In this paper, we extend the alternate Broyden's method to the multiple version fbi solving lincar leastsquarc systems with multiple right-hand sides. We show that the method possesses property of a finite tcrmina...In this paper, we extend the alternate Broyden's method to the multiple version fbi solving lincar leastsquarc systems with multiple right-hand sides. We show that the method possesses property of a finite tcrmination.Some numerical cxperiments are gi von to inustrate the effectiveness of the method.展开更多
A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is refo...A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.展开更多
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac...Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.展开更多
In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functio...In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functions. Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality, we prove that the sequence generated by the GADMM converges to a critical point of the augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large. Moreover, we also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.展开更多
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ...Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.展开更多
This paper develops a variational model for image noise removal using total curvature(TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the charac...This paper develops a variational model for image noise removal using total curvature(TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical computation with the curvature regularization is difficult. In order to conquer the computation problem, the proposed model is transformed into an alternating optimization problem by importing auxiliary variables. Furthermore, based on alternating direction method of multipliers, we design a fast numerical approximation iterative scheme for proposed model. Finally, numerous experiments are implemented to indicate the advantages of the proposed model in image edge preserving, image contrast and corners preserving. Meanwhile, the high computational efficiency of the designed model is verified by comparing with traditional models, including the total variation(TV) and total Laplace(TL) model.展开更多
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ...The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.展开更多
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ...A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.展开更多
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc...This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.展开更多
The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a t...The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.展开更多
The stress analysis of surrounding rock for two random geometry tunnels is studied in this paper by using Schwarz’s alternating method. The simple and effective alternating algorithm is found, in which the surplus su...The stress analysis of surrounding rock for two random geometry tunnels is studied in this paper by using Schwarz’s alternating method. The simple and effective alternating algorithm is found, in which the surplus surface force is approximated by Fourier series, thus the iteration derivation can be conducted according to the precision required, finally, the stress results with high precision are obtained.展开更多
The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which...The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which can be solved by traditional numerical methods and an infinite domain with a crack which can be solved by Muskhelishvili’s solutions.However,this alternating method cannot be directly applied to the edge crack problems since partial crack surface of Muskhelishvili’s solutions is located outside the computational domain.In this paper,an improved alternating method,the spline fictitious boundary element alternating method(SFBEAM),based on infinite domain with the combination of spline fictitious boundary element method(SFBEM)and Muskhelishvili’s solutions is proposed to solve the edge crack problems.Since the SFBEM and Muskhelishvili’s solutions are obtained in the framework of infinite domain,no special treatment is needed for solving the problem of edge cracks.Different mixed boundary conditions edge crack problems with varies of computational parameters are given to certify the high precision,efficiency and applicability of the proposed method compared with other alternating methods and extend finite element method.展开更多
This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merel...This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.展开更多
Tensor robust principal component analysis(TRPCA) problem aims to separate a low-rank tensor and a sparse tensor from their sum. This problem has recently attracted considerable research attention due to its wide ra...Tensor robust principal component analysis(TRPCA) problem aims to separate a low-rank tensor and a sparse tensor from their sum. This problem has recently attracted considerable research attention due to its wide range of potential applications in computer vision and pattern recognition. In this paper, we propose a new model to deal with the TRPCA problem by an alternation minimization algorithm along with two adaptive rankadjusting strategies. For the underlying low-rank tensor, we simultaneously perform low-rank matrix factorizations to its all-mode matricizations; while for the underlying sparse tensor,a soft-threshold shrinkage scheme is applied. Our method can be used to deal with the separation between either an exact or an approximate low-rank tensor and a sparse one. We established the subsequence convergence of our algorithm in the sense that any limit point of the iterates satisfies the KKT conditions. When the iteration stops, the output will be modified by applying a high-order SVD approach to achieve an exactly low-rank final result as the accurate rank has been calculated. The numerical experiments demonstrate that our method could achieve better results than the compared methods.展开更多
In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algor...In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.展开更多
In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computat...In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computation, an alternating-direction iterative scheme of the mixed fi-nite element method is formulated and its stability and converbence are proved for the linear prob-lem. A numerical example is provided at the end of this paper.展开更多
Since 2009,the Mine Safety and Health Administration(MSHA)has required mines to install refuge alternatives(RAs)in underground coal mines.One of the biggest concerns with occupied RAs is the possible severity of the r...Since 2009,the Mine Safety and Health Administration(MSHA)has required mines to install refuge alternatives(RAs)in underground coal mines.One of the biggest concerns with occupied RAs is the possible severity of the resulting thermal environment.In 30 CFR 7.504,the maximum allowable apparent temperature(AT)for an occupied RA is specified as 35℃(95°F).Manufacturers must conduct heat/humidity tests to demonstrate that their RAs meet the 35℃(95°F)AT limit.For these tests,heat input devices are used to input the metabolic heat of actual miners.A wide variety of test methods,sensors,and heat input devices could be used when conducting such tests.Since 2012,the National Institute for Occupational Safety and Health(NIOSH)has conducted over thirty 96-hour heat/humidity tests on four different RAs.This paper discusses the test equipment and procedures used during these investigations.This information is useful for RA manufacturers conducting RA heat/humidity tests,for other researchers investigating RA heat/humidity buildup,and for those who need to assess the thermal environment of any confined space where people may be trapped or are seeking refuge.展开更多
In this paper the Schwarz alternating method for a fourth-order elliptic variational inequality problem is considered by way of the equivalent form, and the geometric convergence is obtained on two subdomains.
