Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporti...Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporting molybdenum complex on C_(3)N_(4)-K and characterized by FT-IR,XRD,SEM,XPS and ICP-OES.Heterogeneous CN–Mo-Bpy catalyst can be applied to the direct amination of nitroarenes and arylboronic acid,thus constructing various valuable diarylamines in high to excellent yields with a wide substrate scope and good functional group tolerance.It is worth noting that this heterogeneous catalyst has high chemical stability and can be recycled for at least five times without reducing its activity.展开更多
Isothiocyanates(ITCs)are an important class of organic compounds characterized by the functional group R-N=C=S.These functional groups are widely found in multiple natural products and pharmaceutical important drugs.M...Isothiocyanates(ITCs)are an important class of organic compounds characterized by the functional group R-N=C=S.These functional groups are widely found in multiple natural products and pharmaceutical important drugs.Moreover,due to their high and versatile reactivity,they are widely used as an intermediate in organic synthesis.Keeping in view ITCs importance,this review summarizes their synthesis from nitrogen rich raw materials like amines,isocyanides,azides and some other compounds like oximes.Besides their synthesis,their application in organic compound synthesis as an intermediate will also be covered.Future research will likely focus on optimizing the synthesis of multifunctional isothiocyanates,understanding their complex biological mechanisms,exploring new applications,and highlighting the continued importance of isothiocyanates in modern chemistry and biotechnology.展开更多
The catalytic enantioselective electrophilic amination reaction has emerged as a highly efficient method for synthesizing diverse nitrogen-containing chiral molecules,with the development of various asymmetric catalys...The catalytic enantioselective electrophilic amination reaction has emerged as a highly efficient method for synthesizing diverse nitrogen-containing chiral molecules,with the development of various asymmetric catalysis systems.Chiral phosphoric acids(CPA)have been widely acknowledged as versatile chiral organocatalysts since it was first discovered in 2004,finding application in catalyzing diverse asymmetric reactions.A comprehensive overview of recent advances in CPA-catalyzed asymmetric electrophilic amination reactions using different N-electrophilic reagents,including azo reagents,aryldiazonium salts,and imine derivatives,is presented.Furthermore,insights into future developments in this field are offered.展开更多
A facile method for decarboxylative amination driven by the photoactivity of electron donor-acceptor(EDA)com-plexes assembled from iodide salts and redox-active esters has been proposed.A broad array of acyclic and cy...A facile method for decarboxylative amination driven by the photoactivity of electron donor-acceptor(EDA)com-plexes assembled from iodide salts and redox-active esters has been proposed.A broad array of acyclic and cyclic protected amines were readily synthesized without requiring exogenous transition-metal or photoredox catalysts.Moreover,this ap-proach facilitates late-stage functionalization of complex molecules and is amenable to continuous-flow process on gram scale.展开更多
Chronic obstructive pulmonary disease(COPD)has garnered increased attention as a result of its persistent symptoms,which undermine patientsʼquality of life.Fudosteine has substantial advantages in the treatment of COP...Chronic obstructive pulmonary disease(COPD)has garnered increased attention as a result of its persistent symptoms,which undermine patientsʼquality of life.Fudosteine has substantial advantages in the treatment of COPD due to its high efficacy and low adverse effects.In this study,Fudosteine sulfonamide derivatives Series I and amine derivatives Series II were designed and synthesized,and their biological activities were evaluated.The results showed that compound 6f had outstanding anti-inflammatory action with an IC_(50) of 1.08 mmol/L,and a higher antioxidant capacity than the lead molecule.At the same time,molecular docking investigations have revealed that compound 6f establishes hydrogen bonds and hydrophobic contacts with the MUC5AC protein.Furthermore,derivative 1f inhibited PDE4A1 enzyme activity five times more than Fudosteine.2,2-Diphenyl-1-picrylhydrazyl(DPPH)free radical scavenging tests demonstrated that all examined substances had higher antioxidant activity than Fudosteine.This study established a solid foundation for further research into COPD drug therapy.展开更多
Synthesis of primary amines from alcohols is an economical and green route to access high-value N-compounds.However,challenges remain to develop both cost-effective and efficient catalysts.In this study,we developed a...Synthesis of primary amines from alcohols is an economical and green route to access high-value N-compounds.However,challenges remain to develop both cost-effective and efficient catalysts.In this study,we developed a Ru-Co/ZrO_(2)single-atom alloy catalyst which afforded diverse primary amines from alcohols in the presence of ammonia and hydrogen with exceptional conversion(up to 90%)and selectivity(80%)under mild conditions(0.7 MPa NH_(3),0.3 MPa H_(2),160℃)and exhibited satisfactory stability upon regeneration.The turnover rate was approximately 8.4 times higher than that observed over the Co/ZrO_(2)catalyst.Characterizations indicated that the alloyed Ru facilitated the reduction of Co,strengthened the interaction with H_(2)and mitigated the over-strong adsorption of aldehyde intermediates.These combined effects contributed significantly to the enhanced catalytic performances.This work presents a promising strategy for the development of advanced catalysts in the amination of alcohols.展开更多
Gold-catalyzed amination reactions based on azides viaα-imino gold carbene intermediates have attracted extensive attention in the past decades because this methodology leads to the facile and efficient construction ...Gold-catalyzed amination reactions based on azides viaα-imino gold carbene intermediates have attracted extensive attention in the past decades because this methodology leads to the facile and efficient construction of synthetically useful N-containing molecules,especially valuable N-heterocycles.However,successful examples of intermolecular generation ofα-imino gold carbenes by using azides as amination reagents are rarely explored probably due to the weak nucleophilicity of azides.Herein,we disclose an efficient gold-catalyzed intermolecular aminative cyclopropanation of ynamides with the allyl azides,enabling flexible synthesis of a wide range of valuable 3-azabicyclo[3.1.0]hex-2-ene derivatives in good to excellent yields with excellent diastereoselectivities.Importantly,this protocol represents the first use of allyl azide as an efficient amination reagent in gold-catalyzed alkyne amination reactions.展开更多
