期刊文献+
共找到12,190篇文章
< 1 2 250 >
每页显示 20 50 100
Undrained uplift capacity prediction of open-caisson anchors in anisotropic clays using XGBoost integrated with mutation-based genetic algorithms
1
作者 Rungroad Suppakul Wittaya Jitchaijaroen +2 位作者 Suraparb Keawsawasvong Sutasinee Intui Shinya Inazumi 《Artificial Intelligence in Geosciences》 2025年第2期467-480,共14页
This study evaluates the undrained uplift capacity of open-caisson anchors embedded in anisotropic clay using Finite Element Limit Analysis(FELA)and a hybrid machine learning framework.The FELA simulations inves-tigat... This study evaluates the undrained uplift capacity of open-caisson anchors embedded in anisotropic clay using Finite Element Limit Analysis(FELA)and a hybrid machine learning framework.The FELA simulations inves-tigate the influence of the radius ratio(R/B),anisotropic ratio(re),interface roughness factor(α),and inclination angle(β).Specifically,the results reveal that increasingβsignificantly enhances Nc,especially as soil behavior approaches isotropy.Higherαimproves resistance at steeper inclinations by mobilizing greater interface shear.Nc increases with re,reflecting enhanced strength under isotropic conditions.To enhance predictive accuracy and generalization,a hybrid machine learning model was developed by integrating Extreme Gradient Boosting(XGBoost)with Genetic Algorithm(GA)and Mutation-Based Genetic Algorithm(MGA)for hyperparameter tuning.Among the models,MGA-XGBoost outperformed GA-XGBoost,achieving higher predictive accuracy(R^(2)=0.996 training,0.993 testing).Furthermore,SHAP analysis consistently identified anisotropic ratio(re)as the most influential factor in predicting uplift capacity,followed by interface roughness factor(α),inclination angle(β),and radius ratio(R/B).The proposed framework serves as a scalable decision-support tool adaptable to various soil types and foundation geometries,offering a more efficient and data-driven approach to uplift-resistant design in anisotropic cohesive soils. 展开更多
关键词 Open-caisson anchor Mutation-based genetic algorithms Genetic algorithms XGBoost FELA
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
2
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Spatial Grasp Model for Distributed Management and Its Comparison With Traditional Algorithms 被引量:1
3
作者 Peter Simon Sapaty 《International Relations and Diplomacy》 2025年第3期164-179,共16页
The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m... The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications. 展开更多
关键词 spatial awareness spatial control spatial consciousness Spatial Grasp Technology Spatial Grasp Language spatial scenarios cyber attacks distributed algorithms mobile agents
在线阅读 下载PDF
Unveiling Effective Heuristic Strategies: A Review of Cross-Domain Heuristic Search Challenge Algorithms
4
作者 Mohamad Khairulamirin Md Razali MasriAyob +5 位作者 Abdul Hadi Abd Rahman Razman Jarmin Chian Yong Liu Muhammad Maaya Azarinah Izaham Graham Kendall 《Computer Modeling in Engineering & Sciences》 2025年第2期1233-1288,共56页
The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamic... The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains. 展开更多
关键词 HYPER-HEURISTICS search algorithms optimization heuristic selection move acceptance learning DIVERSIFICATION parameter control
在线阅读 下载PDF
Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis
5
作者 Robertas Damasevicius 《Computers, Materials & Continua》 2025年第2期1493-1538,共46页
Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality ... Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms. 展开更多
关键词 Heuristic optimization algorithms design patterns INITIALIZATION local search diversity maintenance ADAPTATION STOCHASTICITY exploration EXPLOITATION search space metaheuristics
在线阅读 下载PDF
Beyond the blank page:Frequentist and Bayesian perspectives on risk prediction algorithms
6
作者 Francisco Tustumi Felipe Antonio Boff Maegawa Pedro Luiz Serrano Uson Junior 《World Journal of Gastrointestinal Oncology》 2025年第12期337-341,共5页
