The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments...The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments were employed to improve the high-temperature oxidation resistance of AISI 321 stainless steel at 620°C.These two treatments decreased the oxidation rate of AISI 321 steel.Specifically,the optimal oxidation resistance was observed in aluminized steel before oxidation for 144 h owing to the increased entropy of the LSP-treated specimen.After 144 h,LSP-treated steel achieved the best oxidation resistance because of the formation of a protectiveα-Al2O3film.Moreover,the large amount of subgrain boundaries formed on the aluminized layer of the LSP-treated samples could act as short-circuit paths for the outward diffusion of Al,facilitating the rapid nucleation ofα-Al2O3.Meanwhile,the aluminized layer could isolate the contact between the oxidation environment and matrix,thereby decreasing the oxidation rate.Furthermore,the minimum oxidation parabolic constant was calculated for LSP-treated steel(6.45787×10^(-14)),which was 69.18%and 36.36%that of aluminized and 321 steel,respectively,during the entire oxidation process.Therefore,the combination of aluminizing and LSP treatments can improve the high-temperature oxidation resistance of 321 stainless steel,providing a new idea for its surface treatment to achieve a long service life at high temperatures.展开更多
Pure titanium samples were aluminized at 950,1025 and 1100 ℃ for 0-6 h in a pack containing 10%Al+5%NaF+85%Al2O3 in mass traction.The aluminized layers formed on the samples were characterized.The kinetic studies i...Pure titanium samples were aluminized at 950,1025 and 1100 ℃ for 0-6 h in a pack containing 10%Al+5%NaF+85%Al2O3 in mass traction.The aluminized layers formed on the samples were characterized.The kinetic studies indicated that the diffusion of Al-bearing gases through the pack is the rate-controlling step in this process.The activation energy of 161.8 kJ/mol was calculated for this step.In addition,the mass gains of the aluminized samples were predicted using the partial pressures of gases in the pack and those adjacent to the samples surface.The predicted values are in good agreement wim the experimental measurements at 950 ℃ but are higher than those measured at 1025 and 1100 ℃.展开更多
This study reports the significantly enhanced aluminizing behaviors of a low carbon steel at temperatures far below the austenitizing temperature, with a nanostructured surface layer produced by surface mechanical att...This study reports the significantly enhanced aluminizing behaviors of a low carbon steel at temperatures far below the austenitizing temperature, with a nanostructured surface layer produced by surface mechanical attrition treatment (SMAT). A much thicker iron aluminide compound layer with a much enhanced growth kinetics of η-Fe2Al5 in the SMAT sample has been observed relative to the coarse-grained steel sample. Compared to the coarse-grained sample, a weakened texture is formed in the aluminide layer in the SMAT sample. The aluminizing kinetics is analyzed in terms of promoted difusivity and nucleation frequency in the nanostructured surface layer.展开更多
Aluminizing coating and aluminizing-dispersed Y 2O 3 composite coating were prepared on 20 steel specimens by pulsed spark technique, which exhibited a micro-crystallized structure with grain size in the range of se...Aluminizing coating and aluminizing-dispersed Y 2O 3 composite coating were prepared on 20 steel specimens by pulsed spark technique, which exhibited a micro-crystallized structure with grain size in the range of several ten to several hundred nanometers. It is shown that, after oxidation at 600 ℃ in air for 100 h, these two kinds of coatings have excellent resistance to high temperature oxidation and scale spallation, and the aluminizing-dispersed Y 2O 3 composite coating has even better property than the aluminizing coating. AFM, SEM, EDS and XRD were applied to analyze the surface morphology, composition and phases structure of these coatings and the oxide scale formed in oxidation. The mechanism for these coatings that how to enhance the oxidation resistance and scale spallation resistance was discussed by considering the factors, such as Al concentration on the selective oxidation of Fe-Al alloy, the effect of micro-crystallization, reactive element effect (REE) caused by dispersed Y 2O 3, etc.展开更多
Aluminizing of Cu by a pack cementation process was performed to improve its surface properties.The effect of variation of pack aluminizing temperature from 800 to 900℃ and aluminizing time from 1 to 6 h on the micro...Aluminizing of Cu by a pack cementation process was performed to improve its surface properties.The effect of variation of pack aluminizing temperature from 800 to 900℃ and aluminizing time from 1 to 6 h on the microstructure and the thickness of the aluminide coating of Cu was investigated. Pack aluminizing of Cu significantly improved the microhardness and the oxidation resistance. The microhardness was increased about seven times and the oxidation resistance,after 96 h exposure in air at 900℃, was extremely increased ten times by aluminizing Cu at 900℃ for 3 h.展开更多