Amines represent fundamental motifs in various chemical contexts and are widely used in agrochemicals and pharmaceuticals.The development of earth-abundant metal-based heterogeneous catalysts for the synthesis amines ...Amines represent fundamental motifs in various chemical contexts and are widely used in agrochemicals and pharmaceuticals.The development of earth-abundant metal-based heterogeneous catalysts for the synthesis amines remains an important goal in terms of chemical research and industrial application/manufacture.Herein,we developed an efficient and highly selective nitrogen-doped nickel catalyst enriched with Lewis acid sites,which has been applied for to the hydrogenative coupling of nitriles and amines with molecular hydrogen for the synthesis of a train of functionalised and structurally diverse secondary and tertiary amines.Furthermore,catalytic hydrogenation and deuteration of nitriles were achieved under milder conditions,yielding a series of primary amines and deuterated amines with high deuterium incorporation.展开更多
A[3+4]annulation of α-substituted allenes and Schiff bases is reported.This methodology serves as a conduit for the construction of a series of biologically important benzazepine derivatives in good to excellent yiel...A[3+4]annulation of α-substituted allenes and Schiff bases is reported.This methodology serves as a conduit for the construction of a series of biologically important benzazepine derivatives in good to excellent yields under mild conditions by an unprecedented mode involving β’-carbon of α-substituted allenes and the proposed mechanism is supported by capturing the intermediate.Moreover,this class of benzazepine derivatives exhibited potential ability of cytotoxicity toward cancer cells.展开更多
In contrast to the conventional spermiogram, metabolomics approaches give insights into the molecular composition of semen and mayprovide more detailed information on the fertility status of the respective donor. Give...In contrast to the conventional spermiogram, metabolomics approaches give insights into the molecular composition of semen and mayprovide more detailed information on the fertility status of the respective donor. Given the intra-individual variability of spermiogramparameters between two donations, this study sought to elucidate the biological variability of the seminal plasma metabolome overan average period of 8 weeks. Two time-shifted semen samples from 15 healthy donors were compared by a targeted metabolomicsapproach utilizing the Biocrates AbsoluteIDQ p180 kit. Next to intraclass correlation coefficients (ICC), which represent a measureof reliability, coefficients of variation within individuals(CVW) and coefficients of variation between individuals (CVB) were calculatedfor each metabolite to demonstrate its stability. Furthermore, men were divided into two cohorts, a similar sperm concentration(SSC) and a differing sperm concentration (DSC) cohort, based on the observed variance in sperm concentration between the twosemen donations. The ICC was higher in the SSC compared to the DSC cohort. The levels of 18 metabolites, primarily acylcarnitines,varied between the initial and subsequent donations. After subdivision into subgroups, only ornithine and phosphatidylcholine 40:5exhibited differential levels between the two donations in the SSC group, compared to 14 metabolites in the DSCgroup.CVBwashigher than CVW but both differed between the metabolite subclasses. Biogenic amines were identified as the least reliable analytesover time, exhibiting the highest CVW,compared to sphingomyelins, which demonstrated the highest reliability with the lowestvariation.CVB was the highest for ether-bound glycerophosphatidylcholines and the lowest for amino acids.展开更多
Chiral cyclic amino alcohols with contiguous stereocenters are key building blocks in the synthesis of bioactive molecules and pharmaceuticals.Artificial cascade biocatalysis represents an attractive method for the sy...Chiral cyclic amino alcohols with contiguous stereocenters are key building blocks in the synthesis of bioactive molecules and pharmaceuticals.Artificial cascade biocatalysis represents an attractive method for the synthesis of chiral molecules bearing multiple stereocenters from readily available materials.Here we reported an artificial cascade biocatalysis comprising an epoxide hydrolase,an alcohol dehydrogenase,and a reductive aminase or an amine dehydrogenase.It can be utilized to access all four stereoisomers of 2-aminocyclohexanol with two contiguous stereocenters in high yields(up to 95%)and excellent stereoselectivity(up to 98%de)starting from readily available cyclohexene oxide without isolation of the intermediates.Additionally,the biocatalytic cascade has been successfully extended to the production of structurally diverse 2-(alkylamino)cyclohexanols by replacing ammonia with different organic amines.展开更多
[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was synthesized,using tert-butyldimethylsilane(TBDMS)and 1,2-epoxy-4-vinylcyclohexane(EVC)as the main raw materials and tris(triphenylphosphine)chlororhodium(I)[...[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was synthesized,using tert-butyldimethylsilane(TBDMS)and 1,2-epoxy-4-vinylcyclohexane(EVC)as the main raw materials and tris(triphenylphosphine)chlororhodium(I)[RhCl(Ph3P)3]as the catalyst.[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane is a novel kind of silicon-containing epoxide.The factors affecting the reaction yield,such as catalyst use,reaction time and reaction temperature,were investigated,and the synthesized product was characterized and analyzed by FT-IR and 1H-NMR.A series of amine-curing resins were prepared with[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane,bisphenol A epoxy resin(E-51)and modified amine(593 amine).The mechanical properties of cured splines with the different proportions of amine-curing resins were tested.When the content of 593 amine was 20%,the content of E-51 was 75%and the amount of[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was 5%,the mechanical properties of the cured splines were the best with the tensile strength being 23.3 MPa,the elongation at break being 7.8%,and the Young's modulus being 421.3 MPa.展开更多
