Background:Glioblastoma(GBM)is one of the most malignant types of central nervous system tumors.Oxygen deprivation in the tumor microenvironment is thought to be an important factor in promoting GBM progression.Howeve...Background:Glioblastoma(GBM)is one of the most malignant types of central nervous system tumors.Oxygen deprivation in the tumor microenvironment is thought to be an important factor in promoting GBM progression.However,the mechanisms of hypoxia-promoted tumor progression remain elusive.Methods:Alternative splicing of diacylglycerol kinase gamma(DGKG)-Δexon13 was amplified and verified by PCR-Sanger sequencing.The functions of DGKG and DGKG-Δexon13 were analyzed by Cell counting kit-8(CCK-8),Transwell,Matrigeltranswell experiments,and in vivo orthotropic GBM animal models.Transcriptome analyses were done to find out the regulated genes.Results:In this study,we found that a new transcript DGKG-Δexon13 was generated in GBM under hypoxia via alternative splicing.Moreover,the results of CCK-8,Transwell,and Matrigel-transwell experiments showed that the proliferation,migration,and invasion abilities of U87-MG and T98G were decreased after DGKG knockdown.Compared to wild-type DGKG,DGKG-Δexon13 overexpression significantly promoted cellular proliferation,migration,and invasion abilities in GBM.Furthermore,in vivo,orthotropic GBM animal models analysis showed that the tumor volumes were much smaller in the DGKG knockdown group.However,the tumor sizes in the DGKG and DGKG-Δexon13 rescue groups were restored,especially in the DGKG-Δexon13 group.Transcriptome analysis revealed that MORC1,KLHDC7B,ATP1A2,INHBE,TMEM119,and FGD3 were altered significantly when DGKG was knocked down.IL-16,CCN2,and EFNB3 were specifically regulated by DGKG-Δexon13.Conclusions:Our study found that hypoxia-induced alternative splicing transcript DGKG-Δexon13 promotes GBM proliferation and infiltration,which might provide a new potential target for the clinical treatment and diagnosis of GBM.展开更多
Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ul...Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection.展开更多
While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to...While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to elucidate the synergistic effects of biochar and reduced irrigation on maize(Zea mays L.)plants,focusing on xylem composition,root-to-shoot signaling,stomatal behavior,and WUE.Maize plants were cultivated in splitroot pots filled with clay loam soil,amended by either wheat-straw biochar(WSB)or softwood biochar(SWB)at 2%(w/w).Plants received full irrigation(FI),deficit irrigation(DI),or partial root-zone drying rrigation(PRD)from the 4-leaf to the grain-filling stage.Our results revealed that the WSB amendment significantly enhanced plant water status,biomass accumulation,and WUE under reduced irrigation,particularly when combined with PRD.Although reduced irrigation inhibited photosynthesis,it enhanced WUE by modulating stomatal morphology and conductance.Biochar amendment combined with reduced rrigation significantly increased xylem K^(+),Ca^(2+),Mg^(2+),NO_(3)^(-),Cl^(-),PO_(4)^(3-),and SO_(4)^(2-)-but decreased Na+,which in turn lowered xylem pH.Moreover,biochar amendment and especially WSB amendment further increased abscisic acid(ABA)contents in both leaf and xylem sap under reduced irrigation conditions due to changes in xylem ionic constituents and pH.The synergistic interactions between xylem components and ABA led to refined adjustments in stomatal size and density,thereby affecting stomatal conductance and ultimately improving the WUE of maize plants at different scales.The combined application of WSB and PRD can,therefore,emerge as a promising approach for improving the overall plant performance of maize plants with increased stomatal adaptations and WUE,especially under water-limited conditions.展开更多
As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-int...As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-interaction benefits and clear business models.Consequently,assessing the value of grid-alternative energy storage in the systemtransition has become critically important.Considering the performance characteristics of storage,we propose a value assessment frame-work for grid-alternative energy storage,quantifying its non-wires-alternative effects from both cost and benefit perspectives.Building on this,we developed a collaborative planning model for energy storage and transmission grids,aimed at maximizing the economic benefits of storage systems while balancing investment and operational costs.The model considers regional grid interconnections and their interactions with system operation.By participating in system operations,grid-alternative energy storage not only maximizes its own economic benefits but also generates social welfare transfer effects.Furthermore,based on multi-regional interconnected planning,grid-alternative energy storage can reduce system costs by approximately 35%,with the most significant changes observed in generation costs.Multi-regional coordinated planning significantly enhances the sys-tem’s flexibility in regulation.However,when the load factor of interconnection lines between regions remains constant,system operational flexibility tends to decrease,leading to a roughly 28.9%increase in storage investment.Additionally,under regional coordinated planning,the greater the disparity in wind power integration across interconnected regions,the more noticeable the reduction in system costs.展开更多
This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a con...This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a condition characterized by damage to the cochlea or the neural pathways that transmit auditory information to the brain.The etiology of SNHL is often complex,involving genetic mutations,prenatal factors,or perinatal insults.Reflexology,an alternative therapy involving the application of pressure to specific points on the feet,is based on the hypothesis that these points correspond to different organs and systems in the body,including the auditory system.However,the biological plausibility and clinical efficacy of foot reflexology in addressing SNHL lack empirical support.This editorial examines the pathophysiology of SNHL,assesses the clinical claims of reflexology practitioners,and emphasizes the necessity of evidence-based approaches in treating infant hearing loss.While complementary therapies may provide ancillary benefits,they should not supplant validated medical treatments in managing SNHL in infants.Further research is needed to evaluate the safety and efficacy of foot reflexology and other alternative therapies in pediatric audiology.展开更多
In this study, 414 whole protein-coding sequences (238 004 codons) of alternatively spliced genes of human chromosome 1 have been employed to explore the patterns of codon usage bias among genes. Overall codon usage d...In this study, 414 whole protein-coding sequences (238 004 codons) of alternatively spliced genes of human chromosome 1 have been employed to explore the patterns of codon usage bias among genes. Overall codon usage data analysis indicates that G- and C-ending codons are predominant in the genes. The base usage in all three codon positions suggests a selection-mutation balance. Multivariate statistical analysis reveals that the codon usage variation has a strong positive correlation with the expressivities of the genes (r=0.5790, P<0.0001). All 27 codons identified as optimal are G- and C-ending codons. Correlation analysis shows a strong negative correlation between the gene length and codon adaptation index value (r=0.2252, P<0.0001), and a significantly positive correlation between the gene length and Nc values (r=0.1876, P<0.0001). These results suggest that the comparatively shorter genes in the genes have higher codon usage bias to maximize translational efficiency, and selection may also contribute to the reduction of highly expressed proteins.展开更多
