Solid complexes [REL(NO3)3]n with novel (10,3)-a type three-dimensional networks structure have been assembled using rare earth nitrates and an amide type semirigid tripodal bridging ligand, 1,3,5-tris {[(2′-benzylam...Solid complexes [REL(NO3)3]n with novel (10,3)-a type three-dimensional networks structure have been assembled using rare earth nitrates and an amide type semirigid tripodal bridging ligand, 1,3,5-tris {[(2′-benzylaminoformyl)phenoxyl]methyl}benzene (L), as building blocks. The complexes were crys- tallized in the orthorhombic system with chiral space group P212121. The whole structure consists of an infinite array of trigonal RE(III) ions bridged by tridentate ligands, and a novel (10,3)-a net is formed, which is very uncommon in the rare earth complexes. At room temperature, the Sm(III), Eu(III), Tb(III), Dy(III) complexes all exhibited characteristic luminescence emissions of central metal ions under UV light excitation.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 20401008)the Program for New Century Excellent Talents in University (Grant No. NCET-06-0902)the Natural Science Foundation of Gansu Province (Grant No. 3ZS061-A25-003)
文摘Solid complexes [REL(NO3)3]n with novel (10,3)-a type three-dimensional networks structure have been assembled using rare earth nitrates and an amide type semirigid tripodal bridging ligand, 1,3,5-tris {[(2′-benzylaminoformyl)phenoxyl]methyl}benzene (L), as building blocks. The complexes were crys- tallized in the orthorhombic system with chiral space group P212121. The whole structure consists of an infinite array of trigonal RE(III) ions bridged by tridentate ligands, and a novel (10,3)-a net is formed, which is very uncommon in the rare earth complexes. At room temperature, the Sm(III), Eu(III), Tb(III), Dy(III) complexes all exhibited characteristic luminescence emissions of central metal ions under UV light excitation.