BACKGROUND In an era leaning toward a personalized alignment of total knee arthroplasty,coronal plane alignment of the knee(CPAK)phenotypes for each population are studied;furthermore,other possible variables affectin...BACKGROUND In an era leaning toward a personalized alignment of total knee arthroplasty,coronal plane alignment of the knee(CPAK)phenotypes for each population are studied;furthermore,other possible variables affecting the alignment,such as ankle joint alignment,should be considered.AIM To determine CPAK distribution in the North African(Egyptian)population with knee osteoarthritis and to assess ankle joint line orientation(AJLO)adaptations across different CPAK types.METHODS A cross-sectional study was conducted on patients with primary knee osteoarthritis and normal ankle joints.Radiographic parameters included the mechanical lateral distal femoral angle,medial proximal tibial angle,and the derived calculations of joint line obliquity(JLO)and arithmetic hip-knee-ankle angle(aHKA).The tibial plafond horizontal angle(TPHA)was used for AJLO assessment,where 0°is neutral(type N),<0°is varus(type A),and>0°is valgus(type B).The nine CPAK types were further divided into 27 subtypes after incorporating the three AJLO types.RESULTS A total of 527 patients(1054 knees)were included for CPAK classification,and 435 patients(870 knees and ankles)for AJLO assessment.The mean age was 57.2±7.8 years,with 79.5%females.Most knees(76.4%)demonstrated varus alignment(mean aHKA was-5.51°±4.84°)and apex distal JLO(55.3%)(mean JLO was 176.43°±4.53°).CPAK types I(44.3%),IV(28.6%),and II(10%)were the most common.Regarding AJLO,70.2%of ankles exhibited varus orientation(mean TPHA was-5.21°±6.45°).The most frequent combined subtypes were CPAK type I-A(33.7%),IV-A(21.5%),and I-N(6.9%).A significant positive correlation was found between the TPHA and aHKA(r=0.40,P<0.001).CONCLUSION In this North African cohort,varus knee alignment with apex distal JLO and varus AJLO predominated.CPAK types I,IV,and II were the most common types,while subtypes I-A,IV-A,and I-N were commonly occurring after incorporating AJLO types;furthermore,the AJLO was significantly correlated to aHKA.展开更多
Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and...Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and treatment efficiencies,presenting new clinical challenges.Therefore,a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique.This expert consensus discusses case selection and grading of treatment difficulty,principle of clear aligner therapy,clinical procedures and potential complications,which are crucial to the clinical success of clear aligner treatment.展开更多
Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral pos...Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral postoperative joint alignment. However, contemporary approaches, such as kinematic alignments and hybrid techniques including adjusted mechanical, restricted kinematic, inverse kinematic, and functional alignments, are gaining attention for their ability to restore native joint kinematics and anatomical alignment, potentially leading to enhanced functional outcomes and greater patient satisfaction. The ongoing debate on optimal alignment strategies considers the following factors: long-term implant durability, functional improvement, and resolution of individual anatomical variations. Furthermore, advancements of computer-navigated and robotic-assisted surgery have augmented the precision in implant positioning and objective measurements of soft tissue balance. Despite ongoing debates on balancing implant longevity and functional outcomes, there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations. This review evaluates the spectrum of various alignment techniques in TKA, including mechanical alignment, patient-specific kinematic approaches, and emerging hybrid methods. Each technique is scrutinized based on its fundamental principles, procedural techniques, inherent advantages, and potential limitations, while identifying significant clinical gaps that underscore the need for further investigation.展开更多
Large language models(LLMs)represent significant advancements in artificial intelligence.However,their increasing capabilities come with a serious challenge:misalignment,which refers to the deviation of model behavior...Large language models(LLMs)represent significant advancements in artificial intelligence.However,their increasing capabilities come with a serious challenge:misalignment,which refers to the deviation of model behavior from the designers’intentions and human values.This review aims to synthesize the current understanding of the LLM misalignment issue and provide researchers and practitioners with a comprehensive overview.We define the concept of misalignment and elaborate on its various manifestations,including generating harmful content,factual errors(hallucinations),propagating biases,failing to follow instructions,emerging deceptive behaviors,and emergent misalignment.We explore the multifaceted causes of misalignment,systematically analyzing factors from surface-level technical issues(e.g.,training data,objective function design,model scaling)to deeper fundamental