A nickel-catalyzed C(sp^(2))–H alkynylation of unprotected α-substituted benzylamines is achieved by utilizing a transient directing group. The combination of a TDG with a nickel catalyst significantly improves the ...A nickel-catalyzed C(sp^(2))–H alkynylation of unprotected α-substituted benzylamines is achieved by utilizing a transient directing group. The combination of a TDG with a nickel catalyst significantly improves the reaction step and atom economy. It has been investigated that the 2,4,6-trimethylpyridine ligand was critical to achieve the optimized reactivity. This protocol provides a straightforward route for synthesizing the alkynylated free benzylamines, featuring good substrate compatibility and monoselectivity.展开更多
The biphasic solvent is a promising solution to reduce regeneration energy consumption in CO_(2) capture.However,most current biphasic solvents suffer from high viscosity and poor desorption of the rich phase.To the i...The biphasic solvent is a promising solution to reduce regeneration energy consumption in CO_(2) capture.However,most current biphasic solvents suffer from high viscosity and poor desorption of the rich phase.To the issues,a novel pentamethyldiethylenetriamine(PMDETA)-2-amino-2-methyl-1-propanol(AMP)/diethylenetriamine(DETA)-sulfolane biphasic solvent was developed.The mechanism of AMP affecting CO_(2) recycling capacity was analyzed.By adjusting the ratio of AMP and DETA,the absorption and desorption performance were balanced,and the recycling capacity and renewable energy consumption of the absorbent were improved.For the P_(2.4)A_(0.8)D_(0.8)S_(2) biphasic solvent,the CO_(2) loading of the rich phase was 5.87 mol/L,and the proportion of the rich phase volume ratio was 35%,which surpasses most reported biphasic solvents.The viscosity of the absorbent significantly decreased from 527.00 mPa·s to 92.26 mPa·s,attributed to the beneficial effect of AMP.Thermodynamic analysis showed that the biphasic solvent produced a lower regeneration energy consumption of 1.70 GJ/t CO_(2),which was 57%lower than that of monoethanolamine(MEA).Overall,the PMDETA-AMP/DETA-sulfolane biphasic solvent exhibited cycle capacity,which provided new insights for the designing of biphasic solvent.展开更多
N-substituted furfurylamines(FAs)are valuable precursors for producing pharmacologically active compounds and polymers.However,enzymatic synthesis of the type of chemicals is still in its infancy.Here we report an imi...N-substituted furfurylamines(FAs)are valuable precursors for producing pharmacologically active compounds and polymers.However,enzymatic synthesis of the type of chemicals is still in its infancy.Here we report an imine reductase from Streptomyces albidoflavus(SaIRED)for the reductive amination of biobased furans.A simple,fast and interference-resistant high-throughput screening(HTS)method was developed,based on the coloration reaction of carbonyl compounds with 2,4-dinitrophenylhydrazine.The reductive amination activity of IREDs can be directly indicated by a colorimetric assay.With the reductive amination of furfural with allylamine as the model reaction,SaIRED with the activity of 4.8 U mg^(-1) was subjected to three rounds of protein engineering and screening by this HTS method,affording a high-activity tri-variant I127V/D241A/A242T(named M3,20.2 U mg^(-1)).The variant M3 showed broad substrate scope,and enabled efficient reductive amination of biobased furans with a variety of amines including small aliphatic amines and sterically hindered amines,giving the target FAs in yields up to>99%.In addition,other variants were identified for preparative-scale synthesis of commercially interesting amines such as N-2-(methylsulfonyl)ethyl-FA by the screen method,with isolated yields up to 87%and turnover numbers up to 9700 for enzyme.Gram-scale synthesis of N-allyl-FA,a valuable building block and potential polymer monomer,was implemented at 0.25 mol L^(-1) substrate loading by a whole-cell catalyst incorporating variant M3,with 4.7 g L^(-1) h^(-1) space-time yield and 91%isolated yield.展开更多
Pyrrolo[3,2-b]pyrrole is a good building block for radical photoini-tiators.In this study,free-radical photoinitiator 1,4-bis(4-bro-mophenyl)-2,5-bis(4-(trifluo-romethyl)phenyl)-1,4-dihydropy-rrolo[3,2-b]pyrrole(PyBF)...Pyrrolo[3,2-b]pyrrole is a good building block for radical photoini-tiators.In this study,free-radical photoinitiator 1,4-bis(4-bro-mophenyl)-2,5-bis(4-(trifluo-romethyl)phenyl)-1,4-dihydropy-rrolo[3,2-b]pyrrole(PyBF),con-taining a symmetric trifluo-romethyl(-CF3)end group,is syn-thesized via a one-step aldehyde-ketone condensation re-action for light-emitting diode(LED)photopolymerization.The-CF3 groups are incorporated into the 2,5-phenyl on the pyrrolo[3,2-b]pyrrole core.PyBF rapidly initiates the photopolymerization of acrylate pre-polymers and monomers under LED illumination at 365 and 405 nm.A possible photolysis mechanism is provided.In the presence of amines,PyBF increases the gel fraction rate of polyethylene glycol diacrylate(PEGDA)from 63.4%to 80.0%,indicating good potential as a two-component photoinitiator.PyBF exhibits a thermal decomposition temperature in an ex-cess of 300℃,comparable to that of a commercial photoinitiator(diphenyl(2,4,6-trimethyl-benzoyl)phosphine oxide,TPO),indicating its thermal stability.PyBF shows low migration in light-curing materials.Scanning electron microscopy images indicate that the materials of the PyBF/TPO/PEGDA mixture cured using the PyBF/TPO two-component photoinitia-tor system exhibit a smooth surface,in contrast to those cured with PyBF/PEGDA and TPO/PEGDA systems.The cured materials also display low curing shrinkage.Therefore,the pyrrolo[3,2-b]pyrrole radical photoinitiator exhibits high photoactivity in visible-light pho-topolymerization reactions.展开更多
Chiral N-substituted amino amides and esters are ubiquitous scaffolds in pesticides and pharmaceutical chemicals,but their asymmetric synthesis remains challenging especially for those with multiple chiral centers.In ...Chiral N-substituted amino amides and esters are ubiquitous scaffolds in pesticides and pharmaceutical chemicals,but their asymmetric synthesis remains challenging especially for those with multiple chiral centers.In this study,IR104 from Streptomyces aureocirculatus was identified from 157 wild-type imine reductases for the synthesis of(S)-2-((R)-2-oxo-4-propylpyrrolidin-1-yl)butanamide(antiepileptic drug Brivaracetam)via dynamic kinetic resolution reductive amination from ethyl 3-formylhexanoate and(S)-2-aminobutylamide with high diastereoselectivity.To further improve the catalytic efficiency of IR104,its mutant D191E/L195I/E253S/M258A(M3)was identified by saturation mutagenesis and iterative combinatorial mutagenesis,which exhibited a 102-fold increase in the catalytic efficiency relative to that of wild-type enzyme and high diastereoselectivity(98:2 d.r.).Crystal structural analysis and molecular dynamics simulations provided some insights into the molecular basis for the improved activity of the mutant enzyme.The imine reductase identified in this study could accept chiral amino amides/esters as amino donors for the dynamic kinetic resolution reductive amination of racemicα-substituted aldehydo-esters,expanding the substrate scope of imine reductases in the dynamic kinetic resolution-reductive amination.Finally,IR104-M3 was successfully used for the preparation of Brivaracetam at gram scale.Using this mutant,various N-substituted amino amides/esters with two chiral centers were also synthesized with up to 99:1 d.r.and 96%yields and subsequently converted intoγ-andδ-lactams,providing an efficient protocol for the synthesis of these important compounds via enzymatic dynamic kinetic resolution-reductive amination from simple building blocks.展开更多
