The Baeyer-Villiger(BV)oxidation of cyclohexanone is explored using IWV-type aluminosilicates with different Al sites as heterogeneous catalysts.The IWV framework exhibits a two-dimensional 12-membered ring(MR)pore sy...The Baeyer-Villiger(BV)oxidation of cyclohexanone is explored using IWV-type aluminosilicates with different Al sites as heterogeneous catalysts.The IWV framework exhibits a two-dimensional 12-membered ring(MR)pore system intersected by 14-MR supercages,resembling typical beta zeolite.To address the constraints associated with hydrothermal synthesis,IWV aluminosilicates were synthesized via interzeolite transformation of various FAU-type zeolites.HF-assisted transformation of dealuminated FAU zeolite resulted in the formation of a high-silica IWV aluminosilicate(Si/Al=54.6),whereas the incorporation of aluminum isopropoxide enables the tuning of Si/Al ratio down to 18.7.The alkaline conversion of protonated FAU zeolites,utilizing Na^(+)ions as mineralizing agents,produces high-Al content IWV derivatives in just four days.Catalytic evaluation demonstrates that the high-silica IWV catalyst exhibits a higher turnover number than the other IWV catalysts,along with enhancedε-caprolactone(CL)selectivity relative to that of high-silica beta zeolite.Facile modifications are performed to adjust Al sites,as characterized by pyridine-adsorbed infrared spectroscopy.Experimental evidence confirms that Al Brønsted acid sites improves the selective oxidation of cyclohexanone,while concurrently enhancing CL hydrolysis.展开更多
Well-ordered aluminosilicates(MAs)were prepared by in-situ assembly of pre-crystallized units of zeolite Y precursors at a commercial scale,and applied in an industrial fluid catalytic cracking unit for the first time...Well-ordered aluminosilicates(MAs)were prepared by in-situ assembly of pre-crystallized units of zeolite Y precursors at a commercial scale,and applied in an industrial fluid catalytic cracking unit for the first time.Compared with incumbent equilibrium catalyst,the surface area of trial equilibrium catalysts(30%inventory ratio)increased from 110 m^(2)g^(-1)to 120m^(2)g^(-1).Moreover,a significant increase of the mesoporous surfaceareaof trial equlibrium catalysts(30%inventoryrati)from 33 m g/to 40magi(22%increase).Furthermore,the equilibrium catalyst that contain 80%LPC-65 yields significantly lower heavy oil(0.23%)and higher total liquids(0.53%)compared with LDO-70.The industrial results demonstrated excellent hydrothermal stability and superior catalytic cracking properties,showing the promising futurein the industrial units.展开更多
Low-cost adsorbents constituted by Fe-modified-aluminosilicates (laminar and zeolite type minerals) were developed and characterized to be used in the arsenic removal from groundwater. Iron activation was carried o...Low-cost adsorbents constituted by Fe-modified-aluminosilicates (laminar and zeolite type minerals) were developed and characterized to be used in the arsenic removal from groundwater. Iron activation was carried out "in situ" by the synthesis and deposition of mesoporous ferrihydrite. Natural iron-rich aluminosilicate was used as reference. All samples were characterized by X-ray diffraction, Raman spectroscopy, BET N2-adsorption, SEM-EDS microscopy and ICP chemical analysis. Experimental results of arsenic sorption showed that iron-poor raw materials were not active, unlike iron activated samples. The iron loading in all activated samples was below 5% (expressed as Fe203), whereas the removal capacity of these samples reaches between 200-700 gg of As by g of adsorbent, after reusing between 17 cycles and 70 cycles up to adsorbent saturation. Differences can be associated to mineral structure and to the surface charge modification by iron deposition, affecting the attraction of the As-oxoanion. On the basis of low-cost raw materials, the easy chemical process for activation shows that these materials are potentially attractive for As(V) removal. Likewise, the activation of clay minerals, with natural high content of iron, seems to be a good strategy to enhance the arsenic adsorption ability and consequently the useful life of the adsorbent.展开更多
In this study the characterization of an aluminosilicate synthesized from commercial Al2(SO4)3 and colloidal SiO2 is presented, as well as its capacity for the removal of copper from aqueous solution. Characterization...In this study the characterization of an aluminosilicate synthesized from commercial Al2(SO4)3 and colloidal SiO2 is presented, as well as its capacity for the removal of copper from aqueous solution. Characterization of the synthesized material was performed using X-ray diffraction, BET nitrogen adsorption-desorption, mass titration and the Boehm method. In order to obtain stable agglomeration and enhance its surface area (165 - 243 m2/g) and solid adsorbing capabilities, the molar ratio SiO2:Al2O3 (1:3, 1:1 and 3:1) was studied, the solubility of the preparation material, synthesis-procedure time and solution pH function were also examined. The maximum capacity to remove copper ions from an aqueous solution by synthesized aluminosilicate was 16 mg/g at pH 4 and 25℃. The Langmuir model fitted better to the copper adsorption experimental data.展开更多
Mesoporous aluminosilicates (MAS) bearing microporous zeolite units and mesoporous structures were synthesized by the hydrothermal method. Adsorptive desulfurization ability of model oil and hy-drotreated diesel was s...Mesoporous aluminosilicates (MAS) bearing microporous zeolite units and mesoporous structures were synthesized by the hydrothermal method. Adsorptive desulfurization ability of model oil and hy-drotreated diesel was studied. The effects of template concentration, crystalization time and calcination time were investigated. The desulfurization ability of adsorbents was improved by transitional metal ion-exchanging. The adsorptive desulfurization of diesel was carried out on a fixed-bed system. The results show that the adsorptive capacity is MAS>MCM-41>NaY. The improvement of desulfurization ability of MAS by Cu+ is more significant than that of Ag+.展开更多