In this study, the two kinds of Fe-Al coatings were fabricated by pack aluminizing on low-carbon steel at different temperatures. The corrosion behavior of the Fe-Al coatings in artificial seawater was investigated by...In this study, the two kinds of Fe-Al coatings were fabricated by pack aluminizing on low-carbon steel at different temperatures. The corrosion behavior of the Fe-Al coatings in artificial seawater was investigated by the electrochemical and weight loss techniques. Results show that the thickness of coating layer increases with increasing aluminizing temperature. The coatings exhibit high micro-hardness and good metallurgical bonding with the substrate. In comparison with the steel substrate, the corrosion current density Ico^r of the Fe-AI coatings is always lower than that of substrate, about 1/38 or 1/33 after 2 h immersion, and 1/3 or 1/6 for 720 h immersion. As can be seen from the weight loss curve, the Fe-AI coatings show less loss than that of the substrate within 30-day immersion. The corrosion products formed on the surface of the coatings include oxides of Al, Mg, Fe and Ca, and pitting defect has also been found. The Fe-Al coating with higher content of Fe2Al5 has better corrosion resistance.展开更多
The steel surface treatment by rare-earth aluminithermic aluminizing,which was utilized onthermal couple,buried parts of lightning arrester and silencer of automobile,has met with success.This new technique was studie...The steel surface treatment by rare-earth aluminithermic aluminizing,which was utilized onthermal couple,buried parts of lightning arrester and silencer of automobile,has met with success.This new technique was studied by Beijing University of Science and Technology,BeijingIron-steel Institute and Jingdong Work of Corrosion-protective Materials cooperatively.The steel展开更多
Aluminum was deposited by diffusion into Cu-Al-Y alloy substrates by the pack-cementation process.Diffusion was carried out in two kinds of container with pot-type and can-type,and the results are presented.The effect...Aluminum was deposited by diffusion into Cu-Al-Y alloy substrates by the pack-cementation process.Diffusion was carried out in two kinds of container with pot-type and can-type,and the results are presented.The effects of various time and temperature on the coating characteristics of Cu-Al-Y was also investigated.The result shows that the diffusion layer is nearly 170-200μm in thickness by aluminizing treatment at 900-950℃for 6-8 h in pot-type container.The aluminized layers were observed by a scanning electron micrograph(SEM),we can found:A uniform coating was achieved on Cu-Al-Y alloy surface,relatively uniform thickness and even interfaces between the layers and the substrate.The diffusion coefficient of Al in Cu-Al-Y alloys at 900℃in pot-type container can be calculated is 3.65×10-12 m 2 /s.展开更多
Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity.Although the pulling speed is one of the most important parameters to control the coating t...Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity.Although the pulling speed is one of the most important parameters to control the coating thickness of aluminizing products,however,there are few publications on the mathematical modeling of pulling speed during the hot dip process.In order to describe the correlation among the pulling speed,coating thickness and solidification time,the principle of mass and heat transfer during the aluminizing process is investigated in this paper.The mathematical models are based on Navier-Stokes equation and heat transfer analysis.Experiments using the self-designed equipment are carried out to validate the mathematical models.Specifically,aluminum melt is purified at 730℃.The Cook-Norteman method is used for the pretreatment of Q235 steel plates.The temperature of hot dip aluminizing is set to 690℃and thedipping time is set to 3 min.A direct current motor with stepless speed variation is used to adjust the pulling speed.The temperature change of the coating is recorded by an infrared thermometer,and the coating thickness is measured by using image analysis.The validate experiment results indicate that the coating thickness is proportional to the square root of pulling speed for the Q235 steel plate,and that there is a linear relationship between coating thickness and solidification time when the pulling speed is lower than 0.11 m/s.The prediction of the proposed model fits well with the experimental observations of the coating thickness.展开更多
The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spe...The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology.展开更多
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
