Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding shou...Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding should be long-travel, high-frequency and high-precision in non-circular precision turning, a new one-freedom flexure hinge structure is put forward to amplify the output displacement of piezoelectric actuator. Theoretical analysis is done on the static and dynamic characteristics of the structure, differential equations are presented, and it is also verified by the finite element method. It's proved by experiments that the output displacement of the structure is 293 μm and its resonant frequency is 312 Hz.展开更多
Using the concept of optical transformation, we report on an amplifying device, which can make an arbitrary object enlarged. Its potential application to small object identification and detection is foreseeable. The c...Using the concept of optical transformation, we report on an amplifying device, which can make an arbitrary object enlarged. Its potential application to small object identification and detection is foreseeable. The cylindrical anisotropic amplifying shell could be mimicked by radially symmetrical "sectors" alternating in composition between two profiles of isotropic dielectrics; the permittivity and permeability in each "sector" can be properly determined by the effective medium theory. Both the magnetic and nonmagnetic amplifying devices are validated by full-wave finite element simulations. Good amplifying performance is observed.展开更多
This paper describe a numerical simulation method for the interaction between laser pulses and low density plasmas based on hydrodynamic approximation. We investigate Backward Raman Amplifying (BRA) experiments and ...This paper describe a numerical simulation method for the interaction between laser pulses and low density plasmas based on hydrodynamic approximation. We investigate Backward Raman Amplifying (BRA) experiments and their variants. The numerical results are in good agreement with experiments.展开更多
WO_3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd^(3+)-doped tellurite-based glasses of Te O_2-Zn O-Na_2 O to improve the 1.32 μm band fluorescence emission. The ...WO_3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd^(3+)-doped tellurite-based glasses of Te O_2-Zn O-Na_2 O to improve the 1.32 μm band fluorescence emission. The absorption spectra,Raman spectra,1.32 μm band fluorescence spectra and differential scanning calorimeter(DSC) curves were measured,together with the Judd-Ofelt intensity parameters,stimulated emission and gain parameters were calculated to evaluate the effects of WO_3 amount on the glass structure and spectroscopic properties of 1.32 μm band fluorescence. It is shown that the introduction of an appropriate amount of WO_3 oxide can effectively improve the 1.32 μm band fluorescence intensity through the enhanced multi-phonon relaxation(MPR) processes between the excited levels of Nd^(3+). The results indicate that the prepared Nd^(3+)-doped tellurite glass with an appropriate amount of WO_3 oxide is a potential gain medium applied for the O-band broad and high-gain fiber amplifier.展开更多
A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed devic...A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.展开更多
Microstrip traveling wave tubes(TWTs)have garnered significant attention due to their potential applications in communication,defense,and industrial systems.This paper presents a compact W-band dual-channel TWT,utiliz...Microstrip traveling wave tubes(TWTs)have garnered significant attention due to their potential applications in communication,defense,and industrial systems.This paper presents a compact W-band dual-channel TWT,utilizing a U-shaped microstrip meander-line slow-wave structure(SWS).High-frequency characteristics are analyzed through simulation and cold tests.The results demonstrate that adjusting structural parameters effectively optimizes the S-parameters.Particle-in-cell(PIC)simulations with an 18.8 kV,0.1 A electron beam predict an output power of 18 W with a gain of 14 dB.Experimental measurements of S-parameters are conducted using three substrate materials:Rogers 5880,quartz,and diamond.The quartz substrate exhibits the closest agreement with simulation results.The results advance the development of the microstrip-based TWTs for high-data-rate communication systems.展开更多
This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered ...This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.展开更多
In this paper,a high-gain inductorless LNA(low-noise amplifier)compatible with multiple communication protocols from 0.1 to 5.1 GHz is proposed.A composite resistor-capacitor feedback structure is employed to achieve ...In this paper,a high-gain inductorless LNA(low-noise amplifier)compatible with multiple communication protocols from 0.1 to 5.1 GHz is proposed.A composite resistor-capacitor feedback structure is employed to achieve a wide bandwidth matching range and good gain flatness.A second stage with a Darlington pair is used to increase the overall gain of the amplifier,while the gain of the first stage is reduced to reduce the overall noise.The amplifier is based on a 0.25μm SiGe BiCMOS process,and thanks to the inductorless circuit structure,the core circuit area is only 0.03 mm^(2).Test results show that the lowest noise figure(NF)in the operating band is 1.99 dB,the power gain reaches 29.7 dB,the S_(11)and S_(22)are less than-10 dB,the S_(12)is less than-30 dB,the IIP3 is 0.81dBm,and the OP_(1dB)is 10.27 dBm.The operating current is 31.18 mA at 3.8 V supply.展开更多
CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significa...CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significantly enhances the photophysical property of CdSe NPLs.Laser spectroscopy techniques reveal suppressed electronic and hole trapping at lateral surfaces,leading to a 4.2-fold increase in photoluminescence quantum yield and a shortened emission lifetime from13.5 to 4.8 ns.In addition,amplified spontaneous emission is achieved under nanosecond pulse pumping,with thresholds of0.75 to 0.16 mJ/cm^(2)for CdSe and CdSe/CdSeS NPLs,respectively.By integrating CdSe/CdSeS NPLs with high-refractiveindex SiO2scatters,coherent random lasing is realized at a threshold of 0.21 mJ/cm^(2).These findings highlight the critical role of lateral surface passivation in optimizing optical gain and pave the way for low-cost,multifunctional nanophotonic devices.展开更多
Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves....Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves.Most of these modes'interactions remain within the weak coupling regime,yet strong coupling is also anticipated to occur.In this work,we present an intriguing case of amplified spontaneous emission(ASE),amplified by the splitting upper polariton mode within a strong coupling system,stemming from a square lattice of plasmonic cone lattices(PCLs).The PCLs are fabricated using an anodized aluminum oxide membrane(AAO),which facilitates strong coupling between surface plasmons and Bloch surface wave modes,with the maximum Rabi splitting observed at 0.258 eV for the sample with an aspect ratio of 0.33.A 13.5-fold increase in amplified spontaneous emission is recorded when the emission from Nile Red coincides with this flat energy branch of upper polariton,which exhibits a high photon density of states.Reduced group velocity can prolong photon lifetime and boost the probability of light-matter interaction.The observed ASE phenomenon in this strong coupling plasmonic system widens the scope for applications in nanolasing and polariton lasing.展开更多
Dynamical decoupling(DD),usually implemented by sophisticated sequences of instantaneous control pulses,is a well-established quantum control technique for quantum information and quantum sensing.In practice,the pulse...Dynamical decoupling(DD),usually implemented by sophisticated sequences of instantaneous control pulses,is a well-established quantum control technique for quantum information and quantum sensing.In practice,the pulses are inevitably imperfect with many systematic errors that may influence the performances of DD.In particular,Rabi error and detuning are primary systemic errors arising from finite pulse duration,incorrect time control,and frequency instability.Here,we propose a phase-modulated DD with staggered global phases for the basic units of the pulse sequences to suppress these systemic errors.By varying the global phases appended to the pulses in the dynamical decoupling unit alternatively with 0 orπ,our protocol can significantly reduce the influences of Rabi error and detuning.Our protocol is general and can be combined with the most existing DD sequences such as universal DD,knill DD,XY,etc.As an example,we further apply our method to quantum lock-in detection for measuring time-dependent alternating signals.Our study paves the way for a simple and feasible way to realize robust dynamical decoupling sequences,which can be applicable for various quantum sensing scenarios.展开更多
In this study, we use the Bohai Sea area as an example to investigate the characteristics of secondary microseisms and their impact on seismic noise based on the temporal frequency spectral analysis of observation dat...In this study, we use the Bohai Sea area as an example to investigate the characteristics of secondary microseisms and their impact on seismic noise based on the temporal frequency spectral analysis of observation data from 33 broadband seismic stations during strong gust periods, and new perspectives are proposed on the generation mechanisms of secondary microseisms. The results show that short-period double- frequency (SPDF) and long-period double-frequency (LPDF) microseisms exhibit significant alternating trends of strengthening and weakening in the northwest area of the Bohai Sea. SPDF microseisms are generated by irregular wind waves during strong off shore wind periods, with a broad frequency band distributed in the range of 0.2-1 Hz;LPDF microseisms are generated by regular swells during periods of sea wind weakening, with a narrow frequency band concentrated between 0.15 and 0.3 Hz. In terms of temporal dimensions, as the sea wind weakens, the energy of SPDF microseisms weakens, and the dominant frequencies increase, whereas the energy of LPDF microseisms strengthens and the dominant frequencies decrease, which is consistent with the process of the decay of wind waves and the growth of swells. In terms of spatial dimensions, as the microseisms propagate inland areas, the advantageous frequency band and energy of SPDF microseisms are reduced and significantly attenuated, respectively, whereas LPDF microseisms show no significant changes. And during the propagation process in high-elevation areas, LPDF microseisms exhibit a certain site amplifi cation eff ect when the energy is strong. The results provide important supplements to the basic theory of secondary microseisms, preliminarily reveal the relationship between the atmosphere, ocean, and seismic noise, and provide important theoretical references for conducting geological and oceanographic research based on the characteristics of secondary microseisms.展开更多