The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The result...The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The resulting copolymer has a molecular weight of 13.7kg·mol^(-1),a narrow molecular weight distribution of 1.03 and a strictly alternating structure.The MALDI-TOF MS characterization and DFT calculations including electrostatic potential(ESP),hydrogen-atom abstraction(HAA),independent gradient model based on hirshfeld partition(IGMH)and atoms-in-molecules(AIM)analysis were used to investigate the metal-free catalytic process.The synergistic effect of anions and cations of EMIMCl for ROAC of DHC and epoxides was demonstrated.This study provides a metal-free catalytic system for the facile synthesis of alternating polyesters from DHC.展开更多
The widespread ban on in-feed antibiotics in many regions has driven the search for natural alternatives to maintain health and production efficiency in swine and poultry.Phytogenic feed additives(PFAs)derived from he...The widespread ban on in-feed antibiotics in many regions has driven the search for natural alternatives to maintain health and production efficiency in swine and poultry.Phytogenic feed additives(PFAs)derived from herbs and plant extracts have emerged as promising candidates owing to their antioxidant,anti-inflammatory,and antimicrobial properties.Among these,silymarin—a flavonolignan complex extracted from milk thistle(Silybum marianum)—has attracted particular attention due to its hepatoprotective and growth-promoting activities.This review summarizes the chemical characteristics and mechanisms of action of silymarin/silybin.Also,evidence from both experimental and field studies shows that silymarin improves growth performance,nutrient digestibility,gut health,and reproductive outcomes.Advances in formulation technologies,such as micellization,have been addressed for improved bioavailability of silymarin.Despite these promising results,further long-term field studies and economic evaluations are needed to fully integrate silymarin into commercial animal production systems.展开更多
Background:Hippocratic medicine is routinely presented as the origin of rational,observational practice.Yet much of what is now called“Hippocratic principles”is a reception history-filtered through Galen,the Alexand...Background:Hippocratic medicine is routinely presented as the origin of rational,observational practice.Yet much of what is now called“Hippocratic principles”is a reception history-filtered through Galen,the Alexandrian medical school,and especially Islamic scholars such as Rhazes,Avicenna,and Masawaiyh.To reassess the enduring influence of Hippocratic medicine on contemporary practice and ethics by(i)distinguishing Hippocratic origins from later systematizations,and(ii)thematizing the philosophical stakes of the 21st-century“Hippocratic revival”(holism,patient-centrism,and the surge of non-science-based alternative medicine).Methods:Textual analysis of the Hippocratic Corpus is integrated with a reception-historical review(Galenic,Alexandrian,and Islamic commentators)and with historiographical framing(Porter,Temkin,Nutton).A conceptual analysis contrasts the Koan holistic and Knidian disease-entity approaches and examines their modern legacies.Results:Core Hippocratic themes-clinical observation,individualization,and ethical commitment-persist,but largely via later reinterpretations.The Koan/Knidian split illuminates today’s tensions between evidence-based standardization and person-centred holism.Modern invocations of Hippocrates often uncritically legitimate“holism”in ways that can blur boundaries between epistemically disciplined person-centred care and non-science-based alternative medicine.Conclusion:Hippocratic principles endure,but only when historically situated and normatively constrained.A philosophically robust“Hippocratic revival”in the 21st century must(a)acknowledge its Galenic-Islamic mediations,(b)preserve evidence standards,and(c)articulate an ethically grounded,epistemically responsible holism rather than a carte blanche for post-truth medical pluralism.展开更多
Changes in food production,often driven by distant demand,have a significant influence on sustainable man agement and use of land and water,and are in turn a driving factor of biodiversity change.While the connection ...Changes in food production,often driven by distant demand,have a significant influence on sustainable man agement and use of land and water,and are in turn a driving factor of biodiversity change.While the connection between land use and demand through value chains is increasingly understood,there is no comprehensive concep tualisation of this relationship.To address this gap,we propose a conceptual framework and use it as a basis for a systematic review to characterise value-chain connection and explore its influence on land-use and-cover change.Our search in June 2022 onWeb of Science and Scopus yielded 198 documents,describing studies completed after the year 2000 that provide information on both value-chain connection and land-use or-cover change.In total,we used 531 distinct cases to assess how frequently particular types of land-use or-cover change and value-chain connections co-occurred,and synthesized findings on their relations.Our findings confirm that 1)market inte gration is associated with intensification;2)land managers with environmental standards more frequently adopt environmentally friendly practices;3)physical and value-chain distances to consumers play a crucial role,with shorter distances associated with environmentally friendly practices and global chains linked to intensification and expansion.Incorporating these characteristics in existing theories of land-system change,would significantly advance understanding of land managers’decision-making,ultimately guiding more environmentally responsible production systems and contributing to global sustainability goals.展开更多
The results of the study of the effect of partial substitution of Fe by Mn in the La Fe_(11.2-x)Mn_(x)Co_(0.7)Si_(1.1)system on magnetization,specific heat,magnetostriction and magnetocaloric effect are presented.Dire...The results of the study of the effect of partial substitution of Fe by Mn in the La Fe_(11.2-x)Mn_(x)Co_(0.7)Si_(1.1)system on magnetization,specific heat,magnetostriction and magnetocaloric effect are presented.Direct measurements of the adiabatic temperature change(ΔT_(ad))were carried out in alternating magnetic fields(AMF)using the magnetic field modulation method.Partial substitution of Fe atoms by Mn atoms leads to a shift in the Curie temperature(T_(C))towards lower temperatures without a noticeable deterioration in magnetic properties.A correlation was found between the structural component of the magnetocaloric effect and the stability of the frequency of theΔT_(ad)in the AMFs—an increase in the manganese concentration leads to a decrease in magnetostriction and to a lower dependence ofΔT_(ad)on the frequency of the magnetic field.Estimates of the specific cooling power Q_(C)as a function of the frequency of the AMF showed that the highest value of Q_(C)at f=20 Hz in a magnetic field of 12k Oe is 26.3 W g^(-1)and is observed for the composition with x=0.1.This value is higher than that of Gd,for which,under the same conditions,Q_(C)=21.6 W g^(-1).All the samples studied show stability of the value ofΔT_(ad)without any sign of deterioration of the effect up to 60,000cycles of switching on/off of the magnetic field of 12 k Oe.The discovered frequency and cyclic stability ofΔT_(ad)of the studied samples increase their prospects for application in magnetic cooling technology.展开更多
