverges. 展开更多
关键词 Supersonic nozzle Turbulence model Numerical simulation Performance analysis
原文传递
Model distance-based approach for global sensitivity analysis in engineering systems with multivariate outputs
14
作者 Kumar VIDHYA Greegar GEORGE 《Frontiers of Structural and Civil Engineering》 2025年第9期1493-1511,共19页
In engineering systems,uncertainties in input parameters can significantly influence the output responses.This paper proposes a model distance-based approach to perform global sensitivity analysis for quantifying the ... In engineering systems,uncertainties in input parameters can significantly influence the output responses.This paper proposes a model distance-based approach to perform global sensitivity analysis for quantifying the influence of input uncertainties on multiple responses in an engineering system.The sensitivity indices are determined by comparing a reference model that incorporates all system uncertainties,with an altered model,where specific uncertainties are constrained.The proposed framework employs probability distance measures such as Hellinger distance,Kullback-Leibler divergence,and I2 norm which are based on joint probability density functions.The study also demonstrates the equivalence between the l2 norm-based approach and Sobol's analysis in multivariate sensitivity context.The proposed methodology effectively manages correlated random variables,accommodates both Gaussian and non-Gaussian distributions,and allows for the grouping of input variables.Ilustrative examples consist of static analysis of a truss system and dynamic analysis of a frame subjected to seismic excitation.The sensitivity indices are estimated using brute-force Monte Carlo simulations.The relative ranking of these sensitivity indices can be utilized to identify the most and least significant variables contributing to the response uncertainty.The numerical results show a consistent ranking of input variables across different probability measures,indicating the robustness of proposed framework. 展开更多
关键词 multivariate outputs moment-independent sensitivity analysis probability distance measures multivariate Sobol's analysis Monte Carlo simulation uncertainty quantification
原文传递
Hyperspectral imaging for one-step growth simulation of Brochothrix thermosphacta in chilled beef during storage
15
作者 Xiaohua Liu Binjing Zhou +7 位作者 Jin Song Kang Tu Jing Peng Weijie Lan Jing Xu Jie Wu Juqing Wu Leiqing Pan 《Food Science and Human Wellness》 2025年第1期226-235,共10页
In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate... In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate(μ_(max))of Brochothrix thermosphacta in chilled beef at isothermal temperatures(4-25℃).Three different methods were compared for model development,particularly using(Model Ⅰ)the predicted microbial loads from partial least squares regression of the whole spectral variables;(Model Ⅱ)the selected spectral variables related to microbial loads;and(Model Ⅲ)the first principal scores of HSI spectra by principal component analysis.Consequently,Model Ⅰ showed the best ability to predict the microbial loads of B.thermosphacta,with the coefficient of determination(R_(v)^(2))and root mean square error in internal validation(RMSEV)of 0.921 and 0.498(lg(CFU/g)).The T_(min)(-12.32℃)andμmax can be well estimated with R^(2) and root mean square error(RMSE)of 0.971 and 0.276(lg(CFU/g)),respectively.The upward trend ofμmax with temperature was similar to that of the plate count method.HSI technique thus can be used as a simple method for one-step growth simulation of B.thermosphacta in chilled beef during storage. 展开更多
关键词 Brochothrix thermosphacta BEEF Hyperspectral imaging Growth simulation One-step analysis Predictive microbiology
在线阅读 下载PDF
Simulation-based evaluation and polynomial regression-based modelling of electric spring parameters with variable load impedance ratio
16
作者 Jyoti R.Rokde A.G.Thosar +1 位作者 Kishor B.Deshmukh Kishor V.Bhadane 《Digital Twins and Applications》 2025年第1期57-74,共18页
This paper presents a comprehensive evaluation of Electric Spring(ES)performance through simulation experiments and polynomial regression modelling.The study pri-marily aims to assess how varying load impedance ratios... This paper presents a comprehensive evaluation of Electric Spring(ES)performance through simulation experiments and polynomial regression modelling.The study pri-marily aims to assess how varying load impedance ratios impact ES performance,develop a polynomial regression model to predict the relationship between ES parameters and the ratio of non-critical to critical load impedance,and validate the model against simulation results.Detailed simulations were performed to analyse the effects of different impedance ratios on ES behaviour.Subsequently,a polynomial regression model was formulated to accurately capture the relationship between the ES parameters and impedance ratios.The findings indicate that the polynomial regression model effectively predicts ES perfor-mance,with the predicted values closely matching the simulation results.The validation process confirms the model's accuracy and reliability,demonstrating its potential for practical applications in optimising ES performance under various impedance conditions.This study offers valuable insights into the enhancement of ES systems through precise modelling and analysis,contributing to improved stability and efficiency in power systems. 展开更多
关键词 computer simulation data analysis electrical engineering electrical engineering computing
在线阅读 下载PDF
Structural Design and Analysis of Lower Limb Exoskeleton Robotics
17
作者 Mingshuo ZHANG Yutong LI +2 位作者 Sheng ZHANG Yuanhai DING Chuanqi LI 《Mechanical Engineering Science》 2025年第1期20-25,共6页