Risk prediction has long been a cornerstone of surgical oncology,enabling surgeons to anticipate complications,tailor perioperative care,and improve outcomes.With the rise of artificial intelligence,machine learning(M... Risk prediction has long been a cornerstone of surgical oncology,enabling surgeons to anticipate complications,tailor perioperative care,and improve outcomes.With the rise of artificial intelligence,machine learning(ML)models are increasingly being applied to predict outcomes,highlighting the growing significance of data-driven methods for clinical decision-making.Currently,frequentist approaches dominate prediction models,including most ML algorithms;these rely exclusively on observed datasets and risk overlooking the cumulative value of prior clinical knowledge.In contrast,Bayesian reasoning formally integrates existing evidence with new data.In this letter,we examine the strengths of frequentist-based prediction models,discuss how Bayesian methods may improve predictive accuracy,and argue that combining both approaches offers a promising path toward more robust,interpretable,and clinically useful prediction tools in surgery.This integration can yield robust,interpretable,and clinically relevant tools that advance personalized surgical care. 展开更多
关键词 Gastric cancer Bayes theorem Artificial intelligence Probability learning Prediction algorithms Risk
在线阅读 下载PDF
Convergence of 6G-Empowered Edge Intelligence and Generative AI:Theories,Algorithms,and Applications
7
作者 Wu Yuan Dusit Niyato +5 位作者 Cui Shuguang Zhao Lian Tony Q.S.Quek Zhang Yan Qian Liping Li Rongpeng 《China Communications》 2025年第7期I0002-I0005,共4页
The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G en... The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G envisions a hyper-connected environment that supports ubiquitous intelligence through ultra-low latency,high throughput,massive device connectivity,and integrated sensing and communication.On the other hand,generative AI,powered by large foundation models,has emerged as a powerful paradigm capable of creating. 展开更多
关键词 G ubiquitous intelligence edge intelligence algorithms generative artificial intelligence ai theories large foundation modelshas intelligent computingon
在线阅读 下载PDF
Neuromorphic devices assisted by machine learning algorithms
8
作者 Ziwei Huo Qijun Sun +4 位作者 Jinran Yu Yichen Wei Yifei Wang Jeong Ho Cho Zhong Lin Wang 《International Journal of Extreme Manufacturing》 2025年第4期178-215,共38页
Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decisio... Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decision making.It features parallel interconnected neural networks,high fault tolerance,robustness,autonomous learning capability,and ultralow energy dissipation.The algorithms of artificial neural network(ANN)have also been widely used because of their facile self-organization and self-learning capabilities,which mimic those of the human brain.To some extent,ANN reflects several basic functions of the human brain and can be efficiently integrated into neuromorphic devices to perform neuromorphic computations.This review highlights recent advances in neuromorphic devices assisted by machine learning algorithms.First,the basic structure of simple neuron models inspired by biological neurons and the information processing in simple neural networks are particularly discussed.Second,the fabrication and research progress of neuromorphic devices are presented regarding to materials and structures.Furthermore,the fabrication of neuromorphic devices,including stand-alone neuromorphic devices,neuromorphic device arrays,and integrated neuromorphic systems,is discussed and demonstrated with reference to some respective studies.The applications of neuromorphic devices assisted by machine learning algorithms in different fields are categorized and investigated.Finally,perspectives,suggestions,and potential solutions to the current challenges of neuromorphic devices are provided. 展开更多
关键词 neuromorphic devices machine learning algorithms artificial synapses MEMRISTORS field-effect transistors
在线阅读 下载PDF
A Review of the Evolution of Multi-Objective Evolutionary Algorithms
9
作者 Thomas Hanne Mohammad Jahani Moghaddam 《Computers, Materials & Continua》 2025年第12期4203-4236,共34页
Multi-Objective Evolutionary Algorithms(MOEAs)have significantly advanced the domain of MultiObjective Optimization(MOO),facilitating solutions for complex problems with multiple conflicting objectives.This review exp... Multi-Objective Evolutionary Algorithms(MOEAs)have significantly advanced the domain of MultiObjective Optimization(MOO),facilitating solutions for complex problems with multiple conflicting objectives.This review explores the historical development of MOEAs,beginning with foundational concepts in multi-objective optimization,basic types of MOEAs,and the evolution of Pareto-based selection and niching methods.Further advancements,including decom-position-based approaches and hybrid algorithms,are discussed.Applications are analyzed in established domains such as engineering and economics,as well as in emerging fields like advanced analytics and machine learning.The significance of MOEAs in addressing real-world problems is emphasized,highlighting their role in facilitating informed decision-making.Finally,the development trajectory of MOEAs is compared with evolutionary processes,offering insights into their progress and future potential. 展开更多