Caspases,which play key roles in cell apoptosis,undergo alternative splicing to form different splicing variants that can regulate the apoptotic process.Lepidopteran insect caspases undergo alternative splicing,althou...Caspases,which play key roles in cell apoptosis,undergo alternative splicing to form different splicing variants that can regulate the apoptotic process.Lepidopteran insect caspases undergo alternative splicing,although the functions of their splicing variants are still unclear.The Spodoptera exigua caspase-5(SeCaspase-5)gene was cloned and found to produce four different splicing variants with different gene sequences and protein functional domains,which were named SeCaspase-5a,SeCaspase-5b,SeCaspase-5c and SeCaspase-5d.Overexpression of these variants in S.exigua cells(Se-3)showed that SeCaspase-5a had a proapoptotic function,whereas SeCaspase-5b,SeCaspase-5c and SeCaspase-5d did not.Semi-qPCR analysis revealed that the expression of the SeCaspase-5 variants significantly differed during Autographa californica multiple nucleopolyhedrovirus(AcMNPV)infection.Furthermore,the SeCaspase-5 variants were constructed into the AcMNPV bacmid and transfected into Se-3 cells,which revealed that SeCaspase-5a promoted cell apoptosis and reduced virus production,whereas SeCaspase-5b,SeCaspase-5c and SeCaspase-5d did not promote cell apoptosis but instead increased virus production.Moreover,an analysis of the interactions between the SeCaspase-5 variants revealed that SeCaspase-5a directly interacted with SeCaspase-5b,SeCaspase-5c and SeCaspase-5d.Coexpression of these variants in Se-3 cells also revealed that SeCaspase-5b,SeCaspase-5c and SeCaspase-5d inhibited the proapoptotic function of SeCaspase-5a,resulting in a reduction in the percentage of apoptotic cells by about 20%.These results indicate that SeCaspase-5 undergoes alternative splicing and is involved in regulating the apoptosis induced by baculovirus infection.These findings increase our understanding of the functions of lepidopteran insect caspases and provide new insights into the mechanism of host-cell apoptosis induced by baculoviruses.展开更多
Background With the global expansion of aquaculture and the increasing demand for fish meal,identifying appropriate and sustainable alternative protein sources for aquafeeds has become essential.Single-cell protein(SC...Background With the global expansion of aquaculture and the increasing demand for fish meal,identifying appropriate and sustainable alternative protein sources for aquafeeds has become essential.Single-cell protein(SCP),derived from methanotrophic bacteria,presents a promising alternative by converting methane into protein,potentially addressing both the need for alternative protein sources and reducing industrial greenhouse gas emissions.This study aimed to evaluate the effects of different levels of SCP inclusion(0%,25%,50%,and 75%fish meal replacement)on the health,gene expression,and gut microbiome of yellowtail kingfish(YTK,Seriola lalandi)following a 35-day growth trial.Results The study found that SCP inclusion at the highest level of fishmeal replacement(75%)induced a mild inflammatory response in the hindgut of the fish.However,micromorphological assessments of the hindgut,serum biochemistry,and gene expression analyses revealed no significant detrimental effects from SCP replacement.Notably,there were indications of improved lipid digestibility with SCP.Furthermore,SCP inclusion significantly enhanced microbial richness and altered the composition of the gut microbiome,introducing beneficial bacterial taxa that may contribute to improved gut health and resilience.Conclusions This study highlights SCP as a viable and sustainable alternative to fish meal in YTK diets.The findings suggest that SCP can be included in YTK diets without adverse health effects at moderate levels and may even offer benefits in terms of lipid digestibility and gut microbiome diversity.These results contribute to the advancement of more sustainable aquaculture practices.展开更多
The number of newborns born with diseases is increasing recently.Thyroid hormones(THs)are closely related to the growth and development of the newborn in the mother's womb and to the carriage of related diseases a...The number of newborns born with diseases is increasing recently.Thyroid hormones(THs)are closely related to the growth and development of the newborn in the mother's womb and to the carriage of related diseases after birth.Environmental endocrine-disrupting compounds(EDCs)have been proven to harm THs in newborns.Phthalates(PAEs),a typical class of EDCs,are commonly used in toys,childcare materials,and food contact materials,which have been closely connected with neonatal thyroid dysfunction and thyroid-related diseases.As restrictions on PAEs becomemore stringent in neonatal field,numerous PAE alternatives are emerging.Associations between exposure to PAEs and their alternatives and dysfunctions in THs have been explored.Hence,we summarized the body burdens and regional characteristics of PAEs and their alternatives in neonatal urine,cord blood,and meconium.Subsequently,the influences of PAEs and their alternatives on thyroid dysfunction,prematurity,low birth weight,fetal growth restriction,respiratory dysfunction,immune disorders,neurological disorders,and reproductive disorders in newborns were evaluated.Furthermore,we scrutinized the effects of PAEs and their alternatives on the neonatal thyroid from signaling,substance transport,and hormone production to explore the underlying mechanisms of action on neonatal thyroid and thyroid-related disorders.As the declining global trends of healthy newborns and the potential impacts of PAEs and their alternatives on thyroid function,a more comprehensive study is needed to discuss their effects on newborns and their underlying mechanisms.This review facilitates attention to the effects of PAEs and their alternatives on thyroid and thyroid-related disorders in newborns.展开更多