The effects of siderite,hematite,and goethite on pyrite reactions in sodium aluminate solution at high temperatures,based on the coexistence of pyrite and iron-bearing minerals in bauxite,were studied.The addition of ...The effects of siderite,hematite,and goethite on pyrite reactions in sodium aluminate solution at high temperatures,based on the coexistence of pyrite and iron-bearing minerals in bauxite,were studied.The addition of siderite,goethite,and hematite increases the concentrations of S_(2)O_(3)^(2−),SO_(3)^(2−)and SO_(4)^(2−),enhancing sulfur removal during desilication.Siderite and hematite facilitate nearly 100%magnetite formation from pyrite,whereas goethite leads to the formation of both hematite and magnetite from pyrite through a multiphase transformation process.Iron-bearing minerals significantly increase the iron content in residues and enhance iron recovery from the red mud.Siderite,goethite,and hematite produce a porous surface in the form of erosive holes due to electrochemical corrosion,improving reaction efficiency of pyrite.Additionally,electrochemical corrosion promotes the pyrite reaction in accordance with the Kröger and Ziegler models,controlled by interfacial diffusion and chemical reactions in the presence of siderite,hematite and magnetite.展开更多
Dissolution kinetics of CaO·2Al_(2)O_(3)(CA_(2))particles in a synthetic CaO-Al_(2)O_(3)-SiO_(2)steelmaking slag system have been investigated using the high-temperature confocal laser scanning microscope.Effects...Dissolution kinetics of CaO·2Al_(2)O_(3)(CA_(2))particles in a synthetic CaO-Al_(2)O_(3)-SiO_(2)steelmaking slag system have been investigated using the high-temperature confocal laser scanning microscope.Effects of temperature(i.e.,1500,1550,and 1600℃)and slag composition on the dissolution time of CA_(2)particles are investigated,along with the time dependency of the projection area of the particle during the dissolution process.It is found that the dissolution rate was enhanced by either an increase in temperature or a decrease in slag viscosity.Moreover,a higher ratio of CaO/Al_(2)O_(3)(C/A)leads to an increased dissolution rate of CA_(2)particle at 1600℃.Thermodynamic calculations suggested the dissolution product,i.e.,melilite,formed on the surface of the CA_(2)particle during dissolution in slag with a C/A ratio of 3.8 at 1550℃.Scanning electron microscopy equipped with energy dispersive X-ray spectrometry analysis of as-quenched samples confirmed the dissolution path of CA_(2)particles in slags with C/A ratios of 1.8 and 3.8 as well as the melilite formed on the surface of CA_(2)particle.The formation of this layer during the dissolution process was identified as a hindrance,impeding the dissolution of CA_(2)particle.A valuable reference for designing or/and choosing the composition of top slag for clean steel production is provided,especially using calcium treatment during the secondary refining process.展开更多
In order to prepare high density magnesium aluminate spinel materials,the light-burned magnesia and alumina powder were used as the main raw materials.Active magnesium aluminate spinel powders were synthesized at diff...In order to prepare high density magnesium aluminate spinel materials,the light-burned magnesia and alumina powder were used as the main raw materials.Active magnesium aluminate spinel powders were synthesized at different temperatures,and the sintering properties of the synthesized materials were characterized.The results show that the optimal light-burned temperature for synthesizing active magnesium aluminate spinel raw materials with small grain sizes and high sintering activity is 1400℃.The active spinel raw materials were sintered at 1750℃ for 3 h to form a dense spinel material,in which the spinel grains were well developed,exhibited a dense interlocking structure,and were uniformly distributed,with an average grain size of about 7.26μm.The bulk density and apparent porosity of the dense spinel material were 3.29 g·cm^(-3) and 3.5%,respectively.展开更多
The new CL-20(hexanitrohexaazaisowurtzitane)type aluminized explosives in the overdrive detonation(ODD)conditions of the core problem is how to accurately represent the state of the overdrive detonation products.To th...The new CL-20(hexanitrohexaazaisowurtzitane)type aluminized explosives in the overdrive detonation(ODD)conditions of the core problem is how to accurately represent the state of the overdrive detonation products.To this end,this paper is based on the impedance matching method to test the ODD conditions of CL-20 type aluminium explosive particle velocity.Calculated the interfacial pressure of the shock wave in different media.Determined the characteristic parameters of the reaction zone of the detonation of CL-20 aluminized explosives.Calibrated the parameters of the JoneseWilkinseLee(JWL)+γ equation for the detonation products(DPs).Revealed the effect of different DPs equation of state(EOS)on the Hugoniot pressure of ODD.The results indicate that when the content of aluminum powder ranges from 0%to 30%,the duration of the ODD reaction zone and the width of the detonation reaction zone of the CL-20-based aluminized explosive are directly proportional to the content of aluminum powder.The width of the detonation reaction zone is increased by 1.97 times to 2.7 times compared to that of the reaction zone without the addition of aluminum powder.However,the energy release efficiency of the detonation reaction zone is inversely proportional to the content of aluminum powder.When the aluminum powder content was held constant,the incorporation of AP caused a 25%reduction in the energy release efficiency of the detonation reaction zone.Compared with existing ODD state equations,the JWL +γ equation is superior in calibrating overpressure Hugoniot data and the isentropic expansion in the C-J state.The deviation between calculated pressure results and experimental measurements is within 6%.展开更多