In-depth knowledge of the microbes responsible for biogenic amine(BA)production during soy sauce fermentation remains limited.Herein,the variations in the BA profiles,microbial communities,and microbes involved in BA ...In-depth knowledge of the microbes responsible for biogenic amine(BA)production during soy sauce fermentation remains limited.Herein,the variations in the BA profiles,microbial communities,and microbes involved in BA production during the fermentation of soy sauce through Japanese-type(JP)and Cantonese-type(CP)processes were compared.BA analysis revealed that the most abundant BA species were putrescine,tyramine,and histamine in the later three stages(1187.68,785.16,and 193.20 mg/kg on average,respectively).The BA profiles differed significantly,with CP samples containing higher contents of putrescine,tyramine,and histamine(P<0.05)at the end of fermentation.Metagenomic analysis indicated that BA-producing genes exhibited different abundance profiles,with most genes,including spe A,spe B,arg,spe E,and tyr DC,having higher abundances in microbial communities during the CP process.In total,15 high-quality metagenome-assembled genomes(MAGs)were retrieved,of which 10 encoded at BA production-related genes.Enterococcus faecium(MAG10)and Weissella paramesenteroides(MAG5)might be the major tyramine producers.The high putrescine content in CP might be associated with the high abundance of Staphylococcus gallinarum(MAG8).This study provides a comprehensive understanding of the diversity and abundance of genes involved in BA synthesis,especially at the species level,during food fermentation.展开更多
As an innovative approach to addressing climate change,significant efforts have been dedicated to the development of amine sorbents for CO_(2)capture.However,the high energy requirements and limited lifespan of these ...As an innovative approach to addressing climate change,significant efforts have been dedicated to the development of amine sorbents for CO_(2)capture.However,the high energy requirements and limited lifespan of these sorbents,such as oxidative and water stability,pose significant challenges to their widespread commercial adoption.Moreover,the understanding of the relationship between adsorption energy and adsorption sites is not known.In this work,a dual-bond strategy was used to create novel secondary amine structures by a polyethyleneimine(PEI)network with electron-extracted(EE)amine sites at adjacent sites,thereby weakening the CO_(2)binding energy while maintaining the binding ability.Insitu FT-IR and DFT demonstrated the oxygen-containing functional groups adjacent to the amino group withdraw electrons from the N atom thereby reducing the CO_(2)adsorption capacity of the secondary amine,resulting in lower regeneration energy consumption of 1.39 GJ t^(-1)-CO_(2)In addition,the EE sorbents demonstrated remarkable performance with retention of over 90%of their working capacity after 100 cycles,even under harsh conditions containing 10%O_(2)and 20%H_(2)O.DFT calculations were employed to clarify for the first time the mechanism that the oxygen functional group at the a-site hinders the formation of the urea structure,thereby being an antioxidant.These findings highlight the promising potential of such sorbents for deployment in various CO_(2)emission scenarios,irrespective of environmental conditions.展开更多
Organic amine pesticides(OAPs)are widely used in modern agriculture and these compounds can contaminate drinking water sources in different ways.However,there is a lack of data on the occurrence of OAPs in drinking wa...Organic amine pesticides(OAPs)are widely used in modern agriculture and these compounds can contaminate drinking water sources in different ways.However,there is a lack of data on the occurrence of OAPs in drinking water and their potential human health risks.In this study,tapwater(TW)and bottledwater(BW)sampleswere collected from eight cities in the Yangtze River Delta urban agglomeration in China,and their OAP levelswere analyzed using high-throughput organic analysis testing coupled with high-volume solid-phase extraction(Hi-throat/Hi-volume SPE techniques).This study is the first to systematically characterize the trace levels of OAPs in drinking water in China.Our findings indicated that the total concentration of OAPs(OAPs)in TW(average 11.06±4.99 ng/L)was 29.4%higher than in BW(average 8.55±3.98 ng/L)and fewer kinds(7)of OAPs were detected in BW.Furthermore,the long-term intake of TW in some areas was linked to carcinogenic risks even at an acceptable OAP range,particularly in males,with molinate being the major contributor(61.3%)to OAP exposure.Further analysis revealed that the occurrence and health risks of OAPs in drinking water were mainly influenced by the quality of water sources and the technologies adopted in drinking water treatment plants(DWTPs).Furthermore,our findings demonstrated that advanced treatment technologies such as nanofiltration could more effectively remove OAPs in raw water(up to 87.5%).Therefore,our findings highlighted the importance of selecting appropriate advanced treatment technologies in DWTPs.展开更多
基金support for this work by Hebei Education Department(No.JZX2024004)Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.236Z1404G)+3 种基金the National Natural Science Foundation of China(Nos.22301060 and 21272053)China Postdoctoral Science Foundation(No.2023M730914)the Natural Science Foundation of Hebei Province(Biopharmaceutical Joint Fund No.B2022206008)Project of Science and Technology Department of Hebei Province(No.22567622H)。
文摘Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporting molybdenum complex on C_(3)N_(4)-K and characterized by FT-IR,XRD,SEM,XPS and ICP-OES.Heterogeneous CN–Mo-Bpy catalyst can be applied to the direct amination of nitroarenes and arylboronic acid,thus constructing various valuable diarylamines in high to excellent yields with a wide substrate scope and good functional group tolerance.It is worth noting that this heterogeneous catalyst has high chemical stability and can be recycled for at least five times without reducing its activity.