This paper presents findings of a study on solid wastes conversion into fuels through pyrolysis of plastic materials, presenting an alternative renewable approach for waste management. Investigations were conducted on...This paper presents findings of a study on solid wastes conversion into fuels through pyrolysis of plastic materials, presenting an alternative renewable approach for waste management. Investigations were conducted on conversion of polypropylene (PP), low-density polyethylene (LDPE) and high-density polyethylene (HDPE) under normal and catalyst mediated process conditions. Plastic wastes were collected from various dumpsites in Nairobi and segregated using plastic resin codes to various classes. Samples were cleaned, dried and shredded to 2 mm and fed into a pyrolysis reactor. The pyrolysis process was conducted at between 220˚C and 420˚C. Pyrolysis gases were condensed in a shell and coil condenser and the incondensable gases were stored in gasbags. Liquid fuels were analysed using Gas chromatograph with a mass spectroscopic detector and Fourier Transform Infrared Spectrometry. The results revealed that the most optimal process conditions were a temperature range of 220˚C - 420˚C at a heating rate of 10˚C per minute. Under these conditions, the oil yields were 53.72% for PP, 62.10% for LDPE, and 64.14% for HDPE. As the heating rate increased from 10˚C/min to 20˚C/min, gas yields increased, rising from 28.05% to 31.12% in PP, 14.96% to 30.62% in LDPE, and 18.51% to 29.49% in HDPE. The introduction of Fe2O3 and Al2O3 catalyst significantly enhanced gas production during pyrolysis, increasing yields from 18% to 61% and 47% respectively.展开更多
The plant circadian clock temporally drives gene expression throughout the day and coordinates various physiological processes with diurnal environmental changes. It is essential for conferring plant fitness and compe...The plant circadian clock temporally drives gene expression throughout the day and coordinates various physiological processes with diurnal environmental changes. It is essential for conferring plant fitness and competitive advantages to survive and thrive under natural conditions through the circadian control of gene transcription. Chinese cabbage(Brassica rapa ssp. pekinensis) is an economically important vegetable crop worldwide, although there is little information concerning its circadian clock system. Here we found that gene expression patterns are affected bycircadian oscillators at both the transcriptional and post-transcriptional levels in Chinese cabbage. Time-course RNA-seq analyses were conducted on two short-period lines(SPcc-1 and SPcc-2) and two long-period lines(LPcc-1 and LPcc-2) under constant light. The results showed that 32.7–50.5% of the genes were regulated bythe circadian oscillator and the expression peaks of cycling genes appeared earlier in short-period lines than long-period lines. In addition, approximately 250 splicing events exhibited circadian regulation, with intron retention(IR) accounting for a large proportion. Rhythmically spliced genes included the clock genes LATE ELONGATEDHYPOCOTYL(BrLHY), REVEILLE 2(BrRVE2) and EARLY FLOWERING 3(BrELF3). We also found that thecircadian oscillator could notably influence the diurnal expression patterns of genes that are associated with glucose metabolism via photosynthesis, the Calvin cycle and the tricarboxylic acid(TCA) cycle at both the transcriptional andpost-transcriptional levels. The collective results of this study demonstrate that circadian-regulated physiological processes contribute to Chinese cabbage growth and development.展开更多
With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,...With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,inspired by Janus,a CNF/MXene/ZnFe2O4@PANI composite film with an asymmetric gradient alternating structure was successfully prepared by adjusting the filler content of the conduc-tive and magnetic layers using a vacuum-assisted filtration method.Benefiting from the magnetic reso-nance and hysteresis loss of ZnFe2O4@PANI,conductive loss and dipole polarization of MXene,as well as the exclusive"absorption-reflection-reabsorption"shielding feature in the alternating multilayered films,CM&CZFP-4 G film has superior EMI shielding performance,with an EMI SE of up to 45.75 dB and shield-ing effectiveness of 99.99%.Surprisingly,the composite film maintains reliable EMI shielding properties even after prolonged erosion in harsh environments such as high/low temperatures,high humidity,acids and alkalis.Furthermore,the CM&CZFP-4 G responded quickly within about 50 s and reached a maximum steady-state temperature of 235.8℃ at an applied voltage of 9.0 V,indicating the obtained film acquired outstanding and controllable Joule heating performance.This result was attributed to the homogeneous dispersion of MXene to build up a conductive network and endow the CNF/MXene with high conduc-tivity.Meanwhile,the fire resistance of CM&CZFP-4 G was significantly improved compared to pure CNF,which guaranteed fire safety during its application.Additionally,contributed by long fiber entanglement of CNF,extensive hydrogen-bonding interactions and multilayer structural design,the CM&CZFP-4 G film exhibits excellent mechanical characteristics,with the tensile strength and fracture strain of 27.74 MPa and 6.21%,separately.This work offers a creative avenue to prepare multifunctional composite films with electromagnetic shielding and Joule heating for various application environments.展开更多
Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CA...Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CAR-NK cell therapy has enabled the development of“off-the-shelf”products that bypass the lengthy and expensive cell manufacturing process1.展开更多
Background:Alterations in splicing factors contribute to aberrant alternative splicing(AS),which subsequently promotes tumor progression.The splicing factor polypyrimidine tract binding protein 1(PTBP1)has been shown ...Background:Alterations in splicing factors contribute to aberrant alternative splicing(AS),which subsequently promotes tumor progression.The splicing factor polypyrimidine tract binding protein 1(PTBP1)has been shown to facilitate cancer progression by modulating oncogenic variants.However,its specific role and underlying mechanisms in hepatocellular carcinoma(HCC)remain to be elucidated.Methods:PTBP1 expression was evaluated in HCC tissues and cell lines.Subsequently,cells were transfected with vectors designed for PTBP1 overexpression or downregulation.The biological function of PTBP1 was assessed in vitro and in vivo using MTS assays,colony formation assays,transwell assays,xenograft formation,tail vein injection,and orthotopic models.Transcriptome analysis was conducted to elucidate the underlying molecular mechanisms.Results:Our findings demonstrated that PTBP1 exhibited elevated expression in HCC cell lines and tissues.Furthermore,its expression positively correlated with overall and disease-free survival rates,as well as tumor grade and stage.PTBP1 knockdown reduced HCC cell proliferation,migration,and invasion in vitro and suppressed hepatocarcinoma xenograft growth and infiltration in vivo.RNA sequencing(RNA-Seq)analysis identified the AS events associated with PTBP1.PTBP1 functionally enhanced cell proliferation,invasion,and migration by modulating the AS of the microtubule-associated protein tau(MAPT)gene and promoting oncogene expression.Notably,the dysregulation of MAPT splicing coincided with increased PTBP1 expression in HCC.Conclusions:PTBP1-guided AS of the MAPT gene enhances tumorigenicity in HCC through activation of the MAPK/ERK pathways.展开更多
基金funded by Guizhou Province Science and Technology Plan Project Qiankehe Foundation-ZK[2023]General 360,362Science and Technology Fund project of Guizhou Provincial Health Commission(gzwkj-2022-09,gzwkj-2023-035)+1 种基金National Natural Science Foundation Cultivation Project of Guizhou Medical University(21NSFCP14,gyfynsfc-2022-25)The PhD Scientific Research Launch Fund Project of the Affiliated Hospital of Guizhou Medical University(gyfybsky-2022-02).