In a few-mode erbium-doped fiber(FM-EDF),which is a key section in a space-division multiplexing(SDM)communication system,linearly polarized(LP)and orbital angular momentum(OAM)modes,as twomode bases with different ph...In a few-mode erbium-doped fiber(FM-EDF),which is a key section in a space-division multiplexing(SDM)communication system,linearly polarized(LP)and orbital angular momentum(OAM)modes,as twomode bases with different phase profiles,can be transformed into each other.In principle,the LP and OAM modes have a different mode spatial intensity distribution and a gain difference for FM-EDF amplifiers.How to analyze and characterize the differential mode-bases gain(DMBG)is important,but still an issue.We build,for the first time to our knowledge,a local analysis model composed of discrete elements of the FM-EDF cross section in areas of mode spatial intensity distribution azimuthal variation.Using the model of the two mode bases,analysis of local particle number distribution and detailed description of the local gain difference are realized,and the overall gain difference between the two mode bases is obtained.By building an amplifier system based on mode phase profile controlling,the gain of two mode bases is characterized experimentally.The measured DMBG is∼0.8 dB in the second-order mode,which is consistent with the simulation result.This result provides a potential way to reduce the mode gain difference in the FM-EDF,which is important in improving the performance of the SDM communication system.展开更多
Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithiu...Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithium niobate waveguide amplifier achieving>10 dB off-chip(fiber-to-fiber)net gain and>20 mW fiber-output amplified power is demonstrated,thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique.Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of-1.2 dB/facet.A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip,which generates>2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm.The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate(TFLN)waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with highspeed tunability.展开更多
The noise feature of a single-mode class-A laser amplifier is investigated by solving the Maxwell–Bloch equations of motion in the presence of the fluctuation force of cavity Langevin.The aim is to calculate the simu...The noise feature of a single-mode class-A laser amplifier is investigated by solving the Maxwell–Bloch equations of motion in the presence of the fluctuation force of cavity Langevin.The aim is to calculate the simultaneous fluctuations that are superimposed on the amplitude and phase of the cavity electric field, as well as the atomic population inversion. The correlation function of these fluctuations yields the amplitude, phase, and spontaneous emission noise fluxes, respectively. The amplitude and spontaneous emission noise fluxes exhibit the Lorentzian profiles in both the below-threshold state and the injection-locking region of the above-threshold state. While noise is typically viewed negatively in science and engineering, this research highlights its positive role as a valuable tool for measuring the optical properties of a laser amplifier. For instance, the degree of first-order temporal coherence(DFOTC) is derived by taking the Fourier transform of the amplitude noise flux. The damping rate of DFOTC is associated with the coherence time of the light emitted by the laser amplifier. Furthermore, the uncertainty relation between noise bandwidth and coherence time is confirmed. Finally, it is demonstrated that the input pumping noise flux, together with the output amplitude and spontaneous emission noise fluxes, satisfy the principle of flux conservation.展开更多
A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator(cavity) and spin excitations(magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise...A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator(cavity) and spin excitations(magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise. Like many low phase noise oscillators, a cavity magnonic oscillator faces the challenge that its narrow resonance profile is not well suited for injection locking amplification. This work presents an improved design for such an oscillator configured as an injection locking amplifier(ILA) with an extended lock range. The proposed design features a two-stage architecture, consisting of a pre-amplification oscillator and a cavity magnonic oscillator, separated by an isolator to prevent backward locking.By optimizing the circuit parameters of each stage, the proposed design achieved an order of magnitude increase in lock range, when compared to its predecessors, all while preserving the phase noise quality of the input, making it well-suited for narrowband, sensitive signal amplification. Furthermore, this work provides a method for using oscillators with high spectral purity as injection locking amplifiers.展开更多