文摘Isothiocyanates(ITCs)are an important class of organic compounds characterized by the functional group R-N=C=S.These functional groups are widely found in multiple natural products and pharmaceutical important drugs.Moreover,due to their high and versatile reactivity,they are widely used as an intermediate in organic synthesis.Keeping in view ITCs importance,this review summarizes their synthesis from nitrogen rich raw materials like amines,isocyanides,azides and some other compounds like oximes.Besides their synthesis,their application in organic compound synthesis as an intermediate will also be covered.Future research will likely focus on optimizing the synthesis of multifunctional isothiocyanates,understanding their complex biological mechanisms,exploring new applications,and highlighting the continued importance of isothiocyanates in modern chemistry and biotechnology.
文摘The catalytic enantioselective electrophilic amination reaction has emerged as a highly efficient method for synthesizing diverse nitrogen-containing chiral molecules,with the development of various asymmetric catalysis systems.Chiral phosphoric acids(CPA)have been widely acknowledged as versatile chiral organocatalysts since it was first discovered in 2004,finding application in catalyzing diverse asymmetric reactions.A comprehensive overview of recent advances in CPA-catalyzed asymmetric electrophilic amination reactions using different N-electrophilic reagents,including azo reagents,aryldiazonium salts,and imine derivatives,is presented.Furthermore,insights into future developments in this field are offered.
文摘A facile method for decarboxylative amination driven by the photoactivity of electron donor-acceptor(EDA)com-plexes assembled from iodide salts and redox-active esters has been proposed.A broad array of acyclic and cyclic protected amines were readily synthesized without requiring exogenous transition-metal or photoredox catalysts.Moreover,this ap-proach facilitates late-stage functionalization of complex molecules and is amenable to continuous-flow process on gram scale.
文摘Chronic obstructive pulmonary disease(COPD)has garnered increased attention as a result of its persistent symptoms,which undermine patientsʼquality of life.Fudosteine has substantial advantages in the treatment of COPD due to its high efficacy and low adverse effects.In this study,Fudosteine sulfonamide derivatives Series I and amine derivatives Series II were designed and synthesized,and their biological activities were evaluated.The results showed that compound 6f had outstanding anti-inflammatory action with an IC_(50) of 1.08 mmol/L,and a higher antioxidant capacity than the lead molecule.At the same time,molecular docking investigations have revealed that compound 6f establishes hydrogen bonds and hydrophobic contacts with the MUC5AC protein.Furthermore,derivative 1f inhibited PDE4A1 enzyme activity five times more than Fudosteine.2,2-Diphenyl-1-picrylhydrazyl(DPPH)free radical scavenging tests demonstrated that all examined substances had higher antioxidant activity than Fudosteine.This study established a solid foundation for further research into COPD drug therapy.
文摘Synthesis of primary amines from alcohols is an economical and green route to access high-value N-compounds.However,challenges remain to develop both cost-effective and efficient catalysts.In this study,we developed a Ru-Co/ZrO_(2)single-atom alloy catalyst which afforded diverse primary amines from alcohols in the presence of ammonia and hydrogen with exceptional conversion(up to 90%)and selectivity(80%)under mild conditions(0.7 MPa NH_(3),0.3 MPa H_(2),160℃)and exhibited satisfactory stability upon regeneration.The turnover rate was approximately 8.4 times higher than that observed over the Co/ZrO_(2)catalyst.Characterizations indicated that the alloyed Ru facilitated the reduction of Co,strengthened the interaction with H_(2)and mitigated the over-strong adsorption of aldehyde intermediates.These combined effects contributed significantly to the enhanced catalytic performances.This work presents a promising strategy for the development of advanced catalysts in the amination of alcohols.
