Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the...Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia.Thus far,the potential suitable habitats of H.ammodendron in Central Asia are still uncertain in the future under global climate change conditions.This study utilised the maximum entropy(MaxEnt)model to combine the current distribution data of H.ammodendron with its growth-related data to analyze the potential distribution pattern of H.ammodendron across Central Asia.The results show that there are suitable habitats of H.ammodendron in the Aralkum Desert,northern slopes of the Tianshan Mountains,and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions.The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H.ammodendron in Central Asia,with a projected 15.0% decrease in the unsuitable habitat area.Inland areas farther from the ocean,such as the Caspian Sea and Aralkum Desert,will continue to experience a decrease in the suitable habitats of H.ammodendron.Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan.These regions can transition into suitable habitats under varying climate conditions,requiring the implementation of appropriate human intervention measures to prevent desertification.Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H.ammodendron,with the extent of this shift amplifying alongside more greenhouse gas emissions.This study can provide theoretical support for the spatial configuration of H.ammodendron shelterbelts and desertification control in Central Asia,emphasising the importance of proactive measures to adapt to climate change in the future.展开更多
Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting ac...Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.展开更多
The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was a...The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was above 11%. The seedlings were able to take up water from soil with above 6 % soil water content, which was the threshold level of soil moisture for seedlings. The relationship between transpiration and potential evaporation was linear for well-watered seedlings. The de-crease of soil water availability led to different degrees of down-regulation of stomatal conductance, leaf transpiration and net CO2 assimilation rate. The stomata played a relatively small part in determining the net CO2 assimilation rate for the same seedling. The relationship between net CO2 assimilation rate and transpiration was linear diurnally, and reduction scale of leaf transpiration was much bigger than that of net CO2 assimilation rate by waters tress treatments, therefore intrinsic wa-ter-use-efficiency increased. High evaporative demand increased the leaf transpiration but inhibited net CO2 assimilation rate. Because of the effect of VPD on transpiration in this region, the transpiration of well-watered and mild water stress seedlings becomes responsive to change in stomatal conductance over a wider range.展开更多
基金supported by the the Basic Frontier Project of Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences(E3500201)the Xinjiang Tianshan Talent Program(2022TSYCLJ0002)the Fundamental Research Funds for the Central Universities(ZY20240223).
文摘Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia.Thus far,the potential suitable habitats of H.ammodendron in Central Asia are still uncertain in the future under global climate change conditions.This study utilised the maximum entropy(MaxEnt)model to combine the current distribution data of H.ammodendron with its growth-related data to analyze the potential distribution pattern of H.ammodendron across Central Asia.The results show that there are suitable habitats of H.ammodendron in the Aralkum Desert,northern slopes of the Tianshan Mountains,and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions.The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H.ammodendron in Central Asia,with a projected 15.0% decrease in the unsuitable habitat area.Inland areas farther from the ocean,such as the Caspian Sea and Aralkum Desert,will continue to experience a decrease in the suitable habitats of H.ammodendron.Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan.These regions can transition into suitable habitats under varying climate conditions,requiring the implementation of appropriate human intervention measures to prevent desertification.Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H.ammodendron,with the extent of this shift amplifying alongside more greenhouse gas emissions.This study can provide theoretical support for the spatial configuration of H.ammodendron shelterbelts and desertification control in Central Asia,emphasising the importance of proactive measures to adapt to climate change in the future.
文摘Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.
基金Innovation Research Pro-ject of Chinese Academy of Sciences (KZCX1-10-03), National Natural Sciences Foundation of China (90102003), and West Development Technol-ogy Project (2001BA901A42).
文摘The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was above 11%. The seedlings were able to take up water from soil with above 6 % soil water content, which was the threshold level of soil moisture for seedlings. The relationship between transpiration and potential evaporation was linear for well-watered seedlings. The de-crease of soil water availability led to different degrees of down-regulation of stomatal conductance, leaf transpiration and net CO2 assimilation rate. The stomata played a relatively small part in determining the net CO2 assimilation rate for the same seedling. The relationship between net CO2 assimilation rate and transpiration was linear diurnally, and reduction scale of leaf transpiration was much bigger than that of net CO2 assimilation rate by waters tress treatments, therefore intrinsic wa-ter-use-efficiency increased. High evaporative demand increased the leaf transpiration but inhibited net CO2 assimilation rate. Because of the effect of VPD on transpiration in this region, the transpiration of well-watered and mild water stress seedlings becomes responsive to change in stomatal conductance over a wider range.