This article investigates the low-temperature formation of aluminide coatings on a Ni-base superalloy by pack cementation process. The pack cemented coatings characteristic of high density and homogeneity possess a tw...This article investigates the low-temperature formation of aluminide coatings on a Ni-base superalloy by pack cementation process. The pack cemented coatings characteristic of high density and homogeneity possess a two-layer structure. The top layer mainly consists of Al3Ni2 and Al3Ni,while the bottom layer of Al3Ni2. Great efforts are made to elucidate the effects of different experimental parameters on the microstructure and the constituent distribution of the coatings. The results show that all the parameters exclusive of the pack activator (NH4Cl) content produce effect on the coating thickness,but do not on the microstructure and the constituent distribution. The pack activator (NH4Cl) content affects neither the coating thickness nor structure and constituent distribution. The parabolic relationship between the coating thickness and the deposition time suggests that the process is diffusion-controlled. Furthermore,the article demonstrates a linear relationship between the coating thickness and the re-ciprocal deposition temperature.展开更多
Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodi...Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodium aluminate solutions. The removal efficiency of S^2- using ferrous compound and ferric compound can reach 86.10% and 92.70% respectively when the iron compounds were added with a molar ratio of 2:1 compared with the sulfur in liquors at 100℃. Moreover, several same compounds are formed in those two desulfurization processes with ferrous or ferric compounds, including erdite, hematite, amorphous ferrous sulfide, polymerized sulfur-iron compounds and ferric sulfate. The major difference between these two processes is that the erdite generated from ferrous compounds at the initial reaction stage will convert to a sodium-free product FeS2 at the subsequent stage.展开更多
The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissol...The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissolved in sodium hydroxide solution was proposed. New Pitzer model parameters and mixing parameters for the system NaOH-NaAI(OH)4-H20 were yielded and tested in the temperature range of 298.15-373.15 K. The results show that the proposed model for calculating the equilibrium constant of gibbsite dissolution is applicable and accurate. The obtained Pitzer model parameters of β(0)(NaAl(OH)4)、β(1)(NaAl(OH)4)和CΦ(NaAl(OH)4),Al(OH)4 for NaAI(OH)4, the binary mixing parameter of θ(OH-Al(OH)4-) with OH-, and the ternary mixing parameter of ψ(Na+OH-Al(OH)4-) for AI(OH)4- with OH- and Na+ are temperature-dependent. The prediction of the equilibrium solubility of gibbsite dissolved in sodium hydroxide solution was feasible in the temperature range of 298.15-373.15 K.展开更多
The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analy...The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analysis, quantitative elemental analysis and microstructure. The results show that Sc_2O_3 is found to be beneficial for the densification of MAS. Sc_2O_3 has a more significant effect on the densification of partially spinelized MAS batch than that of fully spinelized MAS batch. At the sintering temperature of 1650 °C, the bulk density of sintered products of partially spinelized powders increases by 0.243 g/cm3 as the Sc_2O_3 content increases from 0 to 4%(mass fraction) and that of fully spinelized powder increases by 0.14 g/cm3. Compared with the sintered samples prepared from the fully spinelized powder, the sintered samples using the partially spinelized powders as raw materials have more compact microstructures.展开更多
It is necessary to clarify the influence of thermal history on the conversion of aluminate species in sodium aluminate solution in order to optimize Bayer alumina production. The interconversion of various solution sp...It is necessary to clarify the influence of thermal history on the conversion of aluminate species in sodium aluminate solution in order to optimize Bayer alumina production. The interconversion of various solution species in the systems was investigated by measuring the infrared spectra of sodium aluminate solution with different compositions after separate heat treatment, dilution and concentration. The results show that increasing temperature or prolonging holding time favors the transformation of Al2O(OH)2- to Al—OH vibration(condensed Al O4 tetrahedral aluminate ion) at about 880 cm-1 and Al(OH)-4. A12O(OH)2-66 and Al—OH tetrahedral dimer ions convert rapidly to Al(OH)-4 during the dilution process; however, the back transformation of Al(OH)-4 to the Al—OH tetrahedral dimer ions can occur in diluted sodium aluminate solution. As for the concentration process, the transformation of Al(OH)-4 to A12O(OH)2-6 and Al—OH tetrahedral dimer ions can take place, while it is relatively difficult to transform to A12O(OH)2-6.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52075048,51675058,12232004)Hunan Provincial Excellent Youth Project of the Education Department(Grant No.21B0304)+2 种基金Natural Science Foundation of Hunan Province(Grant No.2023JJ30025)Science and Technology Innovation Program of Hunan Province(Grant No.2023RC1058)Scientific Research Innovation Project for Graduate Student of Changsha University of Science and Technology(Grant No.CLSJCX22096)。