We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training ph...We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy.展开更多
We report on environmentally stable long-cavity ultrashort erbium-doped fiber lasers,which self-start mode-locking at quite low thresholds by using spectrally filtered and phase-biased nonlinear amplifying long-loop m...We report on environmentally stable long-cavity ultrashort erbium-doped fiber lasers,which self-start mode-locking at quite low thresholds by using spectrally filtered and phase-biased nonlinear amplifying long-loop mirrors.By employing 100-m polarization-maintaining fiber(PMF)in the nonlinear loop,the fundamental repetition rate reaches 1.84 MHz and no practical limitation is found to further decrease the repetition rate.The filter used in the long loop not only suppresses Kelly sidebands of the solitons,but also eliminates the amplified spontaneous emission which exists widely in lowrepetition-rate ultrafast fiber lasers.The bandwidth of the filter is optimized by using a numerical model.The laser emits approximately 3-ps pulses with an energy of 17.4 p J,which is further boosted to 1.5μJ by using a fiber amplifier.展开更多
Stable picosecond soliton transmission is demonstrated numerically by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors (NALMs). We show that, as compared with previous soliton transmissio...Stable picosecond soliton transmission is demonstrated numerically by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors (NALMs). We show that, as compared with previous soliton transmission schemes that use conventional NALMs or nonlinear optical loop mirror (NOLM) and amplifier combinations, the present scheme permits significant increase of loop-mirror (amplifier) spacing. The broad switching window of the present device and the high quality pulses switched from it provide a reasonable stability range for soliton transmission. Soliton-soliton interactions can be reduced efficiently by using lowly dispersive fibers.展开更多
文摘Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding should be long-travel, high-frequency and high-precision in non-circular precision turning, a new one-freedom flexure hinge structure is put forward to amplify the output displacement of piezoelectric actuator. Theoretical analysis is done on the static and dynamic characteristics of the structure, differential equations are presented, and it is also verified by the finite element method. It's proved by experiments that the output displacement of the structure is 293 μm and its resonant frequency is 312 Hz.
基金Project supported by the Open Research Program in State Key Laboratory of Millimeter Waves,China (Grant No.K200802)the National Natural Science Foundation of China (Grant No.61302048)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘Using the concept of optical transformation, we report on an amplifying device, which can make an arbitrary object enlarged. Its potential application to small object identification and detection is foreseeable. The cylindrical anisotropic amplifying shell could be mimicked by radially symmetrical "sectors" alternating in composition between two profiles of isotropic dielectrics; the permittivity and permeability in each "sector" can be properly determined by the effective medium theory. Both the magnetic and nonmagnetic amplifying devices are validated by full-wave finite element simulations. Good amplifying performance is observed.
文摘This paper describe a numerical simulation method for the interaction between laser pulses and low density plasmas based on hydrodynamic approximation. We investigate Backward Raman Amplifying (BRA) experiments and their variants. The numerical results are in good agreement with experiments.
基金supported by the National Natural Science Foundation of China(No.61178063)the Natural Science Foundation of Ningbo City(No.2016A610061)+1 种基金the K.C.Wong Magna FundHu Lan Outstanding Doctoral Fund in Ningbo University
文摘WO_3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd^(3+)-doped tellurite-based glasses of Te O_2-Zn O-Na_2 O to improve the 1.32 μm band fluorescence emission. The absorption spectra,Raman spectra,1.32 μm band fluorescence spectra and differential scanning calorimeter(DSC) curves were measured,together with the Judd-Ofelt intensity parameters,stimulated emission and gain parameters were calculated to evaluate the effects of WO_3 amount on the glass structure and spectroscopic properties of 1.32 μm band fluorescence. It is shown that the introduction of an appropriate amount of WO_3 oxide can effectively improve the 1.32 μm band fluorescence intensity through the enhanced multi-phonon relaxation(MPR) processes between the excited levels of Nd^(3+). The results indicate that the prepared Nd^(3+)-doped tellurite glass with an appropriate amount of WO_3 oxide is a potential gain medium applied for the O-band broad and high-gain fiber amplifier.
基金The authors acknowledge the support of the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU5096/98E).
文摘A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.