关键词 Multi-objective optimization evolutionary algorithms Pareto-based selection decomposition-based methods advanced analytics
在线阅读 下载PDF
Fuzzy Logic Based Evaluation of Hybrid Termination Criteria in the Genetic Algorithms for the Wind Farm Layout Design Problem
10
作者 Salman A.Khan Mohamed Mohandes +2 位作者 Shafiqur Rehman Ali Al-Shaikhi Kashif Iqbal 《Computers, Materials & Continua》 2025年第7期553-581,共29页
Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This ... Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%. 展开更多
关键词 Wind energy wind farm layout design performance evaluation genetic algorithms fuzzy logic multi-attribute decision-making
在线阅读 下载PDF
Pareto Multi-Objective Reconfiguration of IEEE 123-Bus Unbalanced Power Distribution Networks Using Metaheuristic Algorithms:A Comprehensive Analysis of Power Quality Improvement
11
作者 Nisa NacarÇıkan 《Computer Modeling in Engineering & Sciences》 2025年第6期3279-3327,共49页
This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss r... This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management. 展开更多
关键词 Voltage and current unbalanced index unbalanced power distribution network power quality metaheuristic algorithms RECONFIGURATION optimization
在线阅读 下载PDF
A White-Knight Double-Edged Scalpel:Meticulously Suturing Financial Algorithms with Technological Genes
12
作者 Liu Xinwei Cheung Ting Kin 《China's Foreign Trade》 2025年第6期30-33,共4页
The headquarters of Plutus Financial Group Ltd,based in Hong Kong,stands as a silent yet razorsharp marker—rooted deeply in the heart of traditional finance,while piercing boundaries,exploring the vast nebulae of blo... The headquarters of Plutus Financial Group Ltd,based in Hong Kong,stands as a silent yet razorsharp marker—rooted deeply in the heart of traditional finance,while piercing boundaries,exploring the vast nebulae of blockchain and artificial intelligence.This integrated financial services group,newly listed on Nasdaq this February,is moving through the cut-and-thrust of the capital market with the postureof a"white knight." 展开更多
关键词 financial algorithms traditional finance white knight technological genes plutus financial group ltd artificial intelligencethis capital market double edged scalpel
在线阅读 下载PDF
Bio-Inspired Algorithms in NLP Techniques:Challenges,Limitations and Its Applications
13
作者 Huu-Tuong Ho Thi-Thuy-Hoai Nguyen +1 位作者 Duong Nguyen Minh Huy Luong Vuong Nguyen 《Computers, Materials & Continua》 2025年第6期3945-3973,共29页
Natural Language Processing(NLP)has become essential in text classification,sentiment analysis,machine translation,and speech recognition applications.As these tasks become complex,traditionalmachine learning and deep... Natural Language Processing(NLP)has become essential in text classification,sentiment analysis,machine translation,and speech recognition applications.As these tasks become complex,traditionalmachine learning and deep learning models encounter challenges with optimization,parameter tuning,and handling large-scale,highdimensional data.Bio-inspired algorithms,which mimic natural processes,offer robust optimization capabilities that can enhance NLP performance by improving feature selection,optimizing model parameters,and integrating adaptive learning mechanisms.This review explores the state-of-the-art applications of bio-inspired algorithms—such as Genetic Algorithms(GA),Particle Swarm Optimization(PSO),and Ant Colony Optimization(ACO)—across core NLP tasks.We analyze their comparative advantages,discuss their integration with neural network models,and address computational and scalability limitations.Through a synthesis of existing research,this paper highlights the unique strengths and current challenges of bio-inspired approaches in NLP,offering insights into hybrid models and lightweight,resource-efficient adaptations for real-time processing.Finally,we outline future research directions that emphasize the development of scalable,effective bio-inspired methods adaptable to evolving data environments. 展开更多
关键词 Natural language processing BIO-INSPIRED genetic algorithms ant colony optimization particle swarm optimization
在线阅读 下载PDF
Guidance of development,validation,and evaluation of algorithms for populating health status in observational studies of routinely collected data(DEVELOP-RCD)
14