challenges(e.g.,difficulties formalizing values,discrepancies between training signals and real intentions).This review covers existing and emerging techniques for detecting and evaluating the degree of misalignment,such as benchmark tests,red-teaming,and formal safety assessments.Subsequently,we examine strategies to mitigate misalignment,focusing on mainstream alignment techniques such as RLHF,Constitutional AI(CAI),instruction fine-tuning,and novel approaches that address scalability and robustness.In particular,we analyze recent advances in misalignment attack research,including system prompt modifications,supervised fine-tuning,self-supervised representation attacks,and model editing,which challenge the robustness of model alignment.We categorize and analyze the surveyed literature,highlighting major findings,persistent limitations,and current contentious points.Finally,we identify key open questions and propose several promising future research directions,including constructing high-quality alignment datasets,exploring novel alignment methods,coordinating diverse values,and delving into the deep philosophical aspects of alignment.This work underscores the complexity and multidimensionality of LLM misalignment issues,calling for interdisciplinary approaches to reliably align LLMs with human values.展开更多
A polarization-sensitive and flexible photodetector was fabricated through the precise alignment of perovskite nanowires(NWs)using a brush coating technique.The alignment of the NWs was meticulously examined,consideri...A polarization-sensitive and flexible photodetector was fabricated through the precise alignment of perovskite nanowires(NWs)using a brush coating technique.The alignment of the NWs was meticulously examined,considering various chemical properties of the solvent,such as boiling point,viscosity,and surface tension.Notably,when the NWs were brush-coated with toluene dispersion,the NWs were aligned in higher order than those processed from octane dispersion.The degree of alignment was correlated with the photodetector property.Especially,the well-aligned NW photodetector exhibited a two-fold disparity in current response contingent on the polarization direction.Furthermore,even after enduring 500 bending cycles,the device retained 80%of its photodetector performance.This approach underscores the potential of solution-processed flexible photodetectors for advanced optical applications under dynamic operating conditions.展开更多
Nanocrystals have emerged as cutting-edge functional materials benefiting from the increased surface and enhanced coupling of electronic states.High-resolution imaging in transmission electron microscope can provide i...Nanocrystals have emerged as cutting-edge functional materials benefiting from the increased surface and enhanced coupling of electronic states.High-resolution imaging in transmission electron microscope can provide invaluable structural information of crystalline materials,albeit it remains greatly challenging to nanocrystals due to the arduousness of accurate zone axis adjustment.Herein,a homemade software package,called SmartAxis,is developed for rapid yet accurate zone axis alignment of nanocrystals.Incident electron beam tilt is employed as an eccentric goniometer to measure the angular deviation of a crystal to a zone axis,and then serves as a linkage to calculate theαandβtilts of goniometer based on an accurate quantitative relationship.In this way,high-resolution imaging of one identical small Au nanocrystal,as well as electron beam-sensitive MIL-101 metal-organic framework crystals,along multiple zone axes,was performed successfully by using this accurate,time-and electron dose-saving zone axis alignment software package.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm i...In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm is proposed.In Krein space,a robust element is added in the simplified UKF so as to improve the algorithm.The filtering gain is adjusted by the robust element and in this way the performance of the robustness of the filtering algorithm is promoted.In the initial alignment process of the large heading misalignment angle of the strapdown inertial navigation system(SINS),comparative studies are conducted on the robust UKF and the simplified UKF.The simulation results illustrate that compared with the simplified UKF,the robust UKF is more accurate,and the estimation error of heading misalignment decreases from 16.9' to 4.3'.In short,the robust UKF can reduce the sensitivity to the system disturbances resulting in better performance.展开更多
Active rods propelled along their long axis align their velocities and orientations simultaneously in collision.However,as the propulsion is perpendicular to the long axis,velocity alignment becomes dynamically diffic...Active rods propelled along their long axis align their velocities and orientations simultaneously in collision.However,as the propulsion is perpendicular to the long axis,velocity alignment becomes dynamically difficult.Here,we show that ellipsoidal Quincke roller propelled along their short-axis(perpendicular to the long axis)can align their velocities by flipping and form flocking with nematic order.The flipping arises from the reversible transition between the static parallel spinless state and the spinning transversal state of ellipsoidal Quincke rollers.This is possible only near(above)the critical field where both the parallel spinless state and the spinning transversal spinning are metastable.The flipping-facilitated alignment offers an extra aligning mechanism for elongate active agents,and the resulting active liquid crystals serve a model system to explore the defect dynamics as the propulsion deviates from the local nematic orientation which has not been addressed yet.展开更多