文摘The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments were employed to improve the high-temperature oxidation resistance of AISI 321 stainless steel at 620°C.These two treatments decreased the oxidation rate of AISI 321 steel.Specifically,the optimal oxidation resistance was observed in aluminized steel before oxidation for 144 h owing to the increased entropy of the LSP-treated specimen.After 144 h,LSP-treated steel achieved the best oxidation resistance because of the formation of a protectiveα-Al2O3film.Moreover,the large amount of subgrain boundaries formed on the aluminized layer of the LSP-treated samples could act as short-circuit paths for the outward diffusion of Al,facilitating the rapid nucleation ofα-Al2O3.Meanwhile,the aluminized layer could isolate the contact between the oxidation environment and matrix,thereby decreasing the oxidation rate.Furthermore,the minimum oxidation parabolic constant was calculated for LSP-treated steel(6.45787×10^(-14)),which was 69.18%and 36.36%that of aluminized and 321 steel,respectively,during the entire oxidation process.Therefore,the combination of aluminizing and LSP treatments can improve the high-temperature oxidation resistance of 321 stainless steel,providing a new idea for its surface treatment to achieve a long service life at high temperatures.
文摘Pure titanium samples were aluminized at 950,1025 and 1100 ℃ for 0-6 h in a pack containing 10%Al+5%NaF+85%Al2O3 in mass traction.The aluminized layers formed on the samples were characterized.The kinetic studies indicated that the diffusion of Al-bearing gases through the pack is the rate-controlling step in this process.The activation energy of 161.8 kJ/mol was calculated for this step.In addition,the mass gains of the aluminized samples were predicted using the partial pressures of gases in the pack and those adjacent to the samples surface.The predicted values are in good agreement wim the experimental measurements at 950 ℃ but are higher than those measured at 1025 and 1100 ℃.
基金supported by the National Science Foundation of China (Nos.50701044 and 50890171)the Ministry of Science and Technology of China (No.2005CB623604)
文摘This study reports the significantly enhanced aluminizing behaviors of a low carbon steel at temperatures far below the austenitizing temperature, with a nanostructured surface layer produced by surface mechanical attrition treatment (SMAT). A much thicker iron aluminide compound layer with a much enhanced growth kinetics of η-Fe2Al5 in the SMAT sample has been observed relative to the coarse-grained steel sample. Compared to the coarse-grained sample, a weakened texture is formed in the aluminide layer in the SMAT sample. The aluminizing kinetics is analyzed in terms of promoted difusivity and nucleation frequency in the nanostructured surface layer.
文摘Aluminizing coating and aluminizing-dispersed Y 2O 3 composite coating were prepared on 20 steel specimens by pulsed spark technique, which exhibited a micro-crystallized structure with grain size in the range of several ten to several hundred nanometers. It is shown that, after oxidation at 600 ℃ in air for 100 h, these two kinds of coatings have excellent resistance to high temperature oxidation and scale spallation, and the aluminizing-dispersed Y 2O 3 composite coating has even better property than the aluminizing coating. AFM, SEM, EDS and XRD were applied to analyze the surface morphology, composition and phases structure of these coatings and the oxide scale formed in oxidation. The mechanism for these coatings that how to enhance the oxidation resistance and scale spallation resistance was discussed by considering the factors, such as Al concentration on the selective oxidation of Fe-Al alloy, the effect of micro-crystallization, reactive element effect (REE) caused by dispersed Y 2O 3, etc.
文摘Aluminizing of Cu by a pack cementation process was performed to improve its surface properties.The effect of variation of pack aluminizing temperature from 800 to 900℃ and aluminizing time from 1 to 6 h on the microstructure and the thickness of the aluminide coating of Cu was investigated. Pack aluminizing of Cu significantly improved the microhardness and the oxidation resistance. The microhardness was increased about seven times and the oxidation resistance,after 96 h exposure in air at 900℃, was extremely increased ten times by aluminizing Cu at 900℃ for 3 h.