文摘Background:Glioblastoma(GBM)is one of the most malignant types of central nervous system tumors.Oxygen deprivation in the tumor microenvironment is thought to be an important factor in promoting GBM progression.However,the mechanisms of hypoxia-promoted tumor progression remain elusive.Methods:Alternative splicing of diacylglycerol kinase gamma(DGKG)-Δexon13 was amplified and verified by PCR-Sanger sequencing.The functions of DGKG and DGKG-Δexon13 were analyzed by Cell counting kit-8(CCK-8),Transwell,Matrigeltranswell experiments,and in vivo orthotropic GBM animal models.Transcriptome analyses were done to find out the regulated genes.Results:In this study,we found that a new transcript DGKG-Δexon13 was generated in GBM under hypoxia via alternative splicing.Moreover,the results of CCK-8,Transwell,and Matrigel-transwell experiments showed that the proliferation,migration,and invasion abilities of U87-MG and T98G were decreased after DGKG knockdown.Compared to wild-type DGKG,DGKG-Δexon13 overexpression significantly promoted cellular proliferation,migration,and invasion abilities in GBM.Furthermore,in vivo,orthotropic GBM animal models analysis showed that the tumor volumes were much smaller in the DGKG knockdown group.However,the tumor sizes in the DGKG and DGKG-Δexon13 rescue groups were restored,especially in the DGKG-Δexon13 group.Transcriptome analysis revealed that MORC1,KLHDC7B,ATP1A2,INHBE,TMEM119,and FGD3 were altered significantly when DGKG was knocked down.IL-16,CCN2,and EFNB3 were specifically regulated by DGKG-Δexon13.Conclusions:Our study found that hypoxia-induced alternative splicing transcript DGKG-Δexon13 promotes GBM proliferation and infiltration,which might provide a new potential target for the clinical treatment and diagnosis of GBM.
基金upported by the National Natural Science Foundation of China(Grant No.62305184)the Major Key Project of Pengcheng Laboratory(Grant No.PCL2024A1)+1 种基金the Basic and Applied Basic Research Foundation of Guangdong Province(Grant No.2023A1515012932)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.WDZC20220818100259004).
文摘Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection.
基金supported by the Natural Science Basic Research Program of Shaanxi Province,China(2024JCYBQN-0491)Heng Wan would like to thank the Chinese Scholarship Council(CsC)(202206300064)。
文摘While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to elucidate the synergistic effects of biochar and reduced irrigation on maize(Zea mays L.)plants,focusing on xylem composition,root-to-shoot signaling,stomatal behavior,and WUE.Maize plants were cultivated in splitroot pots filled with clay loam soil,amended by either wheat-straw biochar(WSB)or softwood biochar(SWB)at 2%(w/w).Plants received full irrigation(FI),deficit irrigation(DI),or partial root-zone drying rrigation(PRD)from the 4-leaf to the grain-filling stage.Our results revealed that the WSB amendment significantly enhanced plant water status,biomass accumulation,and WUE under reduced irrigation,particularly when combined with PRD.Although reduced irrigation inhibited photosynthesis,it enhanced WUE by modulating stomatal morphology and conductance.Biochar amendment combined with reduced rrigation significantly increased xylem K^(+),Ca^(2+),Mg^(2+),NO_(3)^(-),Cl^(-),PO_(4)^(3-),and SO_(4)^(2-)-but decreased Na+,which in turn lowered xylem pH.Moreover,biochar amendment and especially WSB amendment further increased abscisic acid(ABA)contents in both leaf and xylem sap under reduced irrigation conditions due to changes in xylem ionic constituents and pH.The synergistic interactions between xylem components and ABA led to refined adjustments in stomatal size and density,thereby affecting stomatal conductance and ultimately improving the WUE of maize plants at different scales.The combined application of WSB and PRD can,therefore,emerge as a promising approach for improving the overall plant performance of maize plants with increased stomatal adaptations and WUE,especially under water-limited conditions.
基金funded by the Technology Project of State Grid Jibei Electric Power Supply Co.,Ltd.(Grant Number:52018F240001).
文摘As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-interaction benefits and clear business models.Consequently,assessing the value of grid-alternative energy storage in the systemtransition has become critically important.Considering the performance characteristics of storage,we propose a value assessment frame-work for grid-alternative energy storage,quantifying its non-wires-alternative effects from both cost and benefit perspectives.Building on this,we developed a collaborative planning model for energy storage and transmission grids,aimed at maximizing the economic benefits of storage systems while balancing investment and operational costs.The model considers regional grid interconnections and their interactions with system operation.By participating in system operations,grid-alternative energy storage not only maximizes its own economic benefits but also generates social welfare transfer effects.Furthermore,based on multi-regional interconnected planning,grid-alternative energy storage can reduce system costs by approximately 35%,with the most significant changes observed in generation costs.Multi-regional coordinated planning significantly enhances the sys-tem’s flexibility in regulation.However,when the load factor of interconnection lines between regions remains constant,system operational flexibility tends to decrease,leading to a roughly 28.9%increase in storage investment.Additionally,under regional coordinated planning,the greater the disparity in wind power integration across interconnected regions,the more noticeable the reduction in system costs.
文摘This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a condition characterized by damage to the cochlea or the neural pathways that transmit auditory information to the brain.The etiology of SNHL is often complex,involving genetic mutations,prenatal factors,or perinatal insults.Reflexology,an alternative therapy involving the application of pressure to specific points on the feet,is based on the hypothesis that these points correspond to different organs and systems in the body,including the auditory system.However,the biological plausibility and clinical efficacy of foot reflexology in addressing SNHL lack empirical support.This editorial examines the pathophysiology of SNHL,assesses the clinical claims of reflexology practitioners,and emphasizes the necessity of evidence-based approaches in treating infant hearing loss.While complementary therapies may provide ancillary benefits,they should not supplant validated medical treatments in managing SNHL in infants.Further research is needed to evaluate the safety and efficacy of foot reflexology and other alternative therapies in pediatric audiology.
基金the National Natural Science Foundation of China (No. 60171038) and the Science and Technology Ministry of China (No. 2001CCA01400)
文摘In this study, 414 whole protein-coding sequences (238 004 codons) of alternatively spliced genes of human chromosome 1 have been employed to explore the patterns of codon usage bias among genes. Overall codon usage data analysis indicates that G- and C-ending codons are predominant in the genes. The base usage in all three codon positions suggests a selection-mutation balance. Multivariate statistical analysis reveals that the codon usage variation has a strong positive correlation with the expressivities of the genes (r=0.5790, P<0.0001). All 27 codons identified as optimal are G- and C-ending codons. Correlation analysis shows a strong negative correlation between the gene length and codon adaptation index value (r=0.2252, P<0.0001), and a significantly positive correlation between the gene length and Nc values (r=0.1876, P<0.0001). These results suggest that the comparatively shorter genes in the genes have higher codon usage bias to maximize translational efficiency, and selection may also contribute to the reduction of highly expressed proteins.