基金financial support from the National Natural Science Foundation of China(Nos.22125108,22331004 and 22121001)Yunnan Normal University,Applied Basic Research Projects of Yunnan Province(No.202101AT070217)+1 种基金the Jiangxi Provincial Natural Science Foundation(No.20224BAB213013)the Jiangxi Provincial Department of Education in Science and Technology Program Project(No.GJJ210906)。
文摘Gold-catalyzed amination reactions based on azides viaα-imino gold carbene intermediates have attracted extensive attention in the past decades because this methodology leads to the facile and efficient construction of synthetically useful N-containing molecules,especially valuable N-heterocycles.However,successful examples of intermolecular generation ofα-imino gold carbenes by using azides as amination reagents are rarely explored probably due to the weak nucleophilicity of azides.Herein,we disclose an efficient gold-catalyzed intermolecular aminative cyclopropanation of ynamides with the allyl azides,enabling flexible synthesis of a wide range of valuable 3-azabicyclo[3.1.0]hex-2-ene derivatives in good to excellent yields with excellent diastereoselectivities.Importantly,this protocol represents the first use of allyl azide as an efficient amination reagent in gold-catalyzed alkyne amination reactions.
文摘Amines represent fundamental motifs in various chemical contexts and are widely used in agrochemicals and pharmaceuticals.The development of earth-abundant metal-based heterogeneous catalysts for the synthesis amines remains an important goal in terms of chemical research and industrial application/manufacture.Herein,we developed an efficient and highly selective nitrogen-doped nickel catalyst enriched with Lewis acid sites,which has been applied for to the hydrogenative coupling of nitriles and amines with molecular hydrogen for the synthesis of a train of functionalised and structurally diverse secondary and tertiary amines.Furthermore,catalytic hydrogenation and deuteration of nitriles were achieved under milder conditions,yielding a series of primary amines and deuterated amines with high deuterium incorporation.
基金financially supported by the National Natural Science Foundation of China(No.21572271).
文摘A[3+4]annulation of α-substituted allenes and Schiff bases is reported.This methodology serves as a conduit for the construction of a series of biologically important benzazepine derivatives in good to excellent yields under mild conditions by an unprecedented mode involving β’-carbon of α-substituted allenes and the proposed mechanism is supported by capturing the intermediate.Moreover,this class of benzazepine derivatives exhibited potential ability of cytotoxicity toward cancer cells.
文摘In contrast to the conventional spermiogram, metabolomics approaches give insights into the molecular composition of semen and mayprovide more detailed information on the fertility status of the respective donor. Given the intra-individual variability of spermiogramparameters between two donations, this study sought to elucidate the biological variability of the seminal plasma metabolome overan average period of 8 weeks. Two time-shifted semen samples from 15 healthy donors were compared by a targeted metabolomicsapproach utilizing the Biocrates AbsoluteIDQ p180 kit. Next to intraclass correlation coefficients (ICC), which represent a measureof reliability, coefficients of variation within individuals(CVW) and coefficients of variation between individuals (CVB) were calculatedfor each metabolite to demonstrate its stability. Furthermore, men were divided into two cohorts, a similar sperm concentration(SSC) and a differing sperm concentration (DSC) cohort, based on the observed variance in sperm concentration between the twosemen donations. The ICC was higher in the SSC compared to the DSC cohort. The levels of 18 metabolites, primarily acylcarnitines,varied between the initial and subsequent donations. After subdivision into subgroups, only ornithine and phosphatidylcholine 40:5exhibited differential levels between the two donations in the SSC group, compared to 14 metabolites in the DSCgroup.CVBwashigher than CVW but both differed between the metabolite subclasses. Biogenic amines were identified as the least reliable analytesover time, exhibiting the highest CVW,compared to sphingomyelins, which demonstrated the highest reliability with the lowestvariation.CVB was the highest for ether-bound glycerophosphatidylcholines and the lowest for amino acids.
文摘Chiral cyclic amino alcohols with contiguous stereocenters are key building blocks in the synthesis of bioactive molecules and pharmaceuticals.Artificial cascade biocatalysis represents an attractive method for the synthesis of chiral molecules bearing multiple stereocenters from readily available materials.Here we reported an artificial cascade biocatalysis comprising an epoxide hydrolase,an alcohol dehydrogenase,and a reductive aminase or an amine dehydrogenase.It can be utilized to access all four stereoisomers of 2-aminocyclohexanol with two contiguous stereocenters in high yields(up to 95%)and excellent stereoselectivity(up to 98%de)starting from readily available cyclohexene oxide without isolation of the intermediates.Additionally,the biocatalytic cascade has been successfully extended to the production of structurally diverse 2-(alkylamino)cyclohexanols by replacing ammonia with different organic amines.
基金Funded by the National Natural Science Foundation of China(No.21865017)。
文摘[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was synthesized,using tert-butyldimethylsilane(TBDMS)and 1,2-epoxy-4-vinylcyclohexane(EVC)as the main raw materials and tris(triphenylphosphine)chlororhodium(I)[RhCl(Ph3P)3]as the catalyst.[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane is a novel kind of silicon-containing epoxide.The factors affecting the reaction yield,such as catalyst use,reaction time and reaction temperature,were investigated,and the synthesized product was characterized and analyzed by FT-IR and 1H-NMR.A series of amine-curing resins were prepared with[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane,bisphenol A epoxy resin(E-51)and modified amine(593 amine).The mechanical properties of cured splines with the different proportions of amine-curing resins were tested.When the content of 593 amine was 20%,the content of E-51 was 75%and the amount of[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was 5%,the mechanical properties of the cured splines were the best with the tensile strength being 23.3 MPa,the elongation at break being 7.8%,and the Young's modulus being 421.3 MPa.
基金supported financially by the Excellent Going Abroad Expert's Training Program in Hebei Province (No. 201940)the Hebei Natural Science Foundation of China (No. H2020208030)the S & T Program of Hebei (No. 22567607H) for financial support。
文摘A nickel-catalyzed C(sp^(2))–H alkynylation of unprotected α-substituted benzylamines is achieved by utilizing a transient directing group. The combination of a TDG with a nickel catalyst significantly improves the reaction step and atom economy. It has been investigated that the 2,4,6-trimethylpyridine ligand was critical to achieve the optimized reactivity. This protocol provides a straightforward route for synthesizing the alkynylated free benzylamines, featuring good substrate compatibility and monoselectivity.
