Internet of Things is an ecosystem of interconnected devices that are accessible through the internet.The recent research focuses on adding more smartness and intelligence to these edge devices.This makes them suscept...Internet of Things is an ecosystem of interconnected devices that are accessible through the internet.The recent research focuses on adding more smartness and intelligence to these edge devices.This makes them susceptible to various kinds of security threats.These edge devices rely on cryptographic techniques to encrypt the pre-processed data collected from the sensors deployed in the field.In this regard,block cipher has been one of the most reliable options through which data security is accomplished.The strength of block encryption algorithms against different attacks is dependent on its nonlinear primitive which is called Substitution Boxes.For the design of S-boxes mainly algebraic and chaos-based techniques are used but researchers also found various weaknesses in these techniques.On the other side,literature endorse the true random numbers for information security due to the reason that,true random numbers are purely non-deterministic.In this paper firstly a natural dynamical phenomenon is utilized for the generation of true random numbers based S-boxes.Secondly,a systematic literature review was conducted to know which metaheuristic optimization technique is highly adopted in the current decade for the optimization of S-boxes.Based on the outcome of Systematic Literature Review(SLR),genetic algorithm is chosen for the optimization of s-boxes.The results of our method validate that the proposed dynamic S-boxes are effective for the block ciphers.Moreover,our results showed that the proposed substitution boxes achieve better cryptographic strength as compared with state-of-the-art techniques.展开更多
A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is stil...A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer sever...In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer several advantages over conventional technologies in the near future.However,the potential growth of this technology also attracts attention from hackers,which introduces new challenges for the research community that range from hardware and software security to user privacy and authentication.Therefore,we focus on a particular security concern that is associated with malware detection.The literature presents many countermeasures,but inconsistent results on identical datasets and algorithms raise concerns about model biases,training quality,and complexity.This highlights the need for an adaptive,real-time learning framework that can effectively mitigate malware threats in IoT applications.To address these challenges,(i)we propose an intelligent framework based on Two-step Deep Reinforcement Learning(TwStDRL)that is capable of learning and adapting in real-time to counter malware threats in IoT applications.This framework uses exploration and exploitation phenomena during both the training and testing phases by storing results in a replay memory.The stored knowledge allows the model to effectively navigate the environment and maximize cumulative rewards.(ii)To demonstrate the superiority of the TwStDRL framework,we implement and evaluate several machine learning algorithms for comparative analysis that include Support Vector Machines(SVM),Multi-Layer Perceptron,Random Forests,and k-means Clustering.The selection of these algorithms is driven by the inconsistent results reported in the literature,which create doubt about their robustness and reliability in real-world IoT deployments.(iii)Finally,we provide a comprehensive evaluation to justify why the TwStDRL framework outperforms them in mitigating security threats.During analysis,we noted that our proposed TwStDRL scheme achieves an average performance of 99.45%across accuracy,precision,recall,and F1-score,which is an absolute improvement of roughly 3%over the existing malware-detection models.展开更多
With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for pac...With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for packets or flow records have become more and more widely used in network monitoring, network troubleshooting, and user behavior and experience analysis. Among the three key technologies in ITAS, we focus on bitmap index compression algorithm and give a detailed survey in this paper. The current state-of-the-art bitmap index encoding schemes include: BBC, WAH, PLWAH, EWAH, PWAH, CONCISE, COMPAX, VLC, DF-WAH, and VAL-WAH. Based on differences in segmentation, chunking, merge compress, and Near Identical(NI) features, we provide a thorough categorization of the state-of-the-art bitmap index compression algorithms. We also propose some new bitmap index encoding algorithms, such as SECOMPAX, ICX, MASC, and PLWAH+, and present the state diagrams for their encoding algorithms. We then evaluate their CPU and GPU implementations with a real Internet trace from CAIDA. Finally, we summarize and discuss the future direction of bitmap index compression algorithms. Beyond the application in network security and network forensic, bitmap index compression with faster bitwise-logical operations and reduced search space is widely used in analysis in genome data, geographical information system, graph databases, image retrieval, Internet of things, etc. It is expected that bitmap index compression will thrive and be prosperous again in Big Data era since 1980s.展开更多