基金financially supported by the National Natural Science Foundation of China(No.22161040)Natural Science Foundation of Gansu(No.24JRRA125)Science Research Project of Northwest Normal University(No.NWNU-LKZD2021-3)。
文摘The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The resulting copolymer has a molecular weight of 13.7kg·mol^(-1),a narrow molecular weight distribution of 1.03 and a strictly alternating structure.The MALDI-TOF MS characterization and DFT calculations including electrostatic potential(ESP),hydrogen-atom abstraction(HAA),independent gradient model based on hirshfeld partition(IGMH)and atoms-in-molecules(AIM)analysis were used to investigate the metal-free catalytic process.The synergistic effect of anions and cations of EMIMCl for ROAC of DHC and epoxides was demonstrated.This study provides a metal-free catalytic system for the facile synthesis of alternating polyesters from DHC.
基金supported by the research fund of Dankook University in 2025.
文摘The widespread ban on in-feed antibiotics in many regions has driven the search for natural alternatives to maintain health and production efficiency in swine and poultry.Phytogenic feed additives(PFAs)derived from herbs and plant extracts have emerged as promising candidates owing to their antioxidant,anti-inflammatory,and antimicrobial properties.Among these,silymarin—a flavonolignan complex extracted from milk thistle(Silybum marianum)—has attracted particular attention due to its hepatoprotective and growth-promoting activities.This review summarizes the chemical characteristics and mechanisms of action of silymarin/silybin.Also,evidence from both experimental and field studies shows that silymarin improves growth performance,nutrient digestibility,gut health,and reproductive outcomes.Advances in formulation technologies,such as micellization,have been addressed for improved bioavailability of silymarin.Despite these promising results,further long-term field studies and economic evaluations are needed to fully integrate silymarin into commercial animal production systems.
文摘Background:Hippocratic medicine is routinely presented as the origin of rational,observational practice.Yet much of what is now called“Hippocratic principles”is a reception history-filtered through Galen,the Alexandrian medical school,and especially Islamic scholars such as Rhazes,Avicenna,and Masawaiyh.To reassess the enduring influence of Hippocratic medicine on contemporary practice and ethics by(i)distinguishing Hippocratic origins from later systematizations,and(ii)thematizing the philosophical stakes of the 21st-century“Hippocratic revival”(holism,patient-centrism,and the surge of non-science-based alternative medicine).Methods:Textual analysis of the Hippocratic Corpus is integrated with a reception-historical review(Galenic,Alexandrian,and Islamic commentators)and with historiographical framing(Porter,Temkin,Nutton).A conceptual analysis contrasts the Koan holistic and Knidian disease-entity approaches and examines their modern legacies.Results:Core Hippocratic themes-clinical observation,individualization,and ethical commitment-persist,but largely via later reinterpretations.The Koan/Knidian split illuminates today’s tensions between evidence-based standardization and person-centred holism.Modern invocations of Hippocrates often uncritically legitimate“holism”in ways that can blur boundaries between epistemically disciplined person-centred care and non-science-based alternative medicine.Conclusion:Hippocratic principles endure,but only when historically situated and normatively constrained.A philosophically robust“Hippocratic revival”in the 21st century must(a)acknowledge its Galenic-Islamic mediations,(b)preserve evidence standards,and(c)articulate an ethically grounded,epistemically responsible holism rather than a carte blanche for post-truth medical pluralism.
文摘Changes in food production,often driven by distant demand,have a significant influence on sustainable man agement and use of land and water,and are in turn a driving factor of biodiversity change.While the connection between land use and demand through value chains is increasingly understood,there is no comprehensive concep tualisation of this relationship.To address this gap,we propose a conceptual framework and use it as a basis for a systematic review to characterise value-chain connection and explore its influence on land-use and-cover change.Our search in June 2022 onWeb of Science and Scopus yielded 198 documents,describing studies completed after the year 2000 that provide information on both value-chain connection and land-use or-cover change.In total,we used 531 distinct cases to assess how frequently particular types of land-use or-cover change and value-chain connections co-occurred,and synthesized findings on their relations.Our findings confirm that 1)market inte gration is associated with intensification;2)land managers with environmental standards more frequently adopt environmentally friendly practices;3)physical and value-chain distances to consumers play a crucial role,with shorter distances associated with environmentally friendly practices and global chains linked to intensification and expansion.Incorporating these characteristics in existing theories of land-system change,would significantly advance understanding of land managers’decision-making,ultimately guiding more environmentally responsible production systems and contributing to global sustainability goals.
基金financially supported by Russian Science Foundation(No.24-43-00156,https://rscf.ru/en/project/24-43-00156/)the National Natural Science Foundation of China(No.52171169)the State Key Laboratory for Advanced Metals and Materials(No.2023-ZD01)。
文摘The results of the study of the effect of partial substitution of Fe by Mn in the La Fe_(11.2-x)Mn_(x)Co_(0.7)Si_(1.1)system on magnetization,specific heat,magnetostriction and magnetocaloric effect are presented.Direct measurements of the adiabatic temperature change(ΔT_(ad))were carried out in alternating magnetic fields(AMF)using the magnetic field modulation method.Partial substitution of Fe atoms by Mn atoms leads to a shift in the Curie temperature(T_(C))towards lower temperatures without a noticeable deterioration in magnetic properties.A correlation was found between the structural component of the magnetocaloric effect and the stability of the frequency of theΔT_(ad)in the AMFs—an increase in the manganese concentration leads to a decrease in magnetostriction and to a lower dependence ofΔT_(ad)on the frequency of the magnetic field.Estimates of the specific cooling power Q_(C)as a function of the frequency of the AMF showed that the highest value of Q_(C)at f=20 Hz in a magnetic field of 12k Oe is 26.3 W g^(-1)and is observed for the composition with x=0.1.This value is higher than that of Gd,for which,under the same conditions,Q_(C)=21.6 W g^(-1).All the samples studied show stability of the value ofΔT_(ad)without any sign of deterioration of the effect up to 60,000cycles of switching on/off of the magnetic field of 12 k Oe.The discovered frequency and cyclic stability ofΔT_(ad)of the studied samples increase their prospects for application in magnetic cooling technology.