A unique templating approach for the synthesis of hexagonal mesoporous aluminosilicates via self assembly of pre formed aluminosilcate nanoclusters with the templating micella formed by cetyltrimethylammonium bromid...A unique templating approach for the synthesis of hexagonal mesoporous aluminosilicates via self assembly of pre formed aluminosilcate nanoclusters with the templating micella formed by cetyltrimethylammonium bromide (CTAB) is described. The obtained materials of MAS 5 are hydrothermally stable, which is shown by X ray diffraction (XRD) analysis. Furthermore, as characterized by NMR technique, MAS 5 has stable tetrahedral aluminum sites that is the major contributions to the acidity of aluminosilicate molecular sieve, and on non framework aluminium species in the samples was observed.展开更多
The acidic strength of ordered mesoporous aluminosilicates of MAS-2, MAS-3, MAS-7 and MAS-9 and mi-croporous crystals of Y, L, beta, and ZSM-5 zeolites was systemically investigated by temperature-programmed desorptio...The acidic strength of ordered mesoporous aluminosilicates of MAS-2, MAS-3, MAS-7 and MAS-9 and mi-croporous crystals of Y, L, beta, and ZSM-5 zeolites was systemically investigated by temperature-programmed desorption of ammonia (NH3-TPD). Due to the use of preformed zeolite precursors of Y, L, beta and ZSM-5, the ordered mesoporous aluminosilicates with distinguished acidic strength were obtained, being dependent on the type of preformed zeolite precursors. Therefore, the acidic strength of these mesoporous aluminosilicates could be tai-lored and controlled.展开更多
Several 2.0 wt% nickel catalysts supported on nanometer bimodal mesoporous aluminosilicate (NBMAS), AlHMS and AlMCM-41 were prepared by means of the wetness impregnation method. The characterization tech-niques such a...Several 2.0 wt% nickel catalysts supported on nanometer bimodal mesoporous aluminosilicate (NBMAS), AlHMS and AlMCM-41 were prepared by means of the wetness impregnation method. The characterization tech-niques such as Py-FTIR and H2 chemisorption showed that the amount of Br鰊sted acid sites decreased in the order of Ni/AlHMS>Ni/AlMCM-41>Ni/NBMAS, while the nickel dispersion differed a little. In the catalytic n-dodecane hydroconversion, the highest conversion was obtained over Ni/NBMAS, and the lowest isomerization selectivity occurred over Ni/AlHMS. For the cracked products, the symmetrical carbon number distribution cen-tered at C6 was obtained on the Ni/AlMCM-41 catalyst due to the well balanced metal/acid functions, whereas the Ni/AlHMS and Ni/NBMAS catalysts led to more C3-C5 and C1+C11 products, respectively.展开更多
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on...Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.展开更多
China has abundant resources of high-alumina coal(HAC).However,its application as a raw gasification material is limited owing to high ash-fusion characteristics.For overcoming the limitation,this study employed Xinji...China has abundant resources of high-alumina coal(HAC).However,its application as a raw gasification material is limited owing to high ash-fusion characteristics.For overcoming the limitation,this study employed Xinjiang coal(XJ),having a low ash fusion temperature,to improve the ash fusibility and viscosity of high-alumina Jungar coal(JG).The evolution of Al-containing phases and structures during mixed ash melting were investigated based on XRD,XPS,27Al NMR,high-temperature stage microscopy(HTSM),and thermodynamic simulations.An increase in the XJ mass ratio resulted in the transformation of gehlenite to anorthite and mullite,producing more amorphous materials at high temperature.These phenomena were manifested at a microscopic imaging as an increase in the number of reaction/melting sites and their area expansion rate,as well as a decrease in ash area shrinkage and melting temperature.Moreover,the introduction of XJ altered the alumina-oxygen network,reducing the binding to the silicaoxygen network and converting some[AlO_(6)]^(9-)to[AlO_(4)]^(5-)as the relative concentration of O_(2)-and O-increases.Consequently,the decrease in the stability of the aluminate structure improves the AFT and viscosity.Based on these results,a mechanism to improve the ash fusion characteristics of HAC based on coal blending is proposed.展开更多
ITR zeolite could be potentially used as catalysts in methanol to propylene(MTP),where their performance is strongly related to its Al distribution.However,the control of Al distribution in ITR zeolite poses a signifi...ITR zeolite could be potentially used as catalysts in methanol to propylene(MTP),where their performance is strongly related to its Al distribution.However,the control of Al distribution in ITR zeolite poses a significant synthetic challenge.Herein,we demonstrate the possibility to control the Al distribution in ITR zeolites using zeolite A as an aluminum source(A-ITR).The A-ITR exhibited similar crystallinity,nanosheet morphology,textual parameters,and acidic concentration with those of conventional ITR made zeolites using aluminum isopropoxide as an aluminum source(C-ITR).Characterizations of the zeolite product with^(27)Al MQ.MAS NMR spectra,^(27)Al MAS NMR spectra,and 1-hexene cracking reveal that the A-ITR zeolites have more Al species distributed in T6 and T8 sites located in relatively smaller micropores of the framework than C-ITR.As a result,the A-ITR gave enhanced catalyst lifetime and propylene selectivity due to the suppression of the aromatic cycle in the MTP reaction,compared with the C-ITR.This work provides an alternative approach to prepare efficient ITR zeolites for MTP reaction.展开更多