基金National Natural Science Foundation of China(62471097,62471115,62471101)Natural Science Foundation of Sichuan Province(2025ZNSFSC0537)Stable Support Porject of 12th Research Institute of China Electronics Technology Group Corporation。
文摘Microstrip traveling wave tubes(TWTs)have garnered significant attention due to their potential applications in communication,defense,and industrial systems.This paper presents a compact W-band dual-channel TWT,utilizing a U-shaped microstrip meander-line slow-wave structure(SWS).High-frequency characteristics are analyzed through simulation and cold tests.The results demonstrate that adjusting structural parameters effectively optimizes the S-parameters.Particle-in-cell(PIC)simulations with an 18.8 kV,0.1 A electron beam predict an output power of 18 W with a gain of 14 dB.Experimental measurements of S-parameters are conducted using three substrate materials:Rogers 5880,quartz,and diamond.The quartz substrate exhibits the closest agreement with simulation results.The results advance the development of the microstrip-based TWTs for high-data-rate communication systems.
基金the postdoctoral research grant received from the University of Glasgow for the partial financial support for this research work。
文摘This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.
基金funded by the Science,Technology and Innovation Commission of Shenzhen Municipality(JCYJ20220818101001003)。
文摘In this paper,a high-gain inductorless LNA(low-noise amplifier)compatible with multiple communication protocols from 0.1 to 5.1 GHz is proposed.A composite resistor-capacitor feedback structure is employed to achieve a wide bandwidth matching range and good gain flatness.A second stage with a Darlington pair is used to increase the overall gain of the amplifier,while the gain of the first stage is reduced to reduce the overall noise.The amplifier is based on a 0.25μm SiGe BiCMOS process,and thanks to the inductorless circuit structure,the core circuit area is only 0.03 mm^(2).Test results show that the lowest noise figure(NF)in the operating band is 1.99 dB,the power gain reaches 29.7 dB,the S_(11)and S_(22)are less than-10 dB,the S_(12)is less than-30 dB,the IIP3 is 0.81dBm,and the OP_(1dB)is 10.27 dBm.The operating current is 31.18 mA at 3.8 V supply.
基金supported by the National Natural Science Foundation of China(Grant No.62174079)Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2404006)Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.JCYJ20220530113015035)。
文摘CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significantly enhances the photophysical property of CdSe NPLs.Laser spectroscopy techniques reveal suppressed electronic and hole trapping at lateral surfaces,leading to a 4.2-fold increase in photoluminescence quantum yield and a shortened emission lifetime from13.5 to 4.8 ns.In addition,amplified spontaneous emission is achieved under nanosecond pulse pumping,with thresholds of0.75 to 0.16 mJ/cm^(2)for CdSe and CdSe/CdSeS NPLs,respectively.By integrating CdSe/CdSeS NPLs with high-refractiveindex SiO2scatters,coherent random lasing is realized at a threshold of 0.21 mJ/cm^(2).These findings highlight the critical role of lateral surface passivation in optimizing optical gain and pave the way for low-cost,multifunctional nanophotonic devices.
基金financial supports from National Natural Science Foundation of China(No.61905051)Natural Science Foundation of Heilongjiang Province(No.LH2020F027).
文摘Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves.Most of these modes'interactions remain within the weak coupling regime,yet strong coupling is also anticipated to occur.In this work,we present an intriguing case of amplified spontaneous emission(ASE),amplified by the splitting upper polariton mode within a strong coupling system,stemming from a square lattice of plasmonic cone lattices(PCLs).The PCLs are fabricated using an anodized aluminum oxide membrane(AAO),which facilitates strong coupling between surface plasmons and Bloch surface wave modes,with the maximum Rabi splitting observed at 0.258 eV for the sample with an aspect ratio of 0.33.A 13.5-fold increase in amplified spontaneous emission is recorded when the emission from Nile Red coincides with this flat energy branch of upper polariton,which exhibits a high photon density of states.Reduced group velocity can prolong photon lifetime and boost the probability of light-matter interaction.The observed ASE phenomenon in this strong coupling plasmonic system widens the scope for applications in nanolasing and polariton lasing.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1404104)the National Natural Science Foundation of China(Grant Nos.92476201,12025509,12305022,and 12475029)+1 种基金the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)Guangdong Provincial Quantum Science Strategic Initiative Fund(Grant Nos.GDZX2305006 and GDZX2405002)。
文摘Dynamical decoupling(DD),usually implemented by sophisticated sequences of instantaneous control pulses,is a well-established quantum control technique for quantum information and quantum sensing.In practice,the pulses are inevitably imperfect with many systematic errors that may influence the performances of DD.In particular,Rabi error and detuning are primary systemic errors arising from finite pulse duration,incorrect time control,and frequency instability.Here,we propose a phase-modulated DD with staggered global phases for the basic units of the pulse sequences to suppress these systemic errors.By varying the global phases appended to the pulses in the dynamical decoupling unit alternatively with 0 orπ,our protocol can significantly reduce the influences of Rabi error and detuning.Our protocol is general and can be combined with the most existing DD sequences such as universal DD,knill DD,XY,etc.As an example,we further apply our method to quantum lock-in detection for measuring time-dependent alternating signals.Our study paves the way for a simple and feasible way to realize robust dynamical decoupling sequences,which can be applicable for various quantum sensing scenarios.
