When using ambient noise data to invert velocity and anisotropic structures,the two-station inter-correlation method requires synchronous stations.If there are multiple temporary seismic arrays with different observat...When using ambient noise data to invert velocity and anisotropic structures,the two-station inter-correlation method requires synchronous stations.If there are multiple temporary seismic arrays with different observation periods in the study area,the seismic arrays are usually used selectively.This paper takes the Sanjiang lateral collision zone as an example,and utilizes the ambient noise data of multiple temporary seismic arrays at different observation periods to improve the accuracy of regional velocity structure and anisotropy by anchoring permanent seismic stations.In this paper,notable enhancements in S-wave velocity and azimuthal anisotropy imaging accuracy are achieved by integrating data from three temporary seismic arrays(SJ-Array,SL-Array,and Chin Array-I)with the permanent seismic network.The imaging resolutions for the S-wave velocity and azimuthal anisotropy above 40 km are 0.4°×0.4°and 0.5°×0.5°,respectively.In the region of the most concentrated array coverage,the imaging resolution of S-wave velocity can reach 0.33°×0.33°at depths of less than 30 km.These findings underscore the significant improvement in deep structure imaging accuracy by the synergistic integration of ambient noise data from multiple temporary seismic arrays.展开更多
We analyzed 1-hour, 8-hour and 24-hour averaged criteria pollutants (NO2, SO2, CO, PM22.5, and PM10) during 2004 - 2009 at three observational sites i.e. Income Tax Office (ITO), Sirifort and Delhi College of Engineer...We analyzed 1-hour, 8-hour and 24-hour averaged criteria pollutants (NO2, SO2, CO, PM22.5, and PM10) during 2004 - 2009 at three observational sites i.e. Income Tax Office (ITO), Sirifort and Delhi College of Engineering (DCE) in Delhi, India. The analysis reveals increased pollutant concentrations at the urban ITO site as compared to the other two sites, suggesting the need to better locate hot spots in designing the monitoring network. There is also significant year to year variation in the design value trends of criteria pollutants at these three sites, which may be attributed to meteorological variations and local-level emission fluctuations. Correlations among criteria pollutants vary annually and spatially from site to site, indicating the heterogeneous nature of air mix. The annual ratios of CO/NOx are considerably higher than SO2/NOx confirming that vehicular source emissions are the primary contributors to air pollution in Delhi. The seasonal analysis of criteria pollutants reveals relatively higher concentrations in winter because of limited pollutant dispersion and lower concentrations during the monsoon period (rainy season). The diurnal averages of criteria pollutants reveal that vehicular emissions strongly influence temporal variations of these pollutants. Weekdays and weekend diurnal averages do not show noticeable differences.展开更多
基金supported by Key Projects of National Natural Science Foundation of China(Project 42330311)Central Publicinterest Scientific Institution Basal Research Fund(No.2021IEF0103)National Key R&D Project of China(2017YFC1500304)。
文摘When using ambient noise data to invert velocity and anisotropic structures,the two-station inter-correlation method requires synchronous stations.If there are multiple temporary seismic arrays with different observation periods in the study area,the seismic arrays are usually used selectively.This paper takes the Sanjiang lateral collision zone as an example,and utilizes the ambient noise data of multiple temporary seismic arrays at different observation periods to improve the accuracy of regional velocity structure and anisotropy by anchoring permanent seismic stations.In this paper,notable enhancements in S-wave velocity and azimuthal anisotropy imaging accuracy are achieved by integrating data from three temporary seismic arrays(SJ-Array,SL-Array,and Chin Array-I)with the permanent seismic network.The imaging resolutions for the S-wave velocity and azimuthal anisotropy above 40 km are 0.4°×0.4°and 0.5°×0.5°,respectively.In the region of the most concentrated array coverage,the imaging resolution of S-wave velocity can reach 0.33°×0.33°at depths of less than 30 km.These findings underscore the significant improvement in deep structure imaging accuracy by the synergistic integration of ambient noise data from multiple temporary seismic arrays.
文摘We analyzed 1-hour, 8-hour and 24-hour averaged criteria pollutants (NO2, SO2, CO, PM22.5, and PM10) during 2004 - 2009 at three observational sites i.e. Income Tax Office (ITO), Sirifort and Delhi College of Engineering (DCE) in Delhi, India. The analysis reveals increased pollutant concentrations at the urban ITO site as compared to the other two sites, suggesting the need to better locate hot spots in designing the monitoring network. There is also significant year to year variation in the design value trends of criteria pollutants at these three sites, which may be attributed to meteorological variations and local-level emission fluctuations. Correlations among criteria pollutants vary annually and spatially from site to site, indicating the heterogeneous nature of air mix. The annual ratios of CO/NOx are considerably higher than SO2/NOx confirming that vehicular source emissions are the primary contributors to air pollution in Delhi. The seasonal analysis of criteria pollutants reveals relatively higher concentrations in winter because of limited pollutant dispersion and lower concentrations during the monsoon period (rainy season). The diurnal averages of criteria pollutants reveal that vehicular emissions strongly influence temporal variations of these pollutants. Weekdays and weekend diurnal averages do not show noticeable differences.