A high pattern resolution is critical for fabricating roll-to-roll printed electronics(R2RPE)products.For enhanced overlay alignment accuracy,position errors between the printer and the substrate web must be eliminate...A high pattern resolution is critical for fabricating roll-to-roll printed electronics(R2RPE)products.For enhanced overlay alignment accuracy,position errors between the printer and the substrate web must be eliminated,particularly in inkjet printing applications.This paper proposes a novel five-degree-of-freedom(5-DOF)flexure-based alignment stage to adjust the posture of an inkjet printer head.The stage effectively compensates for positioning errors between the actuation mechanism and manipulated objects through a series-parallel combination of compliant substructures.Voice coil motors(VCMs)and linear motors serve as actuators to achieve the required motion.Theoretical models were established using a pseudo-rigid-body model(PRBM)methodology and were validated through finite element analysis(FEA).Finally,an alignment stage prototype was fabricated for an experiment.The prototype test results showed that the developed positioning platform attains 5-DOF motion capabilities with 335.1μm×418.9μm×408.1μm×3.4 mrad×3.29 mrad,with cross-axis coupling errors below 0.11%along y-and z-axes.This paper pro-poses a novel 5-DOF flexure-based alignment stage that can be used for error compensation in R2RPE and effectively improves the interlayer alignment accuracy of multi-layer printing.展开更多
Bismuth oxyselenide(Bi_(2)O_(2)Se),a novel quasi-two-dimensional charge-carrying semiconductor,is recognized as one of the most promising emerging platforms for next-generation semiconductor devices.Recent advancement...Bismuth oxyselenide(Bi_(2)O_(2)Se),a novel quasi-two-dimensional charge-carrying semiconductor,is recognized as one of the most promising emerging platforms for next-generation semiconductor devices.Recent advancements in the development of diverse Bi_(2)O_(2)Se heterojunctions have unveiled extensive potential applications in both electronics and optoelectronics.However,achieving an in-depth understanding of band alignment and particularly interface dynamics remains a significant challenge.In this study,we conduct a comprehensive experimental investigation into band alignment utilizing high-resolution X-ray photoelectron spectroscopy(HRXPS),while also thoroughly discussing the properties of interface states.Our findings reveal that ultrathin films of Bi_(2)O_(2)Se grown on SrTiO_(3)(with TiO_(2)(001)termination)exhibit Type-I(straddling gap)band alignment characterized by a valence band offset(VBO)of approximately 1.77±0.04 eV and a conduction band offset(CBO)around 0.68±0.04 eV.Notably,when accounting for the influence of interface states,the bands at the interface display a herringbone configuration due to substantial built-in electric fields,which markedly deviate from conventional band alignments.Thus,our results provide valuable insights for advancing high-efficiency electronic and optoelectronic devices,particularly those where charge transfer is highly sensitive to interface states.展开更多
To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities...To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model.展开更多
The band alignment between silicon and high-k dielectrics,which is a key factor in device operation and reliability,still suffers from uncontrolled fluctuations and ambiguous understanding.In this study,by conducting ...The band alignment between silicon and high-k dielectrics,which is a key factor in device operation and reliability,still suffers from uncontrolled fluctuations and ambiguous understanding.In this study,by conducting atomic-level ab initio calculations on realistic Si/SiO_(2)/HfO_(2)stacks,we reveal the physical origin of band alignment fluctuations,i.e.,the oxygen density-dependent interface and surface dipoles,and demonstrate that band offsets can be tuned without introducing other materials.This is instructive for reducing the gate tunneling current,alleviating device-to-device variation,and tuning the threshold voltage.Additionally,this study indicates that significant attention should be focused on model construction in emerging atomistic studies on semiconductor devices.展开更多