基金supported by the Foundation of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (No. ASMA 201403)Cooperative Innovation Fund of Jiangsu Province (No. BY 2014004-09)
文摘In this study, the two kinds of Fe-Al coatings were fabricated by pack aluminizing on low-carbon steel at different temperatures. The corrosion behavior of the Fe-Al coatings in artificial seawater was investigated by the electrochemical and weight loss techniques. Results show that the thickness of coating layer increases with increasing aluminizing temperature. The coatings exhibit high micro-hardness and good metallurgical bonding with the substrate. In comparison with the steel substrate, the corrosion current density Ico^r of the Fe-AI coatings is always lower than that of substrate, about 1/38 or 1/33 after 2 h immersion, and 1/3 or 1/6 for 720 h immersion. As can be seen from the weight loss curve, the Fe-AI coatings show less loss than that of the substrate within 30-day immersion. The corrosion products formed on the surface of the coatings include oxides of Al, Mg, Fe and Ca, and pitting defect has also been found. The Fe-Al coating with higher content of Fe2Al5 has better corrosion resistance.
文摘The steel surface treatment by rare-earth aluminithermic aluminizing,which was utilized onthermal couple,buried parts of lightning arrester and silencer of automobile,has met with success.This new technique was studied by Beijing University of Science and Technology,BeijingIron-steel Institute and Jingdong Work of Corrosion-protective Materials cooperatively.The steel
基金Basic Research Priorities Program of the Science and Technology Committee of Shanghai(03JC14063)Shanghai Leading Academic Discipline Project(J50503)Innovative Program of the Education Commission of Shanghai(11YZ112)
文摘Aluminum was deposited by diffusion into Cu-Al-Y alloy substrates by the pack-cementation process.Diffusion was carried out in two kinds of container with pot-type and can-type,and the results are presented.The effects of various time and temperature on the coating characteristics of Cu-Al-Y was also investigated.The result shows that the diffusion layer is nearly 170-200μm in thickness by aluminizing treatment at 900-950℃for 6-8 h in pot-type container.The aluminized layers were observed by a scanning electron micrograph(SEM),we can found:A uniform coating was achieved on Cu-Al-Y alloy surface,relatively uniform thickness and even interfaces between the layers and the substrate.The diffusion coefficient of Al in Cu-Al-Y alloys at 900℃in pot-type container can be calculated is 3.65×10-12 m 2 /s.
基金supported by Guangxi Provincial Natural Science Foundation of China(Grant No.0832001)
文摘Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity.Although the pulling speed is one of the most important parameters to control the coating thickness of aluminizing products,however,there are few publications on the mathematical modeling of pulling speed during the hot dip process.In order to describe the correlation among the pulling speed,coating thickness and solidification time,the principle of mass and heat transfer during the aluminizing process is investigated in this paper.The mathematical models are based on Navier-Stokes equation and heat transfer analysis.Experiments using the self-designed equipment are carried out to validate the mathematical models.Specifically,aluminum melt is purified at 730℃.The Cook-Norteman method is used for the pretreatment of Q235 steel plates.The temperature of hot dip aluminizing is set to 690℃and thedipping time is set to 3 min.A direct current motor with stepless speed variation is used to adjust the pulling speed.The temperature change of the coating is recorded by an infrared thermometer,and the coating thickness is measured by using image analysis.The validate experiment results indicate that the coating thickness is proportional to the square root of pulling speed for the Q235 steel plate,and that there is a linear relationship between coating thickness and solidification time when the pulling speed is lower than 0.11 m/s.The prediction of the proposed model fits well with the experimental observations of the coating thickness.
基金Project (51071135) supported by the National Natural Science Foundation of ChinaProject (20114301110005) supported by the Ph. D.Programs Foundation of Ministry of Education of ChinaProject (10XZX15) supported by the Science Foundation of Xiangtan University,China
文摘The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology.
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.
基金the National Key R&D Program of China(No.2022YFC2904404).
文摘The effects of siderite,hematite,and goethite on pyrite reactions in sodium aluminate solution at high temperatures,based on the coexistence of pyrite and iron-bearing minerals in bauxite,were studied.The addition of siderite,goethite,and hematite increases the concentrations of S_(2)O_(3)^(2−),SO_(3)^(2−)and SO_(4)^(2−),enhancing sulfur removal during desilication.Siderite and hematite facilitate nearly 100%magnetite formation from pyrite,whereas goethite leads to the formation of both hematite and magnetite from pyrite through a multiphase transformation process.Iron-bearing minerals significantly increase the iron content in residues and enhance iron recovery from the red mud.Siderite,goethite,and hematite produce a porous surface in the form of erosive holes due to electrochemical corrosion,improving reaction efficiency of pyrite.Additionally,electrochemical corrosion promotes the pyrite reaction in accordance with the Kröger and Ziegler models,controlled by interfacial diffusion and chemical reactions in the presence of siderite,hematite and magnetite.