Energy consumption in data centers has grown out of proportion in regard to the state of energy that’s available in the universe. Technology has improved services and its application. The need for eco-friendly energy...Energy consumption in data centers has grown out of proportion in regard to the state of energy that’s available in the universe. Technology has improved services and its application. The need for eco-friendly energy and increase in data centers performance brought about Green Computing into the energy consumption of data centers. Information technology has grown and eaten deep into the society that almost all the sectors if not all are dependent on information technology to move on. The consumption of power has increased greatly. In this research paper the techniques for optimizing energy in data centers for Green Computing would be discussed. This study intends to expose the limitations of existing security solutions for securing data centers by taking into consideration of limitations of existing security frameworks that cannot enhance the security of data centers.展开更多
Cloud computing is a kind of computing that depends on shared figuring assets instead of having nearby servers or individual gadgets to deal with applications. Technology is moving to the cloud more and more. It’s no...Cloud computing is a kind of computing that depends on shared figuring assets instead of having nearby servers or individual gadgets to deal with applications. Technology is moving to the cloud more and more. It’s not just a trend, the shift away from ancient package models to package as service has steadily gained momentum over the last ten years. Looking forward, the following decade of cloud computing guarantees significantly more approaches to work from anyplace, utilizing cell phones. Cloud computing focused on better performances, better scalability and resource consumption but it also has some security issue with the data stored in it. The proposed algorithm intents to come with some solutions that will reduce the security threats and ensure far better security to the data stored in cloud.展开更多
A hierarchical peer-to-peer(P2P)model and a data fusion method for network security situation awareness system are proposed to improve the efficiency of distributed security behavior monitoring network.The single po...A hierarchical peer-to-peer(P2P)model and a data fusion method for network security situation awareness system are proposed to improve the efficiency of distributed security behavior monitoring network.The single point failure of data analysis nodes is avoided by this P2P model,in which a greedy data forwarding method based on node priority and link delay is devised to promote the efficiency of data analysis nodes.And the data fusion method based on repulsive theory-Dumpster/Shafer(PSORT-DS)is used to deal with the challenge of multi-source alarm information.This data fusion method debases the false alarm rate.Compared with improved Dumpster/Shafer(DS)theoretical method based on particle swarm optimization(PSO)and classical DS evidence theoretical method,the proposed model reduces false alarm rate by 3%and 7%,respectively,whereas their detection rate increases by 4%and 16%,respectively.展开更多
Data is the last defense line of security,in order to prevent data loss,no matter where the data is stored,copied or transmitted,it is necessary to accurately detect the data type,and further clarify the form and encr...Data is the last defense line of security,in order to prevent data loss,no matter where the data is stored,copied or transmitted,it is necessary to accurately detect the data type,and further clarify the form and encryption structure of the data transmission process to ensure the accuracy of the data,so as to prevent data leakage,take the data characteristics as the core,use transparent encryption and decryption technology as the leading,and According to the data element characteristics such as identity authentication,authority management,outgoing management,file audit and external device management,the terminal data is marked with attributes to form a data leakage prevention module with data function,so as to control the data in the whole life cycle from creation,storage,transmission,use to destruction,no matter whether the data is stored in the server,PC or mobile device,provide unified policy management,form ecological data chain with vital characteristics,and provide comprehensive protection system for file dynamic encryption transmission,such as prevention in advance,control in the event,and audit after the event,so as to ensure the security of dynamic encryption in the process of file transmission,ensure the core data of the file,and help the enterprise keep away from the risk of data leakage.展开更多
Mobile edge computing(MEC)provides effective cloud services and functionality at the edge device,to improve the quality of service(QoS)of end users by offloading the high computation tasks.Currently,the introduction o...Mobile edge computing(MEC)provides effective cloud services and functionality at the edge device,to improve the quality of service(QoS)of end users by offloading the high computation tasks.Currently,the introduction of deep learning(DL)and hardware technologies paves amethod in detecting the current traffic status,data offloading,and cyberattacks in MEC.This study introduces an artificial intelligence with metaheuristic based data offloading technique for Secure MEC(AIMDO-SMEC)systems.The proposed AIMDO-SMEC technique incorporates an effective traffic prediction module using Siamese Neural Networks(SNN)to determine the traffic status in the MEC system.Also,an adaptive sampling cross entropy(ASCE)technique is utilized for data offloading in MEC systems.Moreover,the modified salp swarm algorithm(MSSA)with extreme gradient boosting(XGBoost)technique was implemented to identification and classification of cyberattack that exist in the MEC systems.For examining the enhanced outcomes of the AIMDO-SMEC technique,a comprehensive experimental analysis is carried out and the results demonstrated the enhanced outcomes of the AIMDOSMEC technique with the minimal completion time of tasks(CTT)of 0.680.展开更多