With the acceleration of the global aging process and the increase of cardiovascular ancerebrovascular diseases,more and more patients are paralyzed due to accidents,so theexoskeleton robot began to appear in people&#... With the acceleration of the global aging process and the increase of cardiovascular ancerebrovascular diseases,more and more patients are paralyzed due to accidents,so theexoskeleton robot began to appear in people's sight,and the lower limb exoskeleton robot withrehabilitation training is also favored by more and more people.In this paper,the structural designand analysis of the lower limb exoskeleton robot are carried out in view of the patients'expectation ofnormal walking.First,gait analysis and structural design of lower limb exoskeleton robot.Based onthe analysis of the walking gait of normal people,the freedom of the three key joints of the lower limbexoskeleton robot hip joint,knee joint and ankle joint is determined.at the same time,according tothe structuralcharacteristics of each joint,the three key joints are modeled respectively,and theoverall model assembly of the lower limb exoskeleton robot is completed.Secondly,the kinematicsanalysis of the lower limb exoskeleton robot was carried out to obtain the relationship between thelinear displacement,linear speed and acceleration of each joint,so as to ensure the coordination ofthe model with the human lower limb movement.Thirdly,the static analysis of typical gait of hipjoint,knee joint and ankle joint is carried out to verify the safety of the design model under thepremise of ensuring the structural strength requirements.Finally,the parts of the model were 3Dprinted,and the rationality of the design was further verified in the process of assembling the model. 展开更多
关键词 Exoskeleton Robots Mechanical Structure Design Finite Element analysis Motion simulation
在线阅读 下载PDF
Modeling and Mode Switching Analysis of Electro-hydrostatic Actuators for Primary Flight Control System
18
作者 GUO Tuanhui FU Yongling CHEN Juan 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期25-36,共12页
With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling an... With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems. 展开更多
关键词 large aircraft flight control system electro-hydrostatic actuator(EHA) mode switching simulation analysis
在线阅读 下载PDF
One-dimensional theoretical analysis on charged-particle transports in a decaying plasma with an initial plasma-electrode gap
19
作者 Xin-Li Sun Yao-Ting Wang +5 位作者 Lan-Yue Luo Zi-Ming Zhang Meng-Long Zhang He-Ping Li Dong-Jun Jiang Ming-Sheng Zhou 《Chinese Physics B》 2025年第11期447-459,共13页
An analytical model for describing the charged-particle transport in a wall-confined laser-induced decaying plasma is established under an external electrostatic field,focusing on the effects of the initial plasma-ele... An analytical model for describing the charged-particle transport in a wall-confined laser-induced decaying plasma is established under an external electrostatic field,focusing on the effects of the initial plasma-electrode gap(IPEG)that exists in applications such as laser isotope separation.This newly developed analytical model is validated by particle-in-cell simulations and the experimental scaling relation,and can also be reduced to its previously published counterpart that did not consider IPEGs.Based on this analytical model,the influences of different IPEG spacings on the characteristics of the whole ion extraction process are studied.The results show that the ion extraction ratios at the endpoints of the first and second stages both decrease with increasing IPEG spacing,while the corresponding time durations for the first two stages show a non-monotonous variation trend.The specific ion extraction time,defined as the ion extraction time per unit mass to comprehensively characterize the ion extraction efficiency,increases generally with the increase of IPEG spacing.This study not only provides further insight into the fundamental physical processes in a wall-bounded decaying plasma under an externally applied electrostatic field,but also offers useful theoretical guidance for optimal designs of geometrical and operating parameters in laser isotope separation processes. 展开更多
关键词 decaying plasma charged-particle transport effect of plasma-electrode gap theoretical analysis PIC simulation
原文传递
Elastic and elastoplastic analysis of surrounding rock in CAES chambers considering excavation-induced centripetal exponential reduction in mechanical properties
20
作者 Zeyuan Sun Cheng Zhao +4 位作者 Jinquan Xing Ran Huang Qinyuan Luo Huiguan Chen Jialun Niu 《Deep Underground Science and Engineering》 2025年第4期582-596,共15页
Currently,there is a lack of research on the impact of excavation damage on the stability of underground compressed air energy storage(CAES)chambers.This study presents a comprehensive analytical framework for evaluat... Currently,there is a lack of research on the impact of excavation damage on the stability of underground compressed air energy storage(CAES)chambers.This study presents a comprehensive analytical framework for evaluating the elastic and elastoplastic stress fields in CAES chambers surrounding rock,incorporating excavation-induced centripetal reduction of rock stiffness and strength.A proposed model introduces exponential reduction functions for the deformation modulus and cohesion within the excavation disturbed zone(EDZ),deriving analytical solutions for both elastic and elastoplastic stress distributions.A case study of a practical engineering project validates the theoretical formulations through comparative analysis with numerical simulations,demonstrating strong consistency in stress field predictions.The main findings indicate that the EDZ causes a significant non-monotonic variation in the elastic hoop stress distribution.While it does not significantly affect the range of the plastic zone,it reduces the permeability and bearing capacity of the surrounding rock,highlighting the necessity of integrating the centripetal reduction of mechanical properties and strictly controlling excavation-induced damage in the design practice.Furthermore,this study provides a new approach for the selection of lining materials and structural design for CAES chambers:the radial stiffness smoothly increases to match the EDZ surrounding rock stiffness,and the cohesion exceeds that of the surrounding rock,which can significantly optimize the overall system's stress distribution.This study provides valuable insights and references for the selection of excavation methods,stability assessment,and support structure design for CAES engineering,and holds significant importance for improving the CAES technology system. 展开更多
关键词 analytical solution compressed air energy storage excavation damage elastoplastic analysis LINING numerical simulation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部