基金supported by the Key R&D Program of Yunnan Province(No.202303AC100008)the National Natural Science Foundation of China(No.52100133)the Major Science and Technology-Special Plan“Unveiling and Leading”Project of Shanxi Province(No.202201050201011).
文摘The biphasic solvent is a promising solution to reduce regeneration energy consumption in CO_(2) capture.However,most current biphasic solvents suffer from high viscosity and poor desorption of the rich phase.To the issues,a novel pentamethyldiethylenetriamine(PMDETA)-2-amino-2-methyl-1-propanol(AMP)/diethylenetriamine(DETA)-sulfolane biphasic solvent was developed.The mechanism of AMP affecting CO_(2) recycling capacity was analyzed.By adjusting the ratio of AMP and DETA,the absorption and desorption performance were balanced,and the recycling capacity and renewable energy consumption of the absorbent were improved.For the P_(2.4)A_(0.8)D_(0.8)S_(2) biphasic solvent,the CO_(2) loading of the rich phase was 5.87 mol/L,and the proportion of the rich phase volume ratio was 35%,which surpasses most reported biphasic solvents.The viscosity of the absorbent significantly decreased from 527.00 mPa·s to 92.26 mPa·s,attributed to the beneficial effect of AMP.Thermodynamic analysis showed that the biphasic solvent produced a lower regeneration energy consumption of 1.70 GJ/t CO_(2),which was 57%lower than that of monoethanolamine(MEA).Overall,the PMDETA-AMP/DETA-sulfolane biphasic solvent exhibited cycle capacity,which provided new insights for the designing of biphasic solvent.
文摘N-substituted furfurylamines(FAs)are valuable precursors for producing pharmacologically active compounds and polymers.However,enzymatic synthesis of the type of chemicals is still in its infancy.Here we report an imine reductase from Streptomyces albidoflavus(SaIRED)for the reductive amination of biobased furans.A simple,fast and interference-resistant high-throughput screening(HTS)method was developed,based on the coloration reaction of carbonyl compounds with 2,4-dinitrophenylhydrazine.The reductive amination activity of IREDs can be directly indicated by a colorimetric assay.With the reductive amination of furfural with allylamine as the model reaction,SaIRED with the activity of 4.8 U mg^(-1) was subjected to three rounds of protein engineering and screening by this HTS method,affording a high-activity tri-variant I127V/D241A/A242T(named M3,20.2 U mg^(-1)).The variant M3 showed broad substrate scope,and enabled efficient reductive amination of biobased furans with a variety of amines including small aliphatic amines and sterically hindered amines,giving the target FAs in yields up to>99%.In addition,other variants were identified for preparative-scale synthesis of commercially interesting amines such as N-2-(methylsulfonyl)ethyl-FA by the screen method,with isolated yields up to 87%and turnover numbers up to 9700 for enzyme.Gram-scale synthesis of N-allyl-FA,a valuable building block and potential polymer monomer,was implemented at 0.25 mol L^(-1) substrate loading by a whole-cell catalyst incorporating variant M3,with 4.7 g L^(-1) h^(-1) space-time yield and 91%isolated yield.
基金the financial support of the Tianjin Technical Expert Project(22YDTPJC00620)。
文摘Pyrrolo[3,2-b]pyrrole is a good building block for radical photoini-tiators.In this study,free-radical photoinitiator 1,4-bis(4-bro-mophenyl)-2,5-bis(4-(trifluo-romethyl)phenyl)-1,4-dihydropy-rrolo[3,2-b]pyrrole(PyBF),con-taining a symmetric trifluo-romethyl(-CF3)end group,is syn-thesized via a one-step aldehyde-ketone condensation re-action for light-emitting diode(LED)photopolymerization.The-CF3 groups are incorporated into the 2,5-phenyl on the pyrrolo[3,2-b]pyrrole core.PyBF rapidly initiates the photopolymerization of acrylate pre-polymers and monomers under LED illumination at 365 and 405 nm.A possible photolysis mechanism is provided.In the presence of amines,PyBF increases the gel fraction rate of polyethylene glycol diacrylate(PEGDA)from 63.4%to 80.0%,indicating good potential as a two-component photoinitiator.PyBF exhibits a thermal decomposition temperature in an ex-cess of 300℃,comparable to that of a commercial photoinitiator(diphenyl(2,4,6-trimethyl-benzoyl)phosphine oxide,TPO),indicating its thermal stability.PyBF shows low migration in light-curing materials.Scanning electron microscopy images indicate that the materials of the PyBF/TPO/PEGDA mixture cured using the PyBF/TPO two-component photoinitia-tor system exhibit a smooth surface,in contrast to those cured with PyBF/PEGDA and TPO/PEGDA systems.The cured materials also display low curing shrinkage.Therefore,the pyrrolo[3,2-b]pyrrole radical photoinitiator exhibits high photoactivity in visible-light pho-topolymerization reactions.