The effects of different Al_(2)O_(3)/SiO_(2)(Al/Si)ratios on the structure and tensile strength of Na_(2)O-CaO-MgO-Al_(2)O_(3)-SiO_(2)glass fiber were investigated by Raman,tensile strength tests and molecular dynamic...The effects of different Al_(2)O_(3)/SiO_(2)(Al/Si)ratios on the structure and tensile strength of Na_(2)O-CaO-MgO-Al_(2)O_(3)-SiO_(2)glass fiber were investigated by Raman,tensile strength tests and molecular dynamics simulation.The results showed that Al^(3+)mainly existed in the form of[AlO_(4)]within the glass network.With the increase of Al/Si ratio,the Si-O-Al linkage gradually became the main connection mode of glass network.The increase of bridging oxygen content and variation of Q^(n) indicated that a higher degree of network polymerization was formed.The tensile strength of the glass fibers obtained through experiments increased from 2653.56 to 2856.83 MPa,which was confirmed by the corresponding molecular dynamics simulation.During the stretching process,the Si-O bonds in the Si-O-Al linkage tended to break regardless of the compositional changes,and the increase of fractured Si-O-Al and Al-O-Al linkage absorbed more energy to resist the destroy.展开更多
Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotatio...Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.展开更多
Manganese is ubiquitous in terrestrial environments and most studies have focused on dissolution of Mn oxides,but aluminosilicates also release Mn.Here,we evaluated oxic Mn dissolution from six rocks and minerals(amph...Manganese is ubiquitous in terrestrial environments and most studies have focused on dissolution of Mn oxides,but aluminosilicates also release Mn.Here,we evaluated oxic Mn dissolution from six rocks and minerals(amphibolite,anorthosite,kaolinite,kyanite,muscovite,orthoclase feldspar) and soils from four Critical Zone Observatories(CZOs) under four LMWOLs treatments(catechol,citric acid,oxalic acid,control).Overall rock and mineral Mn mass-normalized release was 1.4 ± 0.5 nM μM^(-1) 14 d^(-1) and dissolution rate was 2403 ± 935 nM m^(-2) d^(-1) x 10^(3).Overall CZO soil Mn release was 16.7±5.1 nM μM^(-1) 14 d^(-1) and dissolution rate was 7010 ± 2570 nM m^(-2) d^(-1) × 10^(3).Anorthosite and kyanite had the highest Mn dissolution rates but kaolinite and kyanite had the highest Mn mass-normalized release rates.We hypothesize the structural location of Mn,surface area,and potential inclusions of highly-weatherable-phases control Mn dissolution for rocks and minerals.CZO soils with the highest solid phase Mn had the highest Mn release and dissolution rates.Citric acid and catechol had higher Mn release and dissolution rates than the control while oxalic acid did not.For rocks and minerals,we found pH 4 had higher Mn release and dissolution rates than pH6,but not for control treatments without LMWOL.Our study highlights that the abundance of Mn drove Mn release in soils but not rocks and minerals.Moreover,LMWOLs are important for Mn dissolution,even under acidic pH conditions.展开更多
Cementitious alkali activated aluminosilicates pastes were produced from recycled and locally obtainable materials in Iraq. The compositions were based on recycled bricks, water glass, commercial caustic soda flakes, ...Cementitious alkali activated aluminosilicates pastes were produced from recycled and locally obtainable materials in Iraq. The compositions were based on recycled bricks, water glass, commercial caustic soda flakes, and nano silica. The nano silica was prepared from the abundant local "Iraqi anber" rice husks and added to the prepared pastes in different weight percentages. Another set of pastes was prepared via adding 5w% of"A1-Najaf' fly ash at the expense of the recycled bricks powders. The pastes were cured for 1-28 days under ambient conditions. The compressive strengths for the cured pastes were measured. In addition, the cured pastes were characterized via X-ray diffraction, FTIR, and optical microscopy. The addition of the nano silica and longer curing times improve the microstructure packing and thus increases the compressive strengths. The added fly ash impregnates the microstructure with extra gel phase and further improves the compressive strengths of the cured pastes.展开更多
Jajarm's bauxite deposits are mainly diasporic, and they have a low mass ratio of Al2O3/SiO2. It is necessary to increase the run-of-mine mass ratio before feeding the material to the Bayer process. Chemical analysis...Jajarm's bauxite deposits are mainly diasporic, and they have a low mass ratio of Al2O3/SiO2. It is necessary to increase the run-of-mine mass ratio before feeding the material to the Bayer process. Chemical analysis indicated that the low-grade bauxite sample from Jajarm contained 43.9wt% Al2O3 and 13.35wt% SiO2, resulting in a mass ratio of 3.29. According to mineralogical studies, the presence of aluminosilicate minerals such as kaolinite, illite, and quartz was the main reason for the decrease of the mass ratio. Microscopic observations revealed that, with the size reduction from -1000+710 to -38 μm, the liberation degree of diaspore increased from 10% to 60%, and that of aluminosilicates increased from 20% to 85%. Heavy liquids with the densities of 2.8, 3.0, 3.2, and 3.4 g/cm3 were used to evaluate the heavy media separation in three sizes, i.e., -3350+710, -710+212, and -212+125 μm. Laboratory studies confirm that the density of 3.2 g/cm3 can produce the concentrates (in sunk fractions) with recoveries of 89.09%, 91.24%, and 84.68% with the Al2O3/SiO2 mass ratios of 5.03, 5.16, and 5.15 for the -3350+710, -710+212, and -212+ 125 μ m sizes, respectively.展开更多
High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash ...High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent. The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM. The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt. For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt% gangue can still be up to 52.3 MPa. The larger K^+ favors the formation of large silicate oligomers with which AI(OH)4- prefers to bind. Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator. The reasons for this were found through IR and NMR analysis. Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths.展开更多