This paper shows that the alternating direction method can be used to solve the structured inverse quadratic eigenvalue problem with symmetry, positive semi-definiteness and sparsity requirements. The results of numer...This paper shows that the alternating direction method can be used to solve the structured inverse quadratic eigenvalue problem with symmetry, positive semi-definiteness and sparsity requirements. The results of numerical examples show that the proposed method works well.展开更多
Based on the fabricated 12-element cavity-backed microstrip sector cylinder array,a novel hybrid alternate projection algorithm(HAPA),which combines analytical method with numerical techniques effectively,is propose...Based on the fabricated 12-element cavity-backed microstrip sector cylinder array,a novel hybrid alternate projection algorithm(HAPA),which combines analytical method with numerical techniques effectively,is proposed for synthesizing the pattern of practical conformal array.The algorithm applies the variable direction aperture projection method with mutual coupling correction techniques to provide the good initial excitations of elements to the enhanced alternate projection algorithm(EAPA).In order to do further optimization,which improves the convergent speed of the algorithm significantly.Finally,the HAPA has been applied to the fabricated sector cylinder array with mutual coupling considered.The results of synthesized patterns,such as low sidelobe with null points formed pattern,beam scanning with low sidelobe pattern and the shaped beam pattern are presented.It demonstrates the validity of HAPA in practical conformal array synthesis.展开更多
文摘In this paper, we extend the alternate Broyden's method to the multiple version fbi solving lincar leastsquarc systems with multiple right-hand sides. We show that the method possesses property of a finite tcrmination.Some numerical cxperiments are gi von to inustrate the effectiveness of the method.
基金The Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY210049)
文摘A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.
基金the National High Technology Research and Development Program of China(Grant No.2012AA011603)
文摘Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1157117811801455)the Fundamental Research Funds of China West Normal University(Grant No.17E084)
文摘In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functions. Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality, we prove that the sequence generated by the GADMM converges to a critical point of the augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large. Moreover, we also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.
基金Supported by the National Natural Science Foundation of China(61203021)the Key Science and Technology Program of Liaoning Province(2011216011)+1 种基金the Natural Science Foundation of Liaoning Province(2013020024)the Program for Liaoning Excellent Talents in Universities(LJQ2015061)
文摘Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.
基金supported by the National Natural Science Foundation of China(No.61602269)the China Postdoctoral Science Foundation(No.2015M571993)+1 种基金the Shandong Provincial Natural Science Foundation of China(No.ZR2017MD004)the Qingdao Postdoctoral Application Research Funded Project
文摘This paper develops a variational model for image noise removal using total curvature(TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical computation with the curvature regularization is difficult. In order to conquer the computation problem, the proposed model is transformed into an alternating optimization problem by importing auxiliary variables. Furthermore, based on alternating direction method of multipliers, we design a fast numerical approximation iterative scheme for proposed model. Finally, numerous experiments are implemented to indicate the advantages of the proposed model in image edge preserving, image contrast and corners preserving. Meanwhile, the high computational efficiency of the designed model is verified by comparing with traditional models, including the total variation(TV) and total Laplace(TL) model.
基金Supported by the National Natural Science Foundation of China(Grant No.11971149,11871381)Natural Science Foundation of Henan Province for Youth(Grant No.202300410146)。
文摘The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.
文摘A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.
文摘This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12061045,12061046,11661056,11771198,11771347,91730306,41390454,11401293)the China Postdoctoral Science Foundation(Grant No.2015M571989)the Jiangxi Province Postdoctoral Science Foundation(Grant No.2015KY51)。
文摘The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.
文摘The stress analysis of surrounding rock for two random geometry tunnels is studied in this paper by using Schwarz’s alternating method. The simple and effective alternating algorithm is found, in which the surplus surface force is approximated by Fourier series, thus the iteration derivation can be conducted according to the precision required, finally, the stress results with high precision are obtained.
基金supported by the National Natural Science Foundation of China(51078150)the National Natural Science Foundation of China(11602087)+1 种基金the State Key Laboratory of Subtropical Building Science,South China University of Technology(2017ZB32)National Undergraduate Innovative and Entrepreneurial Training Program(201810561180).
