An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse o...An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse of the system.The existing frequency control methods use traditional proportion integration(PI)controllers,which cannot adjust PI parameters in real-time to respond to the status changes of the system.Hierarchical control driven by fuzzy logic allows real-time adjustment of the PI parameters and the method used a two-layer control structure.The primary control used droop control to adjust power distribution,and fuzzy logic was used in the voltage loop of the primary control.The secondary control was added to make up for frequency deviation caused by droop control,and fuzzy logic was used in the secondary frequency control to deal with the dynamic change of frequency caused by the disturbances of loads.The proposed method was simulated in Matlab/Simulink.In the primary control,the proposed method reduced the total harmonic distortion(THD)of two cycles of the output voltage from 4.19%to 3.89%;in the secondary control,the proposed method reduced the frequency fluctuation of the system by about 0.03 Hz and 0.04 Hz when the load was increased and decreased,respectively.The results show that the proposed methods have a better effect on frequency maintenance and voltage control of the AC microgrid.展开更多
Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations o...Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.展开更多
基金National Natural Science Foundation of China(No.62303107)Fundamental Research Funds for the Central Universities,China(Nos.2232022G-09 and 2232021D-38)Shanghai Sailing Program,China(No.21YF1400100)。
文摘An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse of the system.The existing frequency control methods use traditional proportion integration(PI)controllers,which cannot adjust PI parameters in real-time to respond to the status changes of the system.Hierarchical control driven by fuzzy logic allows real-time adjustment of the PI parameters and the method used a two-layer control structure.The primary control used droop control to adjust power distribution,and fuzzy logic was used in the voltage loop of the primary control.The secondary control was added to make up for frequency deviation caused by droop control,and fuzzy logic was used in the secondary frequency control to deal with the dynamic change of frequency caused by the disturbances of loads.The proposed method was simulated in Matlab/Simulink.In the primary control,the proposed method reduced the total harmonic distortion(THD)of two cycles of the output voltage from 4.19%to 3.89%;in the secondary control,the proposed method reduced the frequency fluctuation of the system by about 0.03 Hz and 0.04 Hz when the load was increased and decreased,respectively.The results show that the proposed methods have a better effect on frequency maintenance and voltage control of the AC microgrid.
基金supported by the National Natural Science Foundation of China(72271213)the Shenzhen Science and Technology Program(JCYJ20220530143800001 and RCYX20221008092927070)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2024A1515240024)the National Key Research and Development Program of China(2022YFB2403500).
文摘Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.