The flotation of diasporic bauxite is to separate diaspore(valuable mineral)from aluminosilicate minerals(gangue minerals,mainly including kaolinite,illite and pyrophyllite),and the microscopic interaction force betwe...The flotation of diasporic bauxite is to separate diaspore(valuable mineral)from aluminosilicate minerals(gangue minerals,mainly including kaolinite,illite and pyrophyllite),and the microscopic interaction force between the two types of minerals and air bubbles determines the separation efficiency.In this paper,based on the extended Derjaguin-Landau-Verwey-Overbeek(DLVO)theory,the van der Waals,electrostatic and hydrophobic interaction between particles of the four minerals mentioned above and air bubbles in collectorless solution were calculated first,and then diaspore and kaolinite were taken as examples to analyze the influence of various factors such as electrolyte concentration,mineral particle size,air bubble size,collector type(dodecylamine hydrochloride(DAH)and sodium oleate(NaOL))and concentration,and pulp pH on the interactions between the particles of valuable mineral and gangue minerals and air bubbles.The results showed that the total extended DLVO interactions between the four minerals and air bubbles were repulsive in most cases in collectorless solution.The increase in electrolyte concentration reduced the interaction force or even changed the direction of the force under certain circumstances.The addition of DAH and NaOL can reduce the adhesion energy barrier of kaolinitebubble and diaspore-bubble respectively.Each type of minerals exhibited a specific interface interaction response with air bubbles in each collector with different pH values.The research results have theoretical guiding significance for the optimization and directional control of diasporic bauxite flotation conditions.展开更多
The Sarcheshmeh copper flotation circuit is producing 5× 10^4 t copper concentrate per month with an averaging grade of 28% Cu in rougher, cleaner and recleaner stages. In recent years, with the increase in the o...The Sarcheshmeh copper flotation circuit is producing 5× 10^4 t copper concentrate per month with an averaging grade of 28% Cu in rougher, cleaner and recleaner stages. In recent years, with the increase in the open pit depth, the content of aluminosilicate minerals increased in plant feed and subsequently in flotation concentrate. It can motivate some problems, such as unwanted consumption of reagents, decreasing of the copper concentrate grade, increasing of Al2O3 and SiO2 in the copper concentrate, and needing a higher temperature in the smelting process. The evaluation of the composite samples related to the most critical working period of the plant shows that quartz, illite, biotite, chlorite, orthoclase, albeit, muscovite, and kaolinite are the major Al2O3 and SiO2 beating minerals that accompany chalcopyrite, chalcocite, and covellite minerals in the plant feed. The severe alteration to clay minerals was a general rule in all thin sections that were prepared from the plant feed. Sieve analysis of the flotation concentrate shows that Al2O3 and SiO2 bearing minerals in the flotation concentrate can be decreased by promoting the size reduction from 53 to 38 μm. Interlocking of the Al2O3 and SiO2 bearing minerals with chalcopyrite and chalcocite is the occurrence mechanism of silicate and aluminosilicate minerals in the flotation concentrate. The dispersed form of interlocking is predominant.展开更多
The sorption of cadmium(Cd) is one of the most important chemical processes in soil, affecting its fate and mobility in both soil and water and ultimately controlling its bioavailability. In order to fundamentally und...The sorption of cadmium(Cd) is one of the most important chemical processes in soil, affecting its fate and mobility in both soil and water and ultimately controlling its bioavailability. In order to fundamentally understand the sorption/desorption of Cd in soil systems, X-ray absorption fine structure spectroscopy(XAFS) has been applied in numerous studies to provide molecular-level information that can be used to characterize the surface adsorption and precipitation reactions that Cd can undergo. This information greatly improves our current knowledge of the possible chemical reactions of Cd in soil. This paper critically reviews the mechanisms of Cd sorption/desorption at the mineral-water interface based on XAFS studies performed over the past twenty years. An introduction to the basic concepts of sorption processes is provided, followed by a detailed interpretation of XAFS theory and experimental data collection and processing,ending finally with a discussion of the atomic/molecular-scale Cd sorption mechanisms that occur at the soil mineral-water interface. Particular emphasis is placed on literature that discusses Cd adsorption and speciation when associated with iron, manganese, and aluminum oxides and aluminosilicate minerals.Multiple sorption mechanisms by which Cd is sorbed by these minerals have been found, spanning from outer-sphere to inner-sphere to surface precipitation,depending on mineral type, surface loading, and pH. In addition, the application of complementary techniques(e.g.,113 Cd nuclear magnetic resonance(NMR) and molecular dynamics simulation) for probing Cd sorption mechanisms is discussed. This review can help to develop appropriate strategies for the environmental remediation of Cd-contaminated soils.展开更多
基金supported by the National Natural Science Foundation of China(No.22302116)the Fundamental Research Program of Shanxi Province(No.202203021212412)Qingchuang Technology Support Program of the University in Shandong Province(No.2023KJ246).