Securing large corporate communication networks has become an increasingly difficult task. Sensitive information routinely leaves the company network boundaries and falls into the hands of unauthorized users. New tech...Securing large corporate communication networks has become an increasingly difficult task. Sensitive information routinely leaves the company network boundaries and falls into the hands of unauthorized users. New techniques are required in order to classify packets based on user identity in addition to the traditional source and destination host addresses. This paper introduces Gaussian cryptographic techniques and protocols to assist network administrators in the complex task of identifying the originators of data packets on a network and more easily policing their behavior. The paper provides numerical examples that illustrate certain basic ideas.展开更多
At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorith...At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorithms to secure sensitive user data.Sometimes,data may have highly sensitive information,lead-ing users to consider using big data and cloud processing regardless of whether they are secured are not.Threats to sensitive data in cloud systems produce high risks,and existing security methods do not provide enough security to sensitive user data in cloud and big data environments.At present,several security solu-tions support cloud systems.Some of them include Hadoop Distributed File Sys-tem(HDFS)baseline Kerberos security,socket layer-based HDFS security,and hybrid security systems,which have time complexity in providing security inter-actions.Thus,mobile data security algorithms are necessary in cloud environ-ments to avoid time risks in providing security.In our study,we propose a data mobility and security(DMoS)algorithm to provide security of data mobility in cloud environments.By analyzing metadata,data are classified as secured and open data based on their importance.Secured data are sensitive user data,whereas open data are open to the public.On the basis of data classification,secured data are applied to the DMoS algorithm to achieve high security in HDFS.The pro-posed approach is compared with the time complexity of three existing algo-rithms,and results are evaluated.展开更多
In the present scenario of rapid growth in cloud computing models,several companies and users started to share their data on cloud servers.However,when the model is not completely trusted,the data owners face several ...In the present scenario of rapid growth in cloud computing models,several companies and users started to share their data on cloud servers.However,when the model is not completely trusted,the data owners face several security-related problems,such as user privacy breaches,data disclosure,data corruption,and so on,during the process of data outsourcing.For addressing and handling the security-related issues on Cloud,several models were proposed.With that concern,this paper develops a Privacy-Preserved Data Security Approach(PP-DSA)to provide the data security and data integrity for the out-sourcing data in Cloud Environment.Privacy preservation is ensured in this work with the Efficient Authentication Technique(EAT)using the Group Signature method that is applied with Third-Party Auditor(TPA).The role of the auditor is to secure the data and guarantee shared data integrity.Additionally,the Cloud Service Provider(CSP)and Data User(DU)can also be the attackers that are to be handled with the EAT.Here,the major objective of the work is to enhance cloud security and thereby,increase Quality of Service(QoS).The results are evaluated based on the model effectiveness,security,and reliability and show that the proposed model provides better results than existing works.展开更多
In the era of big data,the ways people work,live and think have changed dramatically,and the social governance system is also being restructured.Achieving intelligent social governance has now become a national strate...In the era of big data,the ways people work,live and think have changed dramatically,and the social governance system is also being restructured.Achieving intelligent social governance has now become a national strategy.The application of big data technology to counterterrorism efforts has become a powerful weapon for all countries.However,due to the uncertainty,difficulty of interpretation and potential risk of discrimination in big data technology and algorithm models,basic human rights,freedom and even ethics are likely to be impacted and challenged.As a result,there is an urgent need to prioritize basic human rights and regulate the application of big data for counter terrorism purposes.The legislation and law enforcement regarding the use of big data to counter terrorism must be subject to constitutional and other legal reviews,so as to strike a balance between safeguarding national security and protecting basic human rights.展开更多
Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus s...Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus software,often fail to counter these sophisticated attacks,which target human vulnerabilities.To strengthen defenses,healthcare organizations are increasingly adopting Machine Learning(ML)techniques.ML-based SPA defenses use advanced algorithms to analyze various features,including email content,sender behavior,and attachments,to detect potential threats.This capability enables proactive security measures that address risks in real-time.The interpretability of ML models fosters trust and allows security teams to continuously refine these algorithms as new attack methods emerge.Implementing ML techniques requires integrating diverse data sources,such as electronic health records,email logs,and incident reports,which enhance the algorithms’learning environment.Feedback from end-users further improves model performance.Among tested models,the hierarchical models,Convolutional Neural Network(CNN)achieved the highest accuracy at 99.99%,followed closely by the sequential Bidirectional Long Short-Term Memory(BiLSTM)model at 99.94%.In contrast,the traditional Multi-Layer Perceptron(MLP)model showed an accuracy of 98.46%.This difference underscores the superior performance of advanced sequential and hierarchical models in detecting SPAs compared to traditional approaches.展开更多