基金funded by the National Natural Science Foundation of China(32202393)the Natural Science Foundation of Shandong Province,China(ZR2021QC190)+1 种基金the Science and Technology Benefiting the People Demonstration Project of Qingdao,China(24-1-8-xdny-10-nsh)the Qingdao Agricultural University High-level Talent Fund,China(663/1120101)。
文摘Caspases,which play key roles in cell apoptosis,undergo alternative splicing to form different splicing variants that can regulate the apoptotic process.Lepidopteran insect caspases undergo alternative splicing,although the functions of their splicing variants are still unclear.The Spodoptera exigua caspase-5(SeCaspase-5)gene was cloned and found to produce four different splicing variants with different gene sequences and protein functional domains,which were named SeCaspase-5a,SeCaspase-5b,SeCaspase-5c and SeCaspase-5d.Overexpression of these variants in S.exigua cells(Se-3)showed that SeCaspase-5a had a proapoptotic function,whereas SeCaspase-5b,SeCaspase-5c and SeCaspase-5d did not.Semi-qPCR analysis revealed that the expression of the SeCaspase-5 variants significantly differed during Autographa californica multiple nucleopolyhedrovirus(AcMNPV)infection.Furthermore,the SeCaspase-5 variants were constructed into the AcMNPV bacmid and transfected into Se-3 cells,which revealed that SeCaspase-5a promoted cell apoptosis and reduced virus production,whereas SeCaspase-5b,SeCaspase-5c and SeCaspase-5d did not promote cell apoptosis but instead increased virus production.Moreover,an analysis of the interactions between the SeCaspase-5 variants revealed that SeCaspase-5a directly interacted with SeCaspase-5b,SeCaspase-5c and SeCaspase-5d.Coexpression of these variants in Se-3 cells also revealed that SeCaspase-5b,SeCaspase-5c and SeCaspase-5d inhibited the proapoptotic function of SeCaspase-5a,resulting in a reduction in the percentage of apoptotic cells by about 20%.These results indicate that SeCaspase-5 undergoes alternative splicing and is involved in regulating the apoptosis induced by baculovirus infection.These findings increase our understanding of the functions of lepidopteran insect caspases and provide new insights into the mechanism of host-cell apoptosis induced by baculoviruses.
基金Fisheries Research Development Corporation,Grant/Award Number:2017-030.
文摘Background With the global expansion of aquaculture and the increasing demand for fish meal,identifying appropriate and sustainable alternative protein sources for aquafeeds has become essential.Single-cell protein(SCP),derived from methanotrophic bacteria,presents a promising alternative by converting methane into protein,potentially addressing both the need for alternative protein sources and reducing industrial greenhouse gas emissions.This study aimed to evaluate the effects of different levels of SCP inclusion(0%,25%,50%,and 75%fish meal replacement)on the health,gene expression,and gut microbiome of yellowtail kingfish(YTK,Seriola lalandi)following a 35-day growth trial.Results The study found that SCP inclusion at the highest level of fishmeal replacement(75%)induced a mild inflammatory response in the hindgut of the fish.However,micromorphological assessments of the hindgut,serum biochemistry,and gene expression analyses revealed no significant detrimental effects from SCP replacement.Notably,there were indications of improved lipid digestibility with SCP.Furthermore,SCP inclusion significantly enhanced microbial richness and altered the composition of the gut microbiome,introducing beneficial bacterial taxa that may contribute to improved gut health and resilience.Conclusions This study highlights SCP as a viable and sustainable alternative to fish meal in YTK diets.The findings suggest that SCP can be included in YTK diets without adverse health effects at moderate levels and may even offer benefits in terms of lipid digestibility and gut microbiome diversity.These results contribute to the advancement of more sustainable aquaculture practices.
基金supported by the National Natural Science Foundation of China(No.22225605)the National Key Research and Development Program of China(No.2023YFC3706600)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0750200).
文摘The number of newborns born with diseases is increasing recently.Thyroid hormones(THs)are closely related to the growth and development of the newborn in the mother's womb and to the carriage of related diseases after birth.Environmental endocrine-disrupting compounds(EDCs)have been proven to harm THs in newborns.Phthalates(PAEs),a typical class of EDCs,are commonly used in toys,childcare materials,and food contact materials,which have been closely connected with neonatal thyroid dysfunction and thyroid-related diseases.As restrictions on PAEs becomemore stringent in neonatal field,numerous PAE alternatives are emerging.Associations between exposure to PAEs and their alternatives and dysfunctions in THs have been explored.Hence,we summarized the body burdens and regional characteristics of PAEs and their alternatives in neonatal urine,cord blood,and meconium.Subsequently,the influences of PAEs and their alternatives on thyroid dysfunction,prematurity,low birth weight,fetal growth restriction,respiratory dysfunction,immune disorders,neurological disorders,and reproductive disorders in newborns were evaluated.Furthermore,we scrutinized the effects of PAEs and their alternatives on the neonatal thyroid from signaling,substance transport,and hormone production to explore the underlying mechanisms of action on neonatal thyroid and thyroid-related disorders.As the declining global trends of healthy newborns and the potential impacts of PAEs and their alternatives on thyroid function,a more comprehensive study is needed to discuss their effects on newborns and their underlying mechanisms.This review facilitates attention to the effects of PAEs and their alternatives on thyroid and thyroid-related disorders in newborns.
文摘This paper presents findings of a study on solid wastes conversion into fuels through pyrolysis of plastic materials, presenting an alternative renewable approach for waste management. Investigations were conducted on conversion of polypropylene (PP), low-density polyethylene (LDPE) and high-density polyethylene (HDPE) under normal and catalyst mediated process conditions. Plastic wastes were collected from various dumpsites in Nairobi and segregated using plastic resin codes to various classes. Samples were cleaned, dried and shredded to 2 mm and fed into a pyrolysis reactor. The pyrolysis process was conducted at between 220˚C and 420˚C. Pyrolysis gases were condensed in a shell and coil condenser and the incondensable gases were stored in gasbags. Liquid fuels were analysed using Gas chromatograph with a mass spectroscopic detector and Fourier Transform Infrared Spectrometry. The results revealed that the most optimal process conditions were a temperature range of 220˚C - 420˚C at a heating rate of 10˚C per minute. Under these conditions, the oil yields were 53.72% for PP, 62.10% for LDPE, and 64.14% for HDPE. As the heating rate increased from 10˚C/min to 20˚C/min, gas yields increased, rising from 28.05% to 31.12% in PP, 14.96% to 30.62% in LDPE, and 18.51% to 29.49% in HDPE. The introduction of Fe2O3 and Al2O3 catalyst significantly enhanced gas production during pyrolysis, increasing yields from 18% to 61% and 47% respectively.