文摘The Baeyer-Villiger(BV)oxidation of cyclohexanone is explored using IWV-type aluminosilicates with different Al sites as heterogeneous catalysts.The IWV framework exhibits a two-dimensional 12-membered ring(MR)pore system intersected by 14-MR supercages,resembling typical beta zeolite.To address the constraints associated with hydrothermal synthesis,IWV aluminosilicates were synthesized via interzeolite transformation of various FAU-type zeolites.HF-assisted transformation of dealuminated FAU zeolite resulted in the formation of a high-silica IWV aluminosilicate(Si/Al=54.6),whereas the incorporation of aluminum isopropoxide enables the tuning of Si/Al ratio down to 18.7.The alkaline conversion of protonated FAU zeolites,utilizing Na^(+)ions as mineralizing agents,produces high-Al content IWV derivatives in just four days.Catalytic evaluation demonstrates that the high-silica IWV catalyst exhibits a higher turnover number than the other IWV catalysts,along with enhancedε-caprolactone(CL)selectivity relative to that of high-silica beta zeolite.Facile modifications are performed to adjust Al sites,as characterized by pyridine-adsorbed infrared spectroscopy.Experimental evidence confirms that Al Brønsted acid sites improves the selective oxidation of cyclohexanone,while concurrently enhancing CL hydrolysis.
基金support through the research programs(Grant Nos.DQzX-KY-21-008,KYWX-21-023,and KYWX-21-022).
文摘Well-ordered aluminosilicates(MAs)were prepared by in-situ assembly of pre-crystallized units of zeolite Y precursors at a commercial scale,and applied in an industrial fluid catalytic cracking unit for the first time.Compared with incumbent equilibrium catalyst,the surface area of trial equilibrium catalysts(30%inventory ratio)increased from 110 m^(2)g^(-1)to 120m^(2)g^(-1).Moreover,a significant increase of the mesoporous surfaceareaof trial equlibrium catalysts(30%inventoryrati)from 33 m g/to 40magi(22%increase).Furthermore,the equilibrium catalyst that contain 80%LPC-65 yields significantly lower heavy oil(0.23%)and higher total liquids(0.53%)compared with LDO-70.The industrial results demonstrated excellent hydrothermal stability and superior catalytic cracking properties,showing the promising futurein the industrial units.
文摘Low-cost adsorbents constituted by Fe-modified-aluminosilicates (laminar and zeolite type minerals) were developed and characterized to be used in the arsenic removal from groundwater. Iron activation was carried out "in situ" by the synthesis and deposition of mesoporous ferrihydrite. Natural iron-rich aluminosilicate was used as reference. All samples were characterized by X-ray diffraction, Raman spectroscopy, BET N2-adsorption, SEM-EDS microscopy and ICP chemical analysis. Experimental results of arsenic sorption showed that iron-poor raw materials were not active, unlike iron activated samples. The iron loading in all activated samples was below 5% (expressed as Fe203), whereas the removal capacity of these samples reaches between 200-700 gg of As by g of adsorbent, after reusing between 17 cycles and 70 cycles up to adsorbent saturation. Differences can be associated to mineral structure and to the surface charge modification by iron deposition, affecting the attraction of the As-oxoanion. On the basis of low-cost raw materials, the easy chemical process for activation shows that these materials are potentially attractive for As(V) removal. Likewise, the activation of clay minerals, with natural high content of iron, seems to be a good strategy to enhance the arsenic adsorption ability and consequently the useful life of the adsorbent.
文摘In this study the characterization of an aluminosilicate synthesized from commercial Al2(SO4)3 and colloidal SiO2 is presented, as well as its capacity for the removal of copper from aqueous solution. Characterization of the synthesized material was performed using X-ray diffraction, BET nitrogen adsorption-desorption, mass titration and the Boehm method. In order to obtain stable agglomeration and enhance its surface area (165 - 243 m2/g) and solid adsorbing capabilities, the molar ratio SiO2:Al2O3 (1:3, 1:1 and 3:1) was studied, the solubility of the preparation material, synthesis-procedure time and solution pH function were also examined. The maximum capacity to remove copper ions from an aqueous solution by synthesized aluminosilicate was 16 mg/g at pH 4 and 25℃. The Langmuir model fitted better to the copper adsorption experimental data.
基金Supported by National Basic Research Program of China (Grant No. 2006CB202507)National High-tech R&D Program (Grant No. 2006AA02Z209)the National Natural Science Foundation of China (Grant No. 20806086)
文摘Mesoporous aluminosilicates (MAS) bearing microporous zeolite units and mesoporous structures were synthesized by the hydrothermal method. Adsorptive desulfurization ability of model oil and hy-drotreated diesel was studied. The effects of template concentration, crystalization time and calcination time were investigated. The desulfurization ability of adsorbents was improved by transitional metal ion-exchanging. The adsorptive desulfurization of diesel was carried out on a fixed-bed system. The results show that the adsorptive capacity is MAS>MCM-41>NaY. The improvement of desulfurization ability of MAS by Cu+ is more significant than that of Ag+.