文摘Internet of Things is an ecosystem of interconnected devices that are accessible through the internet.The recent research focuses on adding more smartness and intelligence to these edge devices.This makes them susceptible to various kinds of security threats.These edge devices rely on cryptographic techniques to encrypt the pre-processed data collected from the sensors deployed in the field.In this regard,block cipher has been one of the most reliable options through which data security is accomplished.The strength of block encryption algorithms against different attacks is dependent on its nonlinear primitive which is called Substitution Boxes.For the design of S-boxes mainly algebraic and chaos-based techniques are used but researchers also found various weaknesses in these techniques.On the other side,literature endorse the true random numbers for information security due to the reason that,true random numbers are purely non-deterministic.In this paper firstly a natural dynamical phenomenon is utilized for the generation of true random numbers based S-boxes.Secondly,a systematic literature review was conducted to know which metaheuristic optimization technique is highly adopted in the current decade for the optimization of S-boxes.Based on the outcome of Systematic Literature Review(SLR),genetic algorithm is chosen for the optimization of s-boxes.The results of our method validate that the proposed dynamic S-boxes are effective for the block ciphers.Moreover,our results showed that the proposed substitution boxes achieve better cryptographic strength as compared with state-of-the-art techniques.
文摘A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R104)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。
文摘In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer several advantages over conventional technologies in the near future.However,the potential growth of this technology also attracts attention from hackers,which introduces new challenges for the research community that range from hardware and software security to user privacy and authentication.Therefore,we focus on a particular security concern that is associated with malware detection.The literature presents many countermeasures,but inconsistent results on identical datasets and algorithms raise concerns about model biases,training quality,and complexity.This highlights the need for an adaptive,real-time learning framework that can effectively mitigate malware threats in IoT applications.To address these challenges,(i)we propose an intelligent framework based on Two-step Deep Reinforcement Learning(TwStDRL)that is capable of learning and adapting in real-time to counter malware threats in IoT applications.This framework uses exploration and exploitation phenomena during both the training and testing phases by storing results in a replay memory.The stored knowledge allows the model to effectively navigate the environment and maximize cumulative rewards.(ii)To demonstrate the superiority of the TwStDRL framework,we implement and evaluate several machine learning algorithms for comparative analysis that include Support Vector Machines(SVM),Multi-Layer Perceptron,Random Forests,and k-means Clustering.The selection of these algorithms is driven by the inconsistent results reported in the literature,which create doubt about their robustness and reliability in real-world IoT deployments.(iii)Finally,we provide a comprehensive evaluation to justify why the TwStDRL framework outperforms them in mitigating security threats.During analysis,we noted that our proposed TwStDRL scheme achieves an average performance of 99.45%across accuracy,precision,recall,and F1-score,which is an absolute improvement of roughly 3%over the existing malware-detection models.
基金supported by the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2013CB228206)the National Natural Science Foundation of China A3 Program (No. 61140320)+2 种基金the National Natural Science Foundation of China (Nos. 61233016 and 61472200)supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates (Nos. 201410003033 and 201410003031)Hitachi (China) Research and Development Corporation
文摘With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for packets or flow records have become more and more widely used in network monitoring, network troubleshooting, and user behavior and experience analysis. Among the three key technologies in ITAS, we focus on bitmap index compression algorithm and give a detailed survey in this paper. The current state-of-the-art bitmap index encoding schemes include: BBC, WAH, PLWAH, EWAH, PWAH, CONCISE, COMPAX, VLC, DF-WAH, and VAL-WAH. Based on differences in segmentation, chunking, merge compress, and Near Identical(NI) features, we provide a thorough categorization of the state-of-the-art bitmap index compression algorithms. We also propose some new bitmap index encoding algorithms, such as SECOMPAX, ICX, MASC, and PLWAH+, and present the state diagrams for their encoding algorithms. We then evaluate their CPU and GPU implementations with a real Internet trace from CAIDA. Finally, we summarize and discuss the future direction of bitmap index compression algorithms. Beyond the application in network security and network forensic, bitmap index compression with faster bitwise-logical operations and reduced search space is widely used in analysis in genome data, geographical information system, graph databases, image retrieval, Internet of things, etc. It is expected that bitmap index compression will thrive and be prosperous again in Big Data era since 1980s.
