Let Pr denote an almost-prime with at most r prime factors,counted according to multiplicity.In this paper,it is proved that,for every sufficiently large even integer N,the equation N=x^(2)+p_(2)^(2)+p_(3)^(3)+p_(4)^(...Let Pr denote an almost-prime with at most r prime factors,counted according to multiplicity.In this paper,it is proved that,for every sufficiently large even integer N,the equation N=x^(2)+p_(2)^(2)+p_(3)^(3)+p_(4)^(3)+p_(5)^(5)+_6^(5)is solvable with being an almost-prime P_(6) and the other variables primes.This result constitutes an enhancement upon the previous result of Hooley[Recent Progress in Analytic Number Theory,Vol.1(Durham,1979),London:Academic Press,1981,127-191].展开更多
In this article, we define almost prime submodules as a new generalization of prime and weakly prime submodules of unitary modules over a commutative ring with identity. We study some basic properties of almost prime ...In this article, we define almost prime submodules as a new generalization of prime and weakly prime submodules of unitary modules over a commutative ring with identity. We study some basic properties of almost prime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.展开更多
Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices ...Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices p, q are joined by an edge if and only if pq ∈ πe(G). In this case, we write p - q. For p ∈π(G), put deg(p) := |{q ∈ π(G)|p - q}|, which is called the degree of p. We also define D(G) := (deg(p1), deg(p2),..., deg(pk)), where pl 〈 p2 〈 -……〈 pk, which is called the degree pattern of G. We say a group G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups with the same order and degree pattern as G. Specially, a l-fold OD-characterizable group is simply called an OD-characterizable group. Let L := U6(2). In this article, we classify all finite groups with the same order and degree pattern as an almost simple groups related to L. In fact, we prove that L and L.2 are OD-characterizable, L.3 is 3-fold OD-characterizable, and L.S3 is 5-fold OD-characterizable.展开更多
基金Supported by NSFC (Nos.12471009,12301006,12001047,11901566)Beijing Natural Science Foundation (No.1242003)National Training Program of Innovation and Entrepreneurship for Undergraduates(No.202307011)。
文摘Let Pr denote an almost-prime with at most r prime factors,counted according to multiplicity.In this paper,it is proved that,for every sufficiently large even integer N,the equation N=x^(2)+p_(2)^(2)+p_(3)^(3)+p_(4)^(3)+p_(5)^(5)+_6^(5)is solvable with being an almost-prime P_(6) and the other variables primes.This result constitutes an enhancement upon the previous result of Hooley[Recent Progress in Analytic Number Theory,Vol.1(Durham,1979),London:Academic Press,1981,127-191].
文摘In this article, we define almost prime submodules as a new generalization of prime and weakly prime submodules of unitary modules over a commutative ring with identity. We study some basic properties of almost prime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.
基金supported by Natural Science Foundation Project of CQ CSTC (2010BB9206)NNSF of China (10871032)+1 种基金Fundamental Research Funds for the Central Universities (Chongqing University, CDJZR10100009)National Science Foundation for Distinguished Young Scholars of China (11001226)
文摘Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices p, q are joined by an edge if and only if pq ∈ πe(G). In this case, we write p - q. For p ∈π(G), put deg(p) := |{q ∈ π(G)|p - q}|, which is called the degree of p. We also define D(G) := (deg(p1), deg(p2),..., deg(pk)), where pl 〈 p2 〈 -……〈 pk, which is called the degree pattern of G. We say a group G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups with the same order and degree pattern as G. Specially, a l-fold OD-characterizable group is simply called an OD-characterizable group. Let L := U6(2). In this article, we classify all finite groups with the same order and degree pattern as an almost simple groups related to L. In fact, we prove that L and L.2 are OD-characterizable, L.3 is 3-fold OD-characterizable, and L.S3 is 5-fold OD-characterizable.