文摘Chiral N-substituted amino amides and esters are ubiquitous scaffolds in pesticides and pharmaceutical chemicals,but their asymmetric synthesis remains challenging especially for those with multiple chiral centers.In this study,IR104 from Streptomyces aureocirculatus was identified from 157 wild-type imine reductases for the synthesis of(S)-2-((R)-2-oxo-4-propylpyrrolidin-1-yl)butanamide(antiepileptic drug Brivaracetam)via dynamic kinetic resolution reductive amination from ethyl 3-formylhexanoate and(S)-2-aminobutylamide with high diastereoselectivity.To further improve the catalytic efficiency of IR104,its mutant D191E/L195I/E253S/M258A(M3)was identified by saturation mutagenesis and iterative combinatorial mutagenesis,which exhibited a 102-fold increase in the catalytic efficiency relative to that of wild-type enzyme and high diastereoselectivity(98:2 d.r.).Crystal structural analysis and molecular dynamics simulations provided some insights into the molecular basis for the improved activity of the mutant enzyme.The imine reductase identified in this study could accept chiral amino amides/esters as amino donors for the dynamic kinetic resolution reductive amination of racemicα-substituted aldehydo-esters,expanding the substrate scope of imine reductases in the dynamic kinetic resolution-reductive amination.Finally,IR104-M3 was successfully used for the preparation of Brivaracetam at gram scale.Using this mutant,various N-substituted amino amides/esters with two chiral centers were also synthesized with up to 99:1 d.r.and 96%yields and subsequently converted intoγ-andδ-lactams,providing an efficient protocol for the synthesis of these important compounds via enzymatic dynamic kinetic resolution-reductive amination from simple building blocks.
基金supported by the Natural Science Foundation of Guangdong Province(2022A1515012158)the National Science Foundation of China(41977138)+3 种基金the Construction Project of Teaching Quality and Teaching Reform in Guangdong Province(SJD202001)the General University Project of Guangdong Provincial Department of Education(2021KCXTD070 and 2021ZDZX4072)the Key Project of Social Welfare and Basic Research of Zhongshan City(2020B2010)the Start-up Fund from the Zhongshan Institute at the University of Electronic Science and Technology in China(419YKQN12)。
文摘In-depth knowledge of the microbes responsible for biogenic amine(BA)production during soy sauce fermentation remains limited.Herein,the variations in the BA profiles,microbial communities,and microbes involved in BA production during the fermentation of soy sauce through Japanese-type(JP)and Cantonese-type(CP)processes were compared.BA analysis revealed that the most abundant BA species were putrescine,tyramine,and histamine in the later three stages(1187.68,785.16,and 193.20 mg/kg on average,respectively).The BA profiles differed significantly,with CP samples containing higher contents of putrescine,tyramine,and histamine(P<0.05)at the end of fermentation.Metagenomic analysis indicated that BA-producing genes exhibited different abundance profiles,with most genes,including spe A,spe B,arg,spe E,and tyr DC,having higher abundances in microbial communities during the CP process.In total,15 high-quality metagenome-assembled genomes(MAGs)were retrieved,of which 10 encoded at BA production-related genes.Enterococcus faecium(MAG10)and Weissella paramesenteroides(MAG5)might be the major tyramine producers.The high putrescine content in CP might be associated with the high abundance of Staphylococcus gallinarum(MAG8).This study provides a comprehensive understanding of the diversity and abundance of genes involved in BA synthesis,especially at the species level,during food fermentation.
基金support from the National Natural Science Foundation of China(22378184,22378183)。
文摘As an innovative approach to addressing climate change,significant efforts have been dedicated to the development of amine sorbents for CO_(2)capture.However,the high energy requirements and limited lifespan of these sorbents,such as oxidative and water stability,pose significant challenges to their widespread commercial adoption.Moreover,the understanding of the relationship between adsorption energy and adsorption sites is not known.In this work,a dual-bond strategy was used to create novel secondary amine structures by a polyethyleneimine(PEI)network with electron-extracted(EE)amine sites at adjacent sites,thereby weakening the CO_(2)binding energy while maintaining the binding ability.Insitu FT-IR and DFT demonstrated the oxygen-containing functional groups adjacent to the amino group withdraw electrons from the N atom thereby reducing the CO_(2)adsorption capacity of the secondary amine,resulting in lower regeneration energy consumption of 1.39 GJ t^(-1)-CO_(2)In addition,the EE sorbents demonstrated remarkable performance with retention of over 90%of their working capacity after 100 cycles,even under harsh conditions containing 10%O_(2)and 20%H_(2)O.DFT calculations were employed to clarify for the first time the mechanism that the oxygen functional group at the a-site hinders the formation of the urea structure,thereby being an antioxidant.These findings highlight the promising potential of such sorbents for deployment in various CO_(2)emission scenarios,irrespective of environmental conditions.
基金supported by the National Key Research and Development Program of China(No.2019YFD1100203).
文摘Organic amine pesticides(OAPs)are widely used in modern agriculture and these compounds can contaminate drinking water sources in different ways.However,there is a lack of data on the occurrence of OAPs in drinking water and their potential human health risks.In this study,tapwater(TW)and bottledwater(BW)sampleswere collected from eight cities in the Yangtze River Delta urban agglomeration in China,and their OAP levelswere analyzed using high-throughput organic analysis testing coupled with high-volume solid-phase extraction(Hi-throat/Hi-volume SPE techniques).This study is the first to systematically characterize the trace levels of OAPs in drinking water in China.Our findings indicated that the total concentration of OAPs(OAPs)in TW(average 11.06±4.99 ng/L)was 29.4%higher than in BW(average 8.55±3.98 ng/L)and fewer kinds(7)of OAPs were detected in BW.Furthermore,the long-term intake of TW in some areas was linked to carcinogenic risks even at an acceptable OAP range,particularly in males,with molinate being the major contributor(61.3%)to OAP exposure.Further analysis revealed that the occurrence and health risks of OAPs in drinking water were mainly influenced by the quality of water sources and the technologies adopted in drinking water treatment plants(DWTPs).Furthermore,our findings demonstrated that advanced treatment technologies such as nanofiltration could more effectively remove OAPs in raw water(up to 87.5%).Therefore,our findings highlighted the importance of selecting appropriate advanced treatment technologies in DWTPs.