基金the Natural Sciences and Engineering Research Council of Canada(NSERC)for funding this researchThis research used a high temperature confocal laser scanning microscope-VL2000DX-SVF17SP funded by Canada Foundation for Innovation John Evans Leaders Fund(CFI JELF,Project Number:32826),a PANalytical X’Pert diffraction instrument located at the Centre for crystal growth,Brockhouse Institute for Materials Research,and a scanning electron microscope-JEOL 6610 located at the Canadian Centre for Electron Microscopy at McMaster University.W.Mu would like to acknowledge Swedish Iron and Steel Research Office(Jernkonteret),STINT and SSF for supporting the time for international collaboration research regarding clean steel.
文摘Dissolution kinetics of CaO·2Al_(2)O_(3)(CA_(2))particles in a synthetic CaO-Al_(2)O_(3)-SiO_(2)steelmaking slag system have been investigated using the high-temperature confocal laser scanning microscope.Effects of temperature(i.e.,1500,1550,and 1600℃)and slag composition on the dissolution time of CA_(2)particles are investigated,along with the time dependency of the projection area of the particle during the dissolution process.It is found that the dissolution rate was enhanced by either an increase in temperature or a decrease in slag viscosity.Moreover,a higher ratio of CaO/Al_(2)O_(3)(C/A)leads to an increased dissolution rate of CA_(2)particle at 1600℃.Thermodynamic calculations suggested the dissolution product,i.e.,melilite,formed on the surface of the CA_(2)particle during dissolution in slag with a C/A ratio of 3.8 at 1550℃.Scanning electron microscopy equipped with energy dispersive X-ray spectrometry analysis of as-quenched samples confirmed the dissolution path of CA_(2)particles in slags with C/A ratios of 1.8 and 3.8 as well as the melilite formed on the surface of CA_(2)particle.The formation of this layer during the dissolution process was identified as a hindrance,impeding the dissolution of CA_(2)particle.A valuable reference for designing or/and choosing the composition of top slag for clean steel production is provided,especially using calcium treatment during the secondary refining process.
文摘In order to prepare high density magnesium aluminate spinel materials,the light-burned magnesia and alumina powder were used as the main raw materials.Active magnesium aluminate spinel powders were synthesized at different temperatures,and the sintering properties of the synthesized materials were characterized.The results show that the optimal light-burned temperature for synthesizing active magnesium aluminate spinel raw materials with small grain sizes and high sintering activity is 1400℃.The active spinel raw materials were sintered at 1750℃ for 3 h to form a dense spinel material,in which the spinel grains were well developed,exhibited a dense interlocking structure,and were uniformly distributed,with an average grain size of about 7.26μm.The bulk density and apparent porosity of the dense spinel material were 3.29 g·cm^(-3) and 3.5%,respectively.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11872120,12102050)Key Laboratory of Explosion Science and Technology(Grant No.QNKT22-01).
文摘The new CL-20(hexanitrohexaazaisowurtzitane)type aluminized explosives in the overdrive detonation(ODD)conditions of the core problem is how to accurately represent the state of the overdrive detonation products.To this end,this paper is based on the impedance matching method to test the ODD conditions of CL-20 type aluminium explosive particle velocity.Calculated the interfacial pressure of the shock wave in different media.Determined the characteristic parameters of the reaction zone of the detonation of CL-20 aluminized explosives.Calibrated the parameters of the JoneseWilkinseLee(JWL)+γ equation for the detonation products(DPs).Revealed the effect of different DPs equation of state(EOS)on the Hugoniot pressure of ODD.The results indicate that when the content of aluminum powder ranges from 0%to 30%,the duration of the ODD reaction zone and the width of the detonation reaction zone of the CL-20-based aluminized explosive are directly proportional to the content of aluminum powder.The width of the detonation reaction zone is increased by 1.97 times to 2.7 times compared to that of the reaction zone without the addition of aluminum powder.However,the energy release efficiency of the detonation reaction zone is inversely proportional to the content of aluminum powder.When the aluminum powder content was held constant,the incorporation of AP caused a 25%reduction in the energy release efficiency of the detonation reaction zone.Compared with existing ODD state equations,the JWL +γ equation is superior in calibrating overpressure Hugoniot data and the isentropic expansion in the C-J state.The deviation between calculated pressure results and experimental measurements is within 6%.