Industrial data mining usually deals with data from different sources.These heterogeneous datasets describe the same object in different views.However,samples from some of the datasets may be lost.Then the remaining s...Industrial data mining usually deals with data from different sources.These heterogeneous datasets describe the same object in different views.However,samples from some of the datasets may be lost.Then the remaining samples do not correspond one-to-one correctly.Mismatched datasets caused by missing samples make the industrial data unavailable for further machine learning.In order to align the mismatched samples,this article presents a cooperative iteration matching method(CIMM)based on the modified dynamic time warping(DTW).The proposed method regards the sequentially accumulated industrial data as the time series.Mismatched samples are aligned by the DTW.In addition,dynamic constraints are applied to the warping distance of the DTW process to make the alignment more efficient.Then a series of models are trained with the cumulated samples iteratively.Several groups of numerical experiments on different missing patterns and missing locations are designed and analyzed to prove the effectiveness and the applicability of the proposed method.展开更多
The multiple oligopeptides have been regarded as promising alignment media due to their structural diverseness and tendency for self-assembly in solution.Herein,an assembled amphiphilic peptide alignment medium,i.e.,C...The multiple oligopeptides have been regarded as promising alignment media due to their structural diverseness and tendency for self-assembly in solution.Herein,an assembled amphiphilic peptide alignment medium,i.e.,C15eCONH-Phg-Phg-IIIKK-CONH2 with un-natural amino acids for the determination of anisotropic parameters of NMR is introduced.The amphiphilic peptide can be self-assembled at low concentrations in DMSO and is stable and highly homogeneous.The NMR spectrum collected with the addition of the medium had fewer background signals.The utility of the acquired RDC data is demon-strated to determine relative configuration of three natural products,Helminthosporic acid,Estrone,and a-Santonin.展开更多
Just a few days after the astronomical spectacle of the“seven planets in alignment”on February 28,2025,the weather in many places underwent a dramatic change.In Shanghai,which was still at the beginning of spring(Ma...Just a few days after the astronomical spectacle of the“seven planets in alignment”on February 28,2025,the weather in many places underwent a dramatic change.In Shanghai,which was still at the beginning of spring(March 1),the temperature suddenly soared to 29℃,the temperature of summer,while Shandong was hit by a sudden heavy snowstorm.There are various opinions and no consensus on this inexplicable weather change.For this reason,based on the principle of the role of planets in the luminescence and heat generation of stars,the author of this article reveals the significant impact of the“Seven planets in alignment”on global climate change,and also points out that the melting of polar glaciers and the approach of the moon to the Earth is another important cause of global climate change.Therefore,countermeasures to save the abnormal changes in global climate are proposed.展开更多
Background The redirected walking(RDW)method for multi-user collaboration requires maintaining the relative position between users in a virtual environment(VE)and physical environment(PE).A chasing game in a VE is a t...Background The redirected walking(RDW)method for multi-user collaboration requires maintaining the relative position between users in a virtual environment(VE)and physical environment(PE).A chasing game in a VE is a typical virtual reality game that entails multi-user collaboration.When a user approaches and interacts with a target user in the VE,the user is expected to approach and interact with the target user in the corresponding PE as well.Existing methods of multi-user RDW mainly focus on obstacle avoidance,which does not account for the relative positional relationship between the users in both VE and PE.Methods To enhance the user experience and facilitate potential interaction,this paper presents a novel dynamic alignment algorithm for multi-user collaborative redirected walking(DA-RDW)in a shared PE where the target user and other users are moving.This algorithm adopts improved artificial potential fields,where the repulsive force is a function of the relative position and velocity of the user with respect to dynamic obstacles.For the best alignment,this algorithm sets the alignment-guidance force in several cases and then converts it into a constrained optimization problem to obtain the optimal direction.Moreover,this algorithm introduces a potential interaction object selection strategy for a dynamically uncertain environment to speed up the subsequent alignment.To balance obstacle avoidance and alignment,this algorithm uses the dynamic weightings of the virtual and physical distances between users and the target to determine the resultant force vector.Results The efficacy of the proposed method was evaluated using a series of simulations and live-user experiments.The experimental results demonstrate that our novel dynamic alignment method for multi-user collaborative redirected walking can reduce the distance error in both VE and PE to improve alignment with fewer collisions.展开更多
基金approved by Institutional Review Board of Faculty of Medicine in Assiut University,No.04-2024-300470.