基金supported by Earthquake Science and Technology Spark Program of China Earthquake Administration (No. XH20006Y)Local Standards Formulation and Revision Program of Hebei Province (No. FW202154)+1 种基金Earthquake Science and Technology Spark Program of Hebei Earthquake Agency (No. DZ2024112100002)2023 Seismological Data Sharing Project of China Earthquake Networks Center (Dataset Project)。
文摘In this study, we use the Bohai Sea area as an example to investigate the characteristics of secondary microseisms and their impact on seismic noise based on the temporal frequency spectral analysis of observation data from 33 broadband seismic stations during strong gust periods, and new perspectives are proposed on the generation mechanisms of secondary microseisms. The results show that short-period double- frequency (SPDF) and long-period double-frequency (LPDF) microseisms exhibit significant alternating trends of strengthening and weakening in the northwest area of the Bohai Sea. SPDF microseisms are generated by irregular wind waves during strong off shore wind periods, with a broad frequency band distributed in the range of 0.2-1 Hz;LPDF microseisms are generated by regular swells during periods of sea wind weakening, with a narrow frequency band concentrated between 0.15 and 0.3 Hz. In terms of temporal dimensions, as the sea wind weakens, the energy of SPDF microseisms weakens, and the dominant frequencies increase, whereas the energy of LPDF microseisms strengthens and the dominant frequencies decrease, which is consistent with the process of the decay of wind waves and the growth of swells. In terms of spatial dimensions, as the microseisms propagate inland areas, the advantageous frequency band and energy of SPDF microseisms are reduced and significantly attenuated, respectively, whereas LPDF microseisms show no significant changes. And during the propagation process in high-elevation areas, LPDF microseisms exhibit a certain site amplifi cation eff ect when the energy is strong. The results provide important supplements to the basic theory of secondary microseisms, preliminarily reveal the relationship between the atmosphere, ocean, and seismic noise, and provide important theoretical references for conducting geological and oceanographic research based on the characteristics of secondary microseisms.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0706300)the National Natural Science Foundation of China(Grant Nos.U22B2010,62035018,and U2001601)+1 种基金the Program of Marine Economy Development Special Fund(Six Marine Industries)under the Department of Natural Resources of Guangdong Province(Grant No.GDNRC[2024]16)the project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP231).
文摘In a few-mode erbium-doped fiber(FM-EDF),which is a key section in a space-division multiplexing(SDM)communication system,linearly polarized(LP)and orbital angular momentum(OAM)modes,as twomode bases with different phase profiles,can be transformed into each other.In principle,the LP and OAM modes have a different mode spatial intensity distribution and a gain difference for FM-EDF amplifiers.How to analyze and characterize the differential mode-bases gain(DMBG)is important,but still an issue.We build,for the first time to our knowledge,a local analysis model composed of discrete elements of the FM-EDF cross section in areas of mode spatial intensity distribution azimuthal variation.Using the model of the two mode bases,analysis of local particle number distribution and detailed description of the local gain difference are realized,and the overall gain difference between the two mode bases is obtained.By building an amplifier system based on mode phase profile controlling,the gain of two mode bases is characterized experimentally.The measured DMBG is∼0.8 dB in the second-order mode,which is consistent with the simulation result.This result provides a potential way to reduce the mode gain difference in the FM-EDF,which is important in improving the performance of the SDM communication system.
基金financial supports from National Key R&D Program of China(Grant No.2022YFA1205100,2022YFA1404600)National Natural Science Foundation of China(Grant Nos.12192251,12334014,12474325,12134001,12304418,12474378,12274133,12174107,12174113,12274130)+2 种基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)Fundamental Research Funds for the Central Universities,the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(No.2023nmc005).