文摘A unique templating approach for the synthesis of hexagonal mesoporous aluminosilicates via self assembly of pre formed aluminosilcate nanoclusters with the templating micella formed by cetyltrimethylammonium bromide (CTAB) is described. The obtained materials of MAS 5 are hydrothermally stable, which is shown by X ray diffraction (XRD) analysis. Furthermore, as characterized by NMR technique, MAS 5 has stable tetrahedral aluminum sites that is the major contributions to the acidity of aluminosilicate molecular sieve, and on non framework aluminium species in the samples was observed.
基金the National Natural Science Foundation of China (Nos. 29825108, 20173022 and 20121103), the Major State Basic Research Development Program (No. 20000077507) and the National Advanced Materials Committee of China.
文摘The acidic strength of ordered mesoporous aluminosilicates of MAS-2, MAS-3, MAS-7 and MAS-9 and mi-croporous crystals of Y, L, beta, and ZSM-5 zeolites was systemically investigated by temperature-programmed desorption of ammonia (NH3-TPD). Due to the use of preformed zeolite precursors of Y, L, beta and ZSM-5, the ordered mesoporous aluminosilicates with distinguished acidic strength were obtained, being dependent on the type of preformed zeolite precursors. Therefore, the acidic strength of these mesoporous aluminosilicates could be tai-lored and controlled.
基金Project supported by the National Key Fundamental Research and Development Projects of China (No. G1999022402).
文摘Several 2.0 wt% nickel catalysts supported on nanometer bimodal mesoporous aluminosilicate (NBMAS), AlHMS and AlMCM-41 were prepared by means of the wetness impregnation method. The characterization tech-niques such as Py-FTIR and H2 chemisorption showed that the amount of Br鰊sted acid sites decreased in the order of Ni/AlHMS>Ni/AlMCM-41>Ni/NBMAS, while the nickel dispersion differed a little. In the catalytic n-dodecane hydroconversion, the highest conversion was obtained over Ni/NBMAS, and the lowest isomerization selectivity occurred over Ni/AlHMS. For the cracked products, the symmetrical carbon number distribution cen-tered at C6 was obtained on the Ni/AlMCM-41 catalyst due to the well balanced metal/acid functions, whereas the Ni/AlHMS and Ni/NBMAS catalysts led to more C3-C5 and C1+C11 products, respectively.
基金financially supported by the National Natural Science Foundation of China(Nos.52425408 and 52304345)the Fundamental Research Funds for the Central Universities,China(No.2023CDJXY-016)the Postdoctoral Science Foundation of Chongqing(No.CSTB2023NSCQ-BHX0174)。
文摘Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.
基金support from the National Natural Science Foundation of China(22408004)the Scientific Research Foundation for the Introduction of Talent,Anhui University of Science and Technology(2023yjrc90)+1 种基金the Fundamental Research Funds of the AUST(2024JBQN0015)the Open Research Fund Program of Anhui Provincial Institute of Modern Coal Processing Technology,Anhui University of Science and Technology(MTY202302).
文摘China has abundant resources of high-alumina coal(HAC).However,its application as a raw gasification material is limited owing to high ash-fusion characteristics.For overcoming the limitation,this study employed Xinjiang coal(XJ),having a low ash fusion temperature,to improve the ash fusibility and viscosity of high-alumina Jungar coal(JG).The evolution of Al-containing phases and structures during mixed ash melting were investigated based on XRD,XPS,27Al NMR,high-temperature stage microscopy(HTSM),and thermodynamic simulations.An increase in the XJ mass ratio resulted in the transformation of gehlenite to anorthite and mullite,producing more amorphous materials at high temperature.These phenomena were manifested at a microscopic imaging as an increase in the number of reaction/melting sites and their area expansion rate,as well as a decrease in ash area shrinkage and melting temperature.Moreover,the introduction of XJ altered the alumina-oxygen network,reducing the binding to the silicaoxygen network and converting some[AlO_(6)]^(9-)to[AlO_(4)]^(5-)as the relative concentration of O_(2)-and O-increases.Consequently,the decrease in the stability of the aluminate structure improves the AFT and viscosity.Based on these results,a mechanism to improve the ash fusion characteristics of HAC based on coal blending is proposed.
基金supported by the National Key Research and Development Program of China(2022YFA1503602)the National Natural Science Foundation of China(22288101,U21B20101 and 22172141)+1 种基金the BASF International Network of Centers of Excellence projectthe Zhejiang Provincial Natural Science Foundation of China(LR24B030001)。
文摘ITR zeolite could be potentially used as catalysts in methanol to propylene(MTP),where their performance is strongly related to its Al distribution.However,the control of Al distribution in ITR zeolite poses a significant synthetic challenge.Herein,we demonstrate the possibility to control the Al distribution in ITR zeolites using zeolite A as an aluminum source(A-ITR).The A-ITR exhibited similar crystallinity,nanosheet morphology,textual parameters,and acidic concentration with those of conventional ITR made zeolites using aluminum isopropoxide as an aluminum source(C-ITR).Characterizations of the zeolite product with^(27)Al MQ.MAS NMR spectra,^(27)Al MAS NMR spectra,and 1-hexene cracking reveal that the A-ITR zeolites have more Al species distributed in T6 and T8 sites located in relatively smaller micropores of the framework than C-ITR.As a result,the A-ITR gave enhanced catalyst lifetime and propylene selectivity due to the suppression of the aromatic cycle in the MTP reaction,compared with the C-ITR.This work provides an alternative approach to prepare efficient ITR zeolites for MTP reaction.