文摘BACKGROUND In an era leaning toward a personalized alignment of total knee arthroplasty,coronal plane alignment of the knee(CPAK)phenotypes for each population are studied;furthermore,other possible variables affecting the alignment,such as ankle joint alignment,should be considered.AIM To determine CPAK distribution in the North African(Egyptian)population with knee osteoarthritis and to assess ankle joint line orientation(AJLO)adaptations across different CPAK types.METHODS A cross-sectional study was conducted on patients with primary knee osteoarthritis and normal ankle joints.Radiographic parameters included the mechanical lateral distal femoral angle,medial proximal tibial angle,and the derived calculations of joint line obliquity(JLO)and arithmetic hip-knee-ankle angle(aHKA).The tibial plafond horizontal angle(TPHA)was used for AJLO assessment,where 0°is neutral(type N),<0°is varus(type A),and>0°is valgus(type B).The nine CPAK types were further divided into 27 subtypes after incorporating the three AJLO types.RESULTS A total of 527 patients(1054 knees)were included for CPAK classification,and 435 patients(870 knees and ankles)for AJLO assessment.The mean age was 57.2±7.8 years,with 79.5%females.Most knees(76.4%)demonstrated varus alignment(mean aHKA was-5.51°±4.84°)and apex distal JLO(55.3%)(mean JLO was 176.43°±4.53°).CPAK types I(44.3%),IV(28.6%),and II(10%)were the most common.Regarding AJLO,70.2%of ankles exhibited varus orientation(mean TPHA was-5.21°±6.45°).The most frequent combined subtypes were CPAK type I-A(33.7%),IV-A(21.5%),and I-N(6.9%).A significant positive correlation was found between the TPHA and aHKA(r=0.40,P<0.001).CONCLUSION In this North African cohort,varus knee alignment with apex distal JLO and varus AJLO predominated.CPAK types I,IV,and II were the most common types,while subtypes I-A,IV-A,and I-N were commonly occurring after incorporating AJLO types;furthermore,the AJLO was significantly correlated to aHKA.
文摘Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and treatment efficiencies,presenting new clinical challenges.Therefore,a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique.This expert consensus discusses case selection and grading of treatment difficulty,principle of clear aligner therapy,clinical procedures and potential complications,which are crucial to the clinical success of clear aligner treatment.
文摘Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral postoperative joint alignment. However, contemporary approaches, such as kinematic alignments and hybrid techniques including adjusted mechanical, restricted kinematic, inverse kinematic, and functional alignments, are gaining attention for their ability to restore native joint kinematics and anatomical alignment, potentially leading to enhanced functional outcomes and greater patient satisfaction. The ongoing debate on optimal alignment strategies considers the following factors: long-term implant durability, functional improvement, and resolution of individual anatomical variations. Furthermore, advancements of computer-navigated and robotic-assisted surgery have augmented the precision in implant positioning and objective measurements of soft tissue balance. Despite ongoing debates on balancing implant longevity and functional outcomes, there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations. This review evaluates the spectrum of various alignment techniques in TKA, including mechanical alignment, patient-specific kinematic approaches, and emerging hybrid methods. Each technique is scrutinized based on its fundamental principles, procedural techniques, inherent advantages, and potential limitations, while identifying significant clinical gaps that underscore the need for further investigation.
基金supported by National Natural Science Foundation of China(62462019,62172350)Guangdong Basic and Applied Basic Research Foundation(2023A1515012846)+6 种基金Guangxi Science and Technology Major Program(AA24263010)The Key Research and Development Program of Guangxi(AB24010085)Key Laboratory of Equipment Data Security and Guarantee Technology,Ministry of Education(GDZB2024060500)2024 Higher Education Scientific Research Planning Project(No.24NL0419)Nantong Science and Technology Project(No.JC2023070)the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province(GrantNo.SKLACSS-202407)sponsored by the Cultivation of Young andMiddle-aged Academic Leaders in the“Qing Lan Project”of Jiangsu Province and the 2025 Outstanding Teaching Team in the“Qing Lan Project”of Jiangsu Province.