文摘This article investigates the low-temperature formation of aluminide coatings on a Ni-base superalloy by pack cementation process. The pack cemented coatings characteristic of high density and homogeneity possess a two-layer structure. The top layer mainly consists of Al3Ni2 and Al3Ni,while the bottom layer of Al3Ni2. Great efforts are made to elucidate the effects of different experimental parameters on the microstructure and the constituent distribution of the coatings. The results show that all the parameters exclusive of the pack activator (NH4Cl) content produce effect on the coating thickness,but do not on the microstructure and the constituent distribution. The pack activator (NH4Cl) content affects neither the coating thickness nor structure and constituent distribution. The parabolic relationship between the coating thickness and the deposition time suggests that the process is diffusion-controlled. Furthermore,the article demonstrates a linear relationship between the coating thickness and the re-ciprocal deposition temperature.
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodium aluminate solutions. The removal efficiency of S^2- using ferrous compound and ferric compound can reach 86.10% and 92.70% respectively when the iron compounds were added with a molar ratio of 2:1 compared with the sulfur in liquors at 100℃. Moreover, several same compounds are formed in those two desulfurization processes with ferrous or ferric compounds, including erdite, hematite, amorphous ferrous sulfide, polymerized sulfur-iron compounds and ferric sulfate. The major difference between these two processes is that the erdite generated from ferrous compounds at the initial reaction stage will convert to a sodium-free product FeS2 at the subsequent stage.
基金Project (2005CB6237) supported by the National Basic Research Program of China
文摘The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissolved in sodium hydroxide solution was proposed. New Pitzer model parameters and mixing parameters for the system NaOH-NaAI(OH)4-H20 were yielded and tested in the temperature range of 298.15-373.15 K. The results show that the proposed model for calculating the equilibrium constant of gibbsite dissolution is applicable and accurate. The obtained Pitzer model parameters of β(0)(NaAl(OH)4)、β(1)(NaAl(OH)4)和CΦ(NaAl(OH)4),Al(OH)4 for NaAI(OH)4, the binary mixing parameter of θ(OH-Al(OH)4-) with OH-, and the ternary mixing parameter of ψ(Na+OH-Al(OH)4-) for AI(OH)4- with OH- and Na+ are temperature-dependent. The prediction of the equilibrium solubility of gibbsite dissolved in sodium hydroxide solution was feasible in the temperature range of 298.15-373.15 K.
基金Project(51374240) supported by the National Natural Science Foundation of ChinaProject(2012BAE08B02) supported by the National Science and Technology Pillar Program of China
文摘The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analysis, quantitative elemental analysis and microstructure. The results show that Sc_2O_3 is found to be beneficial for the densification of MAS. Sc_2O_3 has a more significant effect on the densification of partially spinelized MAS batch than that of fully spinelized MAS batch. At the sintering temperature of 1650 °C, the bulk density of sintered products of partially spinelized powders increases by 0.243 g/cm3 as the Sc_2O_3 content increases from 0 to 4%(mass fraction) and that of fully spinelized powder increases by 0.14 g/cm3. Compared with the sintered samples prepared from the fully spinelized powder, the sintered samples using the partially spinelized powders as raw materials have more compact microstructures.
基金Project(51274243)supported by the National Natural Science Foundation of China
文摘It is necessary to clarify the influence of thermal history on the conversion of aluminate species in sodium aluminate solution in order to optimize Bayer alumina production. The interconversion of various solution species in the systems was investigated by measuring the infrared spectra of sodium aluminate solution with different compositions after separate heat treatment, dilution and concentration. The results show that increasing temperature or prolonging holding time favors the transformation of Al2O(OH)2- to Al—OH vibration(condensed Al O4 tetrahedral aluminate ion) at about 880 cm-1 and Al(OH)-4. A12O(OH)2-66 and Al—OH tetrahedral dimer ions convert rapidly to Al(OH)-4 during the dilution process; however, the back transformation of Al(OH)-4 to the Al—OH tetrahedral dimer ions can occur in diluted sodium aluminate solution. As for the concentration process, the transformation of Al(OH)-4 to A12O(OH)2-6 and Al—OH tetrahedral dimer ions can take place, while it is relatively difficult to transform to A12O(OH)2-6.