文摘Energy consumption in data centers has grown out of proportion in regard to the state of energy that’s available in the universe. Technology has improved services and its application. The need for eco-friendly energy and increase in data centers performance brought about Green Computing into the energy consumption of data centers. Information technology has grown and eaten deep into the society that almost all the sectors if not all are dependent on information technology to move on. The consumption of power has increased greatly. In this research paper the techniques for optimizing energy in data centers for Green Computing would be discussed. This study intends to expose the limitations of existing security solutions for securing data centers by taking into consideration of limitations of existing security frameworks that cannot enhance the security of data centers.
文摘Cloud computing is a kind of computing that depends on shared figuring assets instead of having nearby servers or individual gadgets to deal with applications. Technology is moving to the cloud more and more. It’s not just a trend, the shift away from ancient package models to package as service has steadily gained momentum over the last ten years. Looking forward, the following decade of cloud computing guarantees significantly more approaches to work from anyplace, utilizing cell phones. Cloud computing focused on better performances, better scalability and resource consumption but it also has some security issue with the data stored in it. The proposed algorithm intents to come with some solutions that will reduce the security threats and ensure far better security to the data stored in cloud.
基金Supported by the National Natural Science Foundation of China(61370212)the Research Fund for the Doctoral Program of Higher Education of China(20122304130002)+1 种基金the Natural Science Foundation of Heilongjiang Province(ZD 201102)the Fundamental Research Fund for the Central Universities(HEUCFZ1213,HEUCF100601)
文摘A hierarchical peer-to-peer(P2P)model and a data fusion method for network security situation awareness system are proposed to improve the efficiency of distributed security behavior monitoring network.The single point failure of data analysis nodes is avoided by this P2P model,in which a greedy data forwarding method based on node priority and link delay is devised to promote the efficiency of data analysis nodes.And the data fusion method based on repulsive theory-Dumpster/Shafer(PSORT-DS)is used to deal with the challenge of multi-source alarm information.This data fusion method debases the false alarm rate.Compared with improved Dumpster/Shafer(DS)theoretical method based on particle swarm optimization(PSO)and classical DS evidence theoretical method,the proposed model reduces false alarm rate by 3%and 7%,respectively,whereas their detection rate increases by 4%and 16%,respectively.
基金The work was funded by Scientific Research Project of Sichuan Provincial Department of Education(13zao125)Comprehensive Reform Project of Software Engineering(zg−1202)Enterprise Informatization and Internet of Things Measurement and Control Technology Open Fund Project of Sichuan University Key Laboratory(2014wzy05).
文摘Data is the last defense line of security,in order to prevent data loss,no matter where the data is stored,copied or transmitted,it is necessary to accurately detect the data type,and further clarify the form and encryption structure of the data transmission process to ensure the accuracy of the data,so as to prevent data leakage,take the data characteristics as the core,use transparent encryption and decryption technology as the leading,and According to the data element characteristics such as identity authentication,authority management,outgoing management,file audit and external device management,the terminal data is marked with attributes to form a data leakage prevention module with data function,so as to control the data in the whole life cycle from creation,storage,transmission,use to destruction,no matter whether the data is stored in the server,PC or mobile device,provide unified policy management,form ecological data chain with vital characteristics,and provide comprehensive protection system for file dynamic encryption transmission,such as prevention in advance,control in the event,and audit after the event,so as to ensure the security of dynamic encryption in the process of file transmission,ensure the core data of the file,and help the enterprise keep away from the risk of data leakage.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/209/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R77),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Mobile edge computing(MEC)provides effective cloud services and functionality at the edge device,to improve the quality of service(QoS)of end users by offloading the high computation tasks.Currently,the introduction of deep learning(DL)and hardware technologies paves amethod in detecting the current traffic status,data offloading,and cyberattacks in MEC.This study introduces an artificial intelligence with metaheuristic based data offloading technique for Secure MEC(AIMDO-SMEC)systems.The proposed AIMDO-SMEC technique incorporates an effective traffic prediction module using Siamese Neural Networks(SNN)to determine the traffic status in the MEC system.Also,an adaptive sampling cross entropy(ASCE)technique is utilized for data offloading in MEC systems.Moreover,the modified salp swarm algorithm(MSSA)with extreme gradient boosting(XGBoost)technique was implemented to identification and classification of cyberattack that exist in the MEC systems.For examining the enhanced outcomes of the AIMDO-SMEC technique,a comprehensive experimental analysis is carried out and the results demonstrated the enhanced outcomes of the AIMDOSMEC technique with the minimal completion time of tasks(CTT)of 0.680.