文摘Large language models(LLMs)represent significant advancements in artificial intelligence.However,their increasing capabilities come with a serious challenge:misalignment,which refers to the deviation of model behavior from the designers’intentions and human values.This review aims to synthesize the current understanding of the LLM misalignment issue and provide researchers and practitioners with a comprehensive overview.We define the concept of misalignment and elaborate on its various manifestations,including generating harmful content,factual errors(hallucinations),propagating biases,failing to follow instructions,emerging deceptive behaviors,and emergent misalignment.We explore the multifaceted causes of misalignment,systematically analyzing factors from surface-level technical issues(e.g.,training data,objective function design,model scaling)to deeper fundamental challenges(e.g.,difficulties formalizing values,discrepancies between training signals and real intentions).This review covers existing and emerging techniques for detecting and evaluating the degree of misalignment,such as benchmark tests,red-teaming,and formal safety assessments.Subsequently,we examine strategies to mitigate misalignment,focusing on mainstream alignment techniques such as RLHF,Constitutional AI(CAI),instruction fine-tuning,and novel approaches that address scalability and robustness.In particular,we analyze recent advances in misalignment attack research,including system prompt modifications,supervised fine-tuning,self-supervised representation attacks,and model editing,which challenge the robustness of model alignment.We categorize and analyze the surveyed literature,highlighting major findings,persistent limitations,and current contentious points.Finally,we identify key open questions and propose several promising future research directions,including constructing high-quality alignment datasets,exploring novel alignment methods,coordinating diverse values,and delving into the deep philosophical aspects of alignment.This work underscores the complexity and multidimensionality of LLM misalignment issues,calling for interdisciplinary approaches to reliably align LLMs with human values.
基金supported by a Commercialization Promotion Agency for R&D Outcomes(COMPA)Grant funded by the Korean Government(Ministry of Science and ICT)(No.RS-2023-00304743)the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.2022M3J7A1066428)"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(No.2023RIS-008).
文摘A polarization-sensitive and flexible photodetector was fabricated through the precise alignment of perovskite nanowires(NWs)using a brush coating technique.The alignment of the NWs was meticulously examined,considering various chemical properties of the solvent,such as boiling point,viscosity,and surface tension.Notably,when the NWs were brush-coated with toluene dispersion,the NWs were aligned in higher order than those processed from octane dispersion.The degree of alignment was correlated with the photodetector property.Especially,the well-aligned NW photodetector exhibited a two-fold disparity in current response contingent on the polarization direction.Furthermore,even after enduring 500 bending cycles,the device retained 80%of its photodetector performance.This approach underscores the potential of solution-processed flexible photodetectors for advanced optical applications under dynamic operating conditions.
基金supported by the National Key R&D Program of China(No.2021YFA1501002)Thousand Talents Program for Distinguished Young Scholars.X.Li thanks the National Natural Science Foundation of China(No.22309021).
文摘Nanocrystals have emerged as cutting-edge functional materials benefiting from the increased surface and enhanced coupling of electronic states.High-resolution imaging in transmission electron microscope can provide invaluable structural information of crystalline materials,albeit it remains greatly challenging to nanocrystals due to the arduousness of accurate zone axis adjustment.Herein,a homemade software package,called SmartAxis,is developed for rapid yet accurate zone axis alignment of nanocrystals.Incident electron beam tilt is employed as an eccentric goniometer to measure the angular deviation of a crystal to a zone axis,and then serves as a linkage to calculate theαandβtilts of goniometer based on an accurate quantitative relationship.In this way,high-resolution imaging of one identical small Au nanocrystal,as well as electron beam-sensitive MIL-101 metal-organic framework crystals,along multiple zone axes,was performed successfully by using this accurate,time-and electron dose-saving zone axis alignment software package.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
基金The National Basic Research Program of China (973 Program) (No. 613121010202)
文摘In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm is proposed.In Krein space,a robust element is added in the simplified UKF so as to improve the algorithm.The filtering gain is adjusted by the robust element and in this way the performance of the robustness of the filtering algorithm is promoted.In the initial alignment process of the large heading misalignment angle of the strapdown inertial navigation system(SINS),comparative studies are conducted on the robust UKF and the simplified UKF.The simulation results illustrate that compared with the simplified UKF,the robust UKF is more accurate,and the estimation error of heading misalignment decreases from 16.9' to 4.3'.In short,the robust UKF can reduce the sensitivity to the system disturbances resulting in better performance.
基金financial support of the National Natural Science Foundation of China(Grant No.11974255)。
文摘Active rods propelled along their long axis align their velocities and orientations simultaneously in collision.However,as the propulsion is perpendicular to the long axis,velocity alignment becomes dynamically difficult.Here,we show that ellipsoidal Quincke roller propelled along their short-axis(perpendicular to the long axis)can align their velocities by flipping and form flocking with nematic order.The flipping arises from the reversible transition between the static parallel spinless state and the spinning transversal state of ellipsoidal Quincke rollers.This is possible only near(above)the critical field where both the parallel spinless state and the spinning transversal spinning are metastable.The flipping-facilitated alignment offers an extra aligning mechanism for elongate active agents,and the resulting active liquid crystals serve a model system to explore the defect dynamics as the propulsion deviates from the local nematic orientation which has not been addressed yet.