文摘Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithium niobate waveguide amplifier achieving>10 dB off-chip(fiber-to-fiber)net gain and>20 mW fiber-output amplified power is demonstrated,thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique.Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of-1.2 dB/facet.A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip,which generates>2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm.The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate(TFLN)waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with highspeed tunability.
文摘The noise feature of a single-mode class-A laser amplifier is investigated by solving the Maxwell–Bloch equations of motion in the presence of the fluctuation force of cavity Langevin.The aim is to calculate the simultaneous fluctuations that are superimposed on the amplitude and phase of the cavity electric field, as well as the atomic population inversion. The correlation function of these fluctuations yields the amplitude, phase, and spontaneous emission noise fluxes, respectively. The amplitude and spontaneous emission noise fluxes exhibit the Lorentzian profiles in both the below-threshold state and the injection-locking region of the above-threshold state. While noise is typically viewed negatively in science and engineering, this research highlights its positive role as a valuable tool for measuring the optical properties of a laser amplifier. For instance, the degree of first-order temporal coherence(DFOTC) is derived by taking the Fourier transform of the amplitude noise flux. The damping rate of DFOTC is associated with the coherence time of the light emitted by the laser amplifier. Furthermore, the uncertainty relation between noise bandwidth and coherence time is confirmed. Finally, it is demonstrated that the input pumping noise flux, together with the output amplitude and spontaneous emission noise fluxes, satisfy the principle of flux conservation.
基金funded by NSERC Discovery Grants, NSERC Discovery Accelerator Supplements, Innovation Proof-of-Concept Grant of Research Manitoba, and Faculty of Science Research Innovation and Commercialization Grant of University of Manitoba (C.-M.H.)。
文摘A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator(cavity) and spin excitations(magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise. Like many low phase noise oscillators, a cavity magnonic oscillator faces the challenge that its narrow resonance profile is not well suited for injection locking amplification. This work presents an improved design for such an oscillator configured as an injection locking amplifier(ILA) with an extended lock range. The proposed design features a two-stage architecture, consisting of a pre-amplification oscillator and a cavity magnonic oscillator, separated by an isolator to prevent backward locking.By optimizing the circuit parameters of each stage, the proposed design achieved an order of magnitude increase in lock range, when compared to its predecessors, all while preserving the phase noise quality of the input, making it well-suited for narrowband, sensitive signal amplification. Furthermore, this work provides a method for using oscillators with high spectral purity as injection locking amplifiers.
基金supported by the Natural Science Research Project of Colleges and Universities in Anhui Province (No.KJ2021A0479)the Science Research Program of Anhui University of Finance and Economics (No.ACKYC22082)。
文摘We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy.
基金supported by the National Key Research and Development Program (No. 2018YFB0407100)National Natural Science Foundation of China (Nos. 11434005 and 11621404)Key Project of Shanghai Education Commission (No. 2017-01-07-00-05-E00021)
文摘We report on environmentally stable long-cavity ultrashort erbium-doped fiber lasers,which self-start mode-locking at quite low thresholds by using spectrally filtered and phase-biased nonlinear amplifying long-loop mirrors.By employing 100-m polarization-maintaining fiber(PMF)in the nonlinear loop,the fundamental repetition rate reaches 1.84 MHz and no practical limitation is found to further decrease the repetition rate.The filter used in the long loop not only suppresses Kelly sidebands of the solitons,but also eliminates the amplified spontaneous emission which exists widely in lowrepetition-rate ultrafast fiber lasers.The bandwidth of the filter is optimized by using a numerical model.The laser emits approximately 3-ps pulses with an energy of 17.4 p J,which is further boosted to 1.5μJ by using a fiber amplifier.
基金This work was supported by the National NaturalScience Foundation of China (No. 60277016) and theGuangdong Natural Science Foundation of China (No.021357 and 04011761).
文摘Stable picosecond soliton transmission is demonstrated numerically by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors (NALMs). We show that, as compared with previous soliton transmission schemes that use conventional NALMs or nonlinear optical loop mirror (NOLM) and amplifier combinations, the present scheme permits significant increase of loop-mirror (amplifier) spacing. The broad switching window of the present device and the high quality pulses switched from it provide a reasonable stability range for soliton transmission. Soliton-soliton interactions can be reduced efficiently by using lowly dispersive fibers.