基金supported by the Science and Technology Program of Hebei Province, China (236Z2903G)the Innovative Research Group Project of Hebei Natural Science Foundation, China (C2024204246)+1 种基金the Hebei International Joint Research Center of Vegetable Functional Genomicsthe International Joint R&D Center of Hebei Province in Modern Agricultural Biotechnology for supporting this work。
文摘The plant circadian clock temporally drives gene expression throughout the day and coordinates various physiological processes with diurnal environmental changes. It is essential for conferring plant fitness and competitive advantages to survive and thrive under natural conditions through the circadian control of gene transcription. Chinese cabbage(Brassica rapa ssp. pekinensis) is an economically important vegetable crop worldwide, although there is little information concerning its circadian clock system. Here we found that gene expression patterns are affected bycircadian oscillators at both the transcriptional and post-transcriptional levels in Chinese cabbage. Time-course RNA-seq analyses were conducted on two short-period lines(SPcc-1 and SPcc-2) and two long-period lines(LPcc-1 and LPcc-2) under constant light. The results showed that 32.7–50.5% of the genes were regulated bythe circadian oscillator and the expression peaks of cycling genes appeared earlier in short-period lines than long-period lines. In addition, approximately 250 splicing events exhibited circadian regulation, with intron retention(IR) accounting for a large proportion. Rhythmically spliced genes included the clock genes LATE ELONGATEDHYPOCOTYL(BrLHY), REVEILLE 2(BrRVE2) and EARLY FLOWERING 3(BrELF3). We also found that thecircadian oscillator could notably influence the diurnal expression patterns of genes that are associated with glucose metabolism via photosynthesis, the Calvin cycle and the tricarboxylic acid(TCA) cycle at both the transcriptional andpost-transcriptional levels. The collective results of this study demonstrate that circadian-regulated physiological processes contribute to Chinese cabbage growth and development.
基金supported by the National Natural Science Foundation of China(Nos.22005277,52474256 and 52074247)the Natural Science Foundation of Hubei Province(No.2024AFB662)+1 种基金the Young Top-notch Talent Cultivation Program of Hubei Province,Opening Foundation of State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology(No.oic-202401012)the Fundamental Research Funds for National Universities,China University of Geosciences(No.2024XLA93).
文摘With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,inspired by Janus,a CNF/MXene/ZnFe2O4@PANI composite film with an asymmetric gradient alternating structure was successfully prepared by adjusting the filler content of the conduc-tive and magnetic layers using a vacuum-assisted filtration method.Benefiting from the magnetic reso-nance and hysteresis loss of ZnFe2O4@PANI,conductive loss and dipole polarization of MXene,as well as the exclusive"absorption-reflection-reabsorption"shielding feature in the alternating multilayered films,CM&CZFP-4 G film has superior EMI shielding performance,with an EMI SE of up to 45.75 dB and shield-ing effectiveness of 99.99%.Surprisingly,the composite film maintains reliable EMI shielding properties even after prolonged erosion in harsh environments such as high/low temperatures,high humidity,acids and alkalis.Furthermore,the CM&CZFP-4 G responded quickly within about 50 s and reached a maximum steady-state temperature of 235.8℃ at an applied voltage of 9.0 V,indicating the obtained film acquired outstanding and controllable Joule heating performance.This result was attributed to the homogeneous dispersion of MXene to build up a conductive network and endow the CNF/MXene with high conduc-tivity.Meanwhile,the fire resistance of CM&CZFP-4 G was significantly improved compared to pure CNF,which guaranteed fire safety during its application.Additionally,contributed by long fiber entanglement of CNF,extensive hydrogen-bonding interactions and multilayer structural design,the CM&CZFP-4 G film exhibits excellent mechanical characteristics,with the tensile strength and fracture strain of 27.74 MPa and 6.21%,separately.This work offers a creative avenue to prepare multifunctional composite films with electromagnetic shielding and Joule heating for various application environments.
基金supported by grants from the Noncommunicable Chronic Diseases-National Science and Technology Major Project(Grant No.2023ZD0501300)Science Technology Department of Zhejiang Province(Grant No.2021C03117)+2 种基金National Natural Science Foundation of China(Grant No.82350104 and 82170219)Natural Science Foundation of Zhejiang Province,China(Grant No.LY23H080004 and LY24H080001)Medical Health Science and Technology Project of Zhejiang Provincial Health Commission(Grant No.2021KY199)。
文摘Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CAR-NK cell therapy has enabled the development of“off-the-shelf”products that bypass the lengthy and expensive cell manufacturing process1.
基金supported by the National Natural Science Foundation of China(Nos.81972771,82173062)the Key Areas Project of Education Department of Guangdong Province(No.2021ZDZX2017)+3 种基金the Tertiary Education Scientific Research Project of Guangzhou Municipal Education Bureau(No.202235387)the Guangzhou Science and Technology Project of Guangzhou Municipal Science and Technology Bureau(No.2023A03J0428)the Natural Science Foundation of Guangdong Province,China(No.2024A1515013082)the Guangdong Basic and Applied Basic Research 21 Foundation(No.2021A1515010403).
文摘Background:Alterations in splicing factors contribute to aberrant alternative splicing(AS),which subsequently promotes tumor progression.The splicing factor polypyrimidine tract binding protein 1(PTBP1)has been shown to facilitate cancer progression by modulating oncogenic variants.However,its specific role and underlying mechanisms in hepatocellular carcinoma(HCC)remain to be elucidated.Methods:PTBP1 expression was evaluated in HCC tissues and cell lines.Subsequently,cells were transfected with vectors designed for PTBP1 overexpression or downregulation.The biological function of PTBP1 was assessed in vitro and in vivo using MTS assays,colony formation assays,transwell assays,xenograft formation,tail vein injection,and orthotopic models.Transcriptome analysis was conducted to elucidate the underlying molecular mechanisms.Results:Our findings demonstrated that PTBP1 exhibited elevated expression in HCC cell lines and tissues.Furthermore,its expression positively correlated with overall and disease-free survival rates,as well as tumor grade and stage.PTBP1 knockdown reduced HCC cell proliferation,migration,and invasion in vitro and suppressed hepatocarcinoma xenograft growth and infiltration in vivo.RNA sequencing(RNA-Seq)analysis identified the AS events associated with PTBP1.PTBP1 functionally enhanced cell proliferation,invasion,and migration by modulating the AS of the microtubule-associated protein tau(MAPT)gene and promoting oncogene expression.Notably,the dysregulation of MAPT splicing coincided with increased PTBP1 expression in HCC.Conclusions:PTBP1-guided AS of the MAPT gene enhances tumorigenicity in HCC through activation of the MAPK/ERK pathways.