基金Supported by Natural Science Research Project of Anhui Educational Committee(Grant No.2024AH040010).
文摘A high pattern resolution is critical for fabricating roll-to-roll printed electronics(R2RPE)products.For enhanced overlay alignment accuracy,position errors between the printer and the substrate web must be eliminated,particularly in inkjet printing applications.This paper proposes a novel five-degree-of-freedom(5-DOF)flexure-based alignment stage to adjust the posture of an inkjet printer head.The stage effectively compensates for positioning errors between the actuation mechanism and manipulated objects through a series-parallel combination of compliant substructures.Voice coil motors(VCMs)and linear motors serve as actuators to achieve the required motion.Theoretical models were established using a pseudo-rigid-body model(PRBM)methodology and were validated through finite element analysis(FEA).Finally,an alignment stage prototype was fabricated for an experiment.The prototype test results showed that the developed positioning platform attains 5-DOF motion capabilities with 335.1μm×418.9μm×408.1μm×3.4 mrad×3.29 mrad,with cross-axis coupling errors below 0.11%along y-and z-axes.This paper pro-poses a novel 5-DOF flexure-based alignment stage that can be used for error compensation in R2RPE and effectively improves the interlayer alignment accuracy of multi-layer printing.
基金supported by the National Natural Science Foundation of China(Nos.52072059,12304078,12274061 and 11774044)the Natural Science Foundation of Sichuan Province(No.2024NSFSC1384).
文摘Bismuth oxyselenide(Bi_(2)O_(2)Se),a novel quasi-two-dimensional charge-carrying semiconductor,is recognized as one of the most promising emerging platforms for next-generation semiconductor devices.Recent advancements in the development of diverse Bi_(2)O_(2)Se heterojunctions have unveiled extensive potential applications in both electronics and optoelectronics.However,achieving an in-depth understanding of band alignment and particularly interface dynamics remains a significant challenge.In this study,we conduct a comprehensive experimental investigation into band alignment utilizing high-resolution X-ray photoelectron spectroscopy(HRXPS),while also thoroughly discussing the properties of interface states.Our findings reveal that ultrathin films of Bi_(2)O_(2)Se grown on SrTiO_(3)(with TiO_(2)(001)termination)exhibit Type-I(straddling gap)band alignment characterized by a valence band offset(VBO)of approximately 1.77±0.04 eV and a conduction band offset(CBO)around 0.68±0.04 eV.Notably,when accounting for the influence of interface states,the bands at the interface display a herringbone configuration due to substantial built-in electric fields,which markedly deviate from conventional band alignments.Thus,our results provide valuable insights for advancing high-efficiency electronic and optoelectronic devices,particularly those where charge transfer is highly sensitive to interface states.
基金partially supported by the National Natural Science Foundation of China under Grants 62471493 and 62402257(for conceptualization and investigation)partially supported by the Natural Science Foundation of Shandong Province,China under Grants ZR2023LZH017,ZR2024MF066,and 2023QF025(for formal analysis and validation)+1 种基金partially supported by the Open Foundation of Key Laboratory of Computing Power Network and Information Security,Ministry of Education,Qilu University of Technology(Shandong Academy of Sciences)under Grant 2023ZD010(for methodology and model design)partially supported by the Russian Science Foundation(RSF)Project under Grant 22-71-10095-P(for validation and results verification).
文摘To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model.
基金supported by the National Natural Science Foundation of China(Grant Nos.62174155,12334005,and T2293702)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-056)the MIND Project(Grant No.MINDKT202403)。
文摘The band alignment between silicon and high-k dielectrics,which is a key factor in device operation and reliability,still suffers from uncontrolled fluctuations and ambiguous understanding.In this study,by conducting atomic-level ab initio calculations on realistic Si/SiO_(2)/HfO_(2)stacks,we reveal the physical origin of band alignment fluctuations,i.e.,the oxygen density-dependent interface and surface dipoles,and demonstrate that band offsets can be tuned without introducing other materials.This is instructive for reducing the gate tunneling current,alleviating device-to-device variation,and tuning the threshold voltage.Additionally,this study indicates that significant attention should be focused on model construction in emerging atomistic studies on semiconductor devices.