文摘The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which can be solved by traditional numerical methods and an infinite domain with a crack which can be solved by Muskhelishvili’s solutions.However,this alternating method cannot be directly applied to the edge crack problems since partial crack surface of Muskhelishvili’s solutions is located outside the computational domain.In this paper,an improved alternating method,the spline fictitious boundary element alternating method(SFBEAM),based on infinite domain with the combination of spline fictitious boundary element method(SFBEM)and Muskhelishvili’s solutions is proposed to solve the edge crack problems.Since the SFBEM and Muskhelishvili’s solutions are obtained in the framework of infinite domain,no special treatment is needed for solving the problem of edge cracks.Different mixed boundary conditions edge crack problems with varies of computational parameters are given to certify the high precision,efficiency and applicability of the proposed method compared with other alternating methods and extend finite element method.
基金the National Natural Science Foundation of China(61833012,61773162,61590924)the Natural Science Foundation of Shanghai(18ZR1420000)。
文摘This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.
基金Supported by the National Natural Science Foundation of China(Grant Nos.6157209961320106008+2 种基金91230103)National Science and Technology Major Project(Grant Nos.2013ZX040050212014ZX04001011)
文摘Tensor robust principal component analysis(TRPCA) problem aims to separate a low-rank tensor and a sparse tensor from their sum. This problem has recently attracted considerable research attention due to its wide range of potential applications in computer vision and pattern recognition. In this paper, we propose a new model to deal with the TRPCA problem by an alternation minimization algorithm along with two adaptive rankadjusting strategies. For the underlying low-rank tensor, we simultaneously perform low-rank matrix factorizations to its all-mode matricizations; while for the underlying sparse tensor,a soft-threshold shrinkage scheme is applied. Our method can be used to deal with the separation between either an exact or an approximate low-rank tensor and a sparse one. We established the subsequence convergence of our algorithm in the sense that any limit point of the iterates satisfies the KKT conditions. When the iteration stops, the output will be modified by applying a high-order SVD approach to achieve an exactly low-rank final result as the accurate rank has been calculated. The numerical experiments demonstrate that our method could achieve better results than the compared methods.
文摘In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.
基金the National Natural Science Foundation of China and China State Key Project for Basic Researches
文摘In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computation, an alternating-direction iterative scheme of the mixed fi-nite element method is formulated and its stability and converbence are proved for the linear prob-lem. A numerical example is provided at the end of this paper.
文摘Since 2009,the Mine Safety and Health Administration(MSHA)has required mines to install refuge alternatives(RAs)in underground coal mines.One of the biggest concerns with occupied RAs is the possible severity of the resulting thermal environment.In 30 CFR 7.504,the maximum allowable apparent temperature(AT)for an occupied RA is specified as 35℃(95°F).Manufacturers must conduct heat/humidity tests to demonstrate that their RAs meet the 35℃(95°F)AT limit.For these tests,heat input devices are used to input the metabolic heat of actual miners.A wide variety of test methods,sensors,and heat input devices could be used when conducting such tests.Since 2012,the National Institute for Occupational Safety and Health(NIOSH)has conducted over thirty 96-hour heat/humidity tests on four different RAs.This paper discusses the test equipment and procedures used during these investigations.This information is useful for RA manufacturers conducting RA heat/humidity tests,for other researchers investigating RA heat/humidity buildup,and for those who need to assess the thermal environment of any confined space where people may be trapped or are seeking refuge.
文摘In this paper the Schwarz alternating method for a fourth-order elliptic variational inequality problem is considered by way of the equivalent form, and the geometric convergence is obtained on two subdomains.
基金Supported by Youth Teacher Education and Research Funds of Fujian(Grant No.JAT170911).
文摘This paper shows that the alternating direction method can be used to solve the structured inverse quadratic eigenvalue problem with symmetry, positive semi-definiteness and sparsity requirements. The results of numerical examples show that the proposed method works well.
文摘Based on the fabricated 12-element cavity-backed microstrip sector cylinder array,a novel hybrid alternate projection algorithm(HAPA),which combines analytical method with numerical techniques effectively,is proposed for synthesizing the pattern of practical conformal array.The algorithm applies the variable direction aperture projection method with mutual coupling correction techniques to provide the good initial excitations of elements to the enhanced alternate projection algorithm(EAPA).In order to do further optimization,which improves the convergent speed of the algorithm significantly.Finally,the HAPA has been applied to the fabricated sector cylinder array with mutual coupling considered.The results of synthesized patterns,such as low sidelobe with null points formed pattern,beam scanning with low sidelobe pattern and the shaped beam pattern are presented.It demonstrates the validity of HAPA in practical conformal array synthesis.