基金Funded by National Natural Science Foundation of China(No.52172019)Shandong Provincial Youth Innovation Team Development Plan of Colleges and Universities(No.2022KJ100)。
文摘The effects of different Al_(2)O_(3)/SiO_(2)(Al/Si)ratios on the structure and tensile strength of Na_(2)O-CaO-MgO-Al_(2)O_(3)-SiO_(2)glass fiber were investigated by Raman,tensile strength tests and molecular dynamics simulation.The results showed that Al^(3+)mainly existed in the form of[AlO_(4)]within the glass network.With the increase of Al/Si ratio,the Si-O-Al linkage gradually became the main connection mode of glass network.The increase of bridging oxygen content and variation of Q^(n) indicated that a higher degree of network polymerization was formed.The tensile strength of the glass fibers obtained through experiments increased from 2653.56 to 2856.83 MPa,which was confirmed by the corresponding molecular dynamics simulation.During the stretching process,the Si-O bonds in the Si-O-Al linkage tended to break regardless of the compositional changes,and the increase of fractured Si-O-Al and Al-O-Al linkage absorbed more energy to resist the destroy.
基金Project(2013AA064102)supported by the High-tech Research and Development Program of ChinaProject(51004114)supported by the National Natural Science Foundation of China+1 种基金Project(2007B52)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NCEP-08-0568)supported by the Program for New Century Excellent Talents in Chinese University
文摘Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.
基金the National Science Foundation Grants (NSF-1360760) to the Critical Zone Observatory Network National Office and NSF-1660923 to Dr.Louis A.Derry through a subaward to Dr.Justin B.Richardson。
文摘Manganese is ubiquitous in terrestrial environments and most studies have focused on dissolution of Mn oxides,but aluminosilicates also release Mn.Here,we evaluated oxic Mn dissolution from six rocks and minerals(amphibolite,anorthosite,kaolinite,kyanite,muscovite,orthoclase feldspar) and soils from four Critical Zone Observatories(CZOs) under four LMWOLs treatments(catechol,citric acid,oxalic acid,control).Overall rock and mineral Mn mass-normalized release was 1.4 ± 0.5 nM μM^(-1) 14 d^(-1) and dissolution rate was 2403 ± 935 nM m^(-2) d^(-1) x 10^(3).Overall CZO soil Mn release was 16.7±5.1 nM μM^(-1) 14 d^(-1) and dissolution rate was 7010 ± 2570 nM m^(-2) d^(-1) × 10^(3).Anorthosite and kyanite had the highest Mn dissolution rates but kaolinite and kyanite had the highest Mn mass-normalized release rates.We hypothesize the structural location of Mn,surface area,and potential inclusions of highly-weatherable-phases control Mn dissolution for rocks and minerals.CZO soils with the highest solid phase Mn had the highest Mn release and dissolution rates.Citric acid and catechol had higher Mn release and dissolution rates than the control while oxalic acid did not.For rocks and minerals,we found pH 4 had higher Mn release and dissolution rates than pH6,but not for control treatments without LMWOL.Our study highlights that the abundance of Mn drove Mn release in soils but not rocks and minerals.Moreover,LMWOLs are important for Mn dissolution,even under acidic pH conditions.
文摘Cementitious alkali activated aluminosilicates pastes were produced from recycled and locally obtainable materials in Iraq. The compositions were based on recycled bricks, water glass, commercial caustic soda flakes, and nano silica. The nano silica was prepared from the abundant local "Iraqi anber" rice husks and added to the prepared pastes in different weight percentages. Another set of pastes was prepared via adding 5w% of"A1-Najaf' fly ash at the expense of the recycled bricks powders. The pastes were cured for 1-28 days under ambient conditions. The compressive strengths for the cured pastes were measured. In addition, the cured pastes were characterized via X-ray diffraction, FTIR, and optical microscopy. The addition of the nano silica and longer curing times improve the microstructure packing and thus increases the compressive strengths. The added fly ash impregnates the microstructure with extra gel phase and further improves the compressive strengths of the cured pastes.
文摘Jajarm's bauxite deposits are mainly diasporic, and they have a low mass ratio of Al2O3/SiO2. It is necessary to increase the run-of-mine mass ratio before feeding the material to the Bayer process. Chemical analysis indicated that the low-grade bauxite sample from Jajarm contained 43.9wt% Al2O3 and 13.35wt% SiO2, resulting in a mass ratio of 3.29. According to mineralogical studies, the presence of aluminosilicate minerals such as kaolinite, illite, and quartz was the main reason for the decrease of the mass ratio. Microscopic observations revealed that, with the size reduction from -1000+710 to -38 μm, the liberation degree of diaspore increased from 10% to 60%, and that of aluminosilicates increased from 20% to 85%. Heavy liquids with the densities of 2.8, 3.0, 3.2, and 3.4 g/cm3 were used to evaluate the heavy media separation in three sizes, i.e., -3350+710, -710+212, and -212+125 μm. Laboratory studies confirm that the density of 3.2 g/cm3 can produce the concentrates (in sunk fractions) with recoveries of 89.09%, 91.24%, and 84.68% with the Al2O3/SiO2 mass ratios of 5.03, 5.16, and 5.15 for the -3350+710, -710+212, and -212+ 125 μ m sizes, respectively.