文摘Securing large corporate communication networks has become an increasingly difficult task. Sensitive information routinely leaves the company network boundaries and falls into the hands of unauthorized users. New techniques are required in order to classify packets based on user identity in addition to the traditional source and destination host addresses. This paper introduces Gaussian cryptographic techniques and protocols to assist network administrators in the complex task of identifying the originators of data packets on a network and more easily policing their behavior. The paper provides numerical examples that illustrate certain basic ideas.
文摘At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorithms to secure sensitive user data.Sometimes,data may have highly sensitive information,lead-ing users to consider using big data and cloud processing regardless of whether they are secured are not.Threats to sensitive data in cloud systems produce high risks,and existing security methods do not provide enough security to sensitive user data in cloud and big data environments.At present,several security solu-tions support cloud systems.Some of them include Hadoop Distributed File Sys-tem(HDFS)baseline Kerberos security,socket layer-based HDFS security,and hybrid security systems,which have time complexity in providing security inter-actions.Thus,mobile data security algorithms are necessary in cloud environ-ments to avoid time risks in providing security.In our study,we propose a data mobility and security(DMoS)algorithm to provide security of data mobility in cloud environments.By analyzing metadata,data are classified as secured and open data based on their importance.Secured data are sensitive user data,whereas open data are open to the public.On the basis of data classification,secured data are applied to the DMoS algorithm to achieve high security in HDFS.The pro-posed approach is compared with the time complexity of three existing algo-rithms,and results are evaluated.
文摘In the present scenario of rapid growth in cloud computing models,several companies and users started to share their data on cloud servers.However,when the model is not completely trusted,the data owners face several security-related problems,such as user privacy breaches,data disclosure,data corruption,and so on,during the process of data outsourcing.For addressing and handling the security-related issues on Cloud,several models were proposed.With that concern,this paper develops a Privacy-Preserved Data Security Approach(PP-DSA)to provide the data security and data integrity for the out-sourcing data in Cloud Environment.Privacy preservation is ensured in this work with the Efficient Authentication Technique(EAT)using the Group Signature method that is applied with Third-Party Auditor(TPA).The role of the auditor is to secure the data and guarantee shared data integrity.Additionally,the Cloud Service Provider(CSP)and Data User(DU)can also be the attackers that are to be handled with the EAT.Here,the major objective of the work is to enhance cloud security and thereby,increase Quality of Service(QoS).The results are evaluated based on the model effectiveness,security,and reliability and show that the proposed model provides better results than existing works.
文摘In the era of big data,the ways people work,live and think have changed dramatically,and the social governance system is also being restructured.Achieving intelligent social governance has now become a national strategy.The application of big data technology to counterterrorism efforts has become a powerful weapon for all countries.However,due to the uncertainty,difficulty of interpretation and potential risk of discrimination in big data technology and algorithm models,basic human rights,freedom and even ethics are likely to be impacted and challenged.As a result,there is an urgent need to prioritize basic human rights and regulate the application of big data for counter terrorism purposes.The legislation and law enforcement regarding the use of big data to counter terrorism must be subject to constitutional and other legal reviews,so as to strike a balance between safeguarding national security and protecting basic human rights.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under Grant Number(DGSSR-2023-02-02513).
文摘Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus software,often fail to counter these sophisticated attacks,which target human vulnerabilities.To strengthen defenses,healthcare organizations are increasingly adopting Machine Learning(ML)techniques.ML-based SPA defenses use advanced algorithms to analyze various features,including email content,sender behavior,and attachments,to detect potential threats.This capability enables proactive security measures that address risks in real-time.The interpretability of ML models fosters trust and allows security teams to continuously refine these algorithms as new attack methods emerge.Implementing ML techniques requires integrating diverse data sources,such as electronic health records,email logs,and incident reports,which enhance the algorithms’learning environment.Feedback from end-users further improves model performance.Among tested models,the hierarchical models,Convolutional Neural Network(CNN)achieved the highest accuracy at 99.99%,followed closely by the sequential Bidirectional Long Short-Term Memory(BiLSTM)model at 99.94%.In contrast,the traditional Multi-Layer Perceptron(MLP)model showed an accuracy of 98.46%.This difference underscores the superior performance of advanced sequential and hierarchical models in detecting SPAs compared to traditional approaches.