基金the Key National Natural Science Foundation of China(No.U1864211)the National Natural Science Foundation of China(No.11772191)the Natural Science Foundation of Shanghai(No.21ZR1431500)。
文摘Industrial data mining usually deals with data from different sources.These heterogeneous datasets describe the same object in different views.However,samples from some of the datasets may be lost.Then the remaining samples do not correspond one-to-one correctly.Mismatched datasets caused by missing samples make the industrial data unavailable for further machine learning.In order to align the mismatched samples,this article presents a cooperative iteration matching method(CIMM)based on the modified dynamic time warping(DTW).The proposed method regards the sequentially accumulated industrial data as the time series.Mismatched samples are aligned by the DTW.In addition,dynamic constraints are applied to the warping distance of the DTW process to make the alignment more efficient.Then a series of models are trained with the cumulated samples iteratively.Several groups of numerical experiments on different missing patterns and missing locations are designed and analyzed to prove the effectiveness and the applicability of the proposed method.
基金supported by the National Natural Science Foundation of China(21874158)the Science and Technology Major Program of Gansu Province of China(22ZD6FA006 and 23ZDFA015)+1 种基金We are also grateful for the financial support from the Science and Technology Program of Henan Province(232102311180)the foundation for the University Young Key Teacher of Henan Province(2024GGJS116).
文摘The multiple oligopeptides have been regarded as promising alignment media due to their structural diverseness and tendency for self-assembly in solution.Herein,an assembled amphiphilic peptide alignment medium,i.e.,C15eCONH-Phg-Phg-IIIKK-CONH2 with un-natural amino acids for the determination of anisotropic parameters of NMR is introduced.The amphiphilic peptide can be self-assembled at low concentrations in DMSO and is stable and highly homogeneous.The NMR spectrum collected with the addition of the medium had fewer background signals.The utility of the acquired RDC data is demon-strated to determine relative configuration of three natural products,Helminthosporic acid,Estrone,and a-Santonin.
文摘Just a few days after the astronomical spectacle of the“seven planets in alignment”on February 28,2025,the weather in many places underwent a dramatic change.In Shanghai,which was still at the beginning of spring(March 1),the temperature suddenly soared to 29℃,the temperature of summer,while Shandong was hit by a sudden heavy snowstorm.There are various opinions and no consensus on this inexplicable weather change.For this reason,based on the principle of the role of planets in the luminescence and heat generation of stars,the author of this article reveals the significant impact of the“Seven planets in alignment”on global climate change,and also points out that the melting of polar glaciers and the approach of the moon to the Earth is another important cause of global climate change.Therefore,countermeasures to save the abnormal changes in global climate are proposed.
基金Supported by STI 2030 Major Projects of China(2021ZD0200400).
文摘Background The redirected walking(RDW)method for multi-user collaboration requires maintaining the relative position between users in a virtual environment(VE)and physical environment(PE).A chasing game in a VE is a typical virtual reality game that entails multi-user collaboration.When a user approaches and interacts with a target user in the VE,the user is expected to approach and interact with the target user in the corresponding PE as well.Existing methods of multi-user RDW mainly focus on obstacle avoidance,which does not account for the relative positional relationship between the users in both VE and PE.Methods To enhance the user experience and facilitate potential interaction,this paper presents a novel dynamic alignment algorithm for multi-user collaborative redirected walking(DA-RDW)in a shared PE where the target user and other users are moving.This algorithm adopts improved artificial potential fields,where the repulsive force is a function of the relative position and velocity of the user with respect to dynamic obstacles.For the best alignment,this algorithm sets the alignment-guidance force in several cases and then converts it into a constrained optimization problem to obtain the optimal direction.Moreover,this algorithm introduces a potential interaction object selection strategy for a dynamically uncertain environment to speed up the subsequent alignment.To balance obstacle avoidance and alignment,this algorithm uses the dynamic weightings of the virtual and physical distances between users and the target to determine the resultant force vector.Results The efficacy of the proposed method was evaluated using a series of simulations and live-user experiments.The experimental results demonstrate that our novel dynamic alignment method for multi-user collaborative redirected walking can reduce the distance error in both VE and PE to improve alignment with fewer collisions.