基金This work was supported by the National High-Tech Research and Development Program of China (No.2003AA332020), the Nation-al Natural Science Foundation of China (No.50474002) and the Key Project of the Ministry of Education of China (No.104231).
文摘High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent. The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM. The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt. For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt% gangue can still be up to 52.3 MPa. The larger K^+ favors the formation of large silicate oligomers with which AI(OH)4- prefers to bind. Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator. The reasons for this were found through IR and NMR analysis. Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths.
基金supported by the National Natural Science Foundation of China(No.51904240,51904239,52104268)the Natural Science Foundation of Shaanxi Province(No.2020JQ-752,2021JQ-571)+3 种基金the Postdoctoral Science Foundation of China(No.2019M653877XB)the Outstanding Youth Science Foundation of Xi’an University of Science and Technology(No.2019YQ3-08)the Huo Yingdong Education Foundation(No.171102)the 2019 Merit-based Science and Technology Project Foundation for Shannxi Overseas-educated Scholars(No.14).
文摘The flotation of diasporic bauxite is to separate diaspore(valuable mineral)from aluminosilicate minerals(gangue minerals,mainly including kaolinite,illite and pyrophyllite),and the microscopic interaction force between the two types of minerals and air bubbles determines the separation efficiency.In this paper,based on the extended Derjaguin-Landau-Verwey-Overbeek(DLVO)theory,the van der Waals,electrostatic and hydrophobic interaction between particles of the four minerals mentioned above and air bubbles in collectorless solution were calculated first,and then diaspore and kaolinite were taken as examples to analyze the influence of various factors such as electrolyte concentration,mineral particle size,air bubble size,collector type(dodecylamine hydrochloride(DAH)and sodium oleate(NaOL))and concentration,and pulp pH on the interactions between the particles of valuable mineral and gangue minerals and air bubbles.The results showed that the total extended DLVO interactions between the four minerals and air bubbles were repulsive in most cases in collectorless solution.The increase in electrolyte concentration reduced the interaction force or even changed the direction of the force under certain circumstances.The addition of DAH and NaOL can reduce the adhesion energy barrier of kaolinitebubble and diaspore-bubble respectively.Each type of minerals exhibited a specific interface interaction response with air bubbles in each collector with different pH values.The research results have theoretical guiding significance for the optimization and directional control of diasporic bauxite flotation conditions.
文摘The Sarcheshmeh copper flotation circuit is producing 5× 10^4 t copper concentrate per month with an averaging grade of 28% Cu in rougher, cleaner and recleaner stages. In recent years, with the increase in the open pit depth, the content of aluminosilicate minerals increased in plant feed and subsequently in flotation concentrate. It can motivate some problems, such as unwanted consumption of reagents, decreasing of the copper concentrate grade, increasing of Al2O3 and SiO2 in the copper concentrate, and needing a higher temperature in the smelting process. The evaluation of the composite samples related to the most critical working period of the plant shows that quartz, illite, biotite, chlorite, orthoclase, albeit, muscovite, and kaolinite are the major Al2O3 and SiO2 beating minerals that accompany chalcopyrite, chalcocite, and covellite minerals in the plant feed. The severe alteration to clay minerals was a general rule in all thin sections that were prepared from the plant feed. Sieve analysis of the flotation concentrate shows that Al2O3 and SiO2 bearing minerals in the flotation concentrate can be decreased by promoting the size reduction from 53 to 38 μm. Interlocking of the Al2O3 and SiO2 bearing minerals with chalcopyrite and chalcocite is the occurrence mechanism of silicate and aluminosilicate minerals in the flotation concentrate. The dispersed form of interlocking is predominant.
基金funded by the National Natural Science Foundation of China (Nos. 41722303, 41977267, and 41473084)the National Key R&D Program of China (No. 2017YFD0800303)+1 种基金the financial support of the Opening Fund of State Key Laboratory of Environmental Geochemistry (No. SKLEG2019712)the National 1 000 Youth Talent Program of China。
文摘The sorption of cadmium(Cd) is one of the most important chemical processes in soil, affecting its fate and mobility in both soil and water and ultimately controlling its bioavailability. In order to fundamentally understand the sorption/desorption of Cd in soil systems, X-ray absorption fine structure spectroscopy(XAFS) has been applied in numerous studies to provide molecular-level information that can be used to characterize the surface adsorption and precipitation reactions that Cd can undergo. This information greatly improves our current knowledge of the possible chemical reactions of Cd in soil. This paper critically reviews the mechanisms of Cd sorption/desorption at the mineral-water interface based on XAFS studies performed over the past twenty years. An introduction to the basic concepts of sorption processes is provided, followed by a detailed interpretation of XAFS theory and experimental data collection and processing,ending finally with a discussion of the atomic/molecular-scale Cd sorption mechanisms that occur at the soil mineral-water interface. Particular emphasis is placed on literature that discusses Cd adsorption and speciation when associated with iron, manganese, and aluminum oxides and aluminosilicate minerals.Multiple sorption mechanisms by which Cd is sorbed by these minerals have been found, spanning from outer-sphere to inner-sphere to surface precipitation,depending on mineral type, surface loading, and pH. In addition, the application of complementary techniques(e.g.,113 Cd nuclear magnetic resonance(NMR) and molecular dynamics simulation) for probing Cd sorption mechanisms is discussed. This review can help to develop appropriate strategies for the environmental remediation of Cd-contaminated soils.