作者 Wen Wang Ying-Hui Jin +8 位作者 Mei Liu Qiao He Jia-Yue Xu Ming-Qi Wang Guo-Wei Li Bo Fu Si-Yu Yan Kang Zou Xin Sun 《Military Medical Research》 2025年第5期788-798,共11页
Background:In recent years,there has been a growing trend in the utilization of observational studies that make use of routinely collected healthcare data(RCD).These studies rely on algorithms to identify specific hea... Background:In recent years,there has been a growing trend in the utilization of observational studies that make use of routinely collected healthcare data(RCD).These studies rely on algorithms to identify specific health conditions(e.g.,diabetes or sepsis)for statistical analyses.However,there has been substantial variation in the algorithm development and validation,leading to frequently suboptimal performance and posing a significant threat to the validity of study findings.Unfortunately,these issues are often overlooked.Methods:We systematically developed guidance for the development,validation,and evaluation of algorithms designed to identify health status(DEVELOP-RCD).Our initial efforts involved conducting both a narrative review and a systematic review of published studies on the concepts and methodological issues related to algorithm development,validation,and evaluation.Subsequently,we conducted an empirical study on an algorithm for identifying sepsis.Based on these findings,we formulated specific workflow and recommendations for algorithm development,validation,and evaluation within the guidance.Finally,the guidance underwent independent review by a panel of 20 external experts who then convened a consensus meeting to finalize it.Results:A standardized workflow for algorithm development,validation,and evaluation was established.Guided by specific health status considerations,the workflow comprises four integrated steps:assessing an existing algorithm’s suitability for the target health status;developing a new algorithm using recommended methods;validating the algorithm using prescribed performance measures;and evaluating the impact of the algorithm on study results.Additionally,13 good practice recommendations were formulated with detailed explanations.Furthermore,a practical study on sepsis identification was included to demonstrate the application of this guidance.Conclusions:The establishment of guidance is intended to aid researchers and clinicians in the appropriate and accurate development and application of algorithms for identifying health status from RCD.This guidance has the potential to enhance the credibility of findings from observational studies involving RCD. 展开更多
关键词 Routinely collected healthcare data(RCD) algorithms Health status GUIDANCE
原文传递
Enhancing subsurface seismic profiling with distributed acoustic sensing and optimization algorithms
15
作者 Jing Wang Hong-Hu Zhu +4 位作者 Gang Cheng Tao Wang Xu-Long Gong Dao-Yuan Tan Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3632-3643,共12页
The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed ac... The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed acoustic sensing (DAS) technology enables estimation of the shear-wave distribution as ahigh-density seismic observation system. This technology is characterized by low maintenance costs,high-resolution outputs, and real-time data transmission capabilities, albeit with the challenge ofmanaging massive data generation. Rapid and efficient interpretation of data is the key to advancingapplication of the DAS technology. In this study, field tests were carried out to record ambient noise overa short period using DAS technology, from which the surface-wave dispersion curves were extracted. Inorder to reduce the influence of directional effects on the results, an unsupervised clustering method isused to select appropriate clusters to extract the Green's function. A combination of a genetic algorithmand Monte Carlo (GA-MC) simulation is proposed to invert the subsurface velocity structure. Thestratigraphic profiles obtained by the GA-MC method are in agreement with the borehole profiles.Compared to other methods, the proposed optimization method not only improves the solution qualitybut also reduces the solution time. 展开更多
关键词 Shallow subsurface velocity Site classification Ambient noise imaging Distributed acoustic sensing(DAS) Genetic algorithms and Monte Carlo simulation
在线阅读 下载PDF
Feature Selection Optimisation for Cancer Classification Based on Evolutionary Algorithms:An Extensive Review
16
作者 Siti Ramadhani Lestari Handayani +4 位作者 Theam Foo Ng Sumayyah Dzulkifly Roziana Ariffin Haldi Budiman Shir Li Wang 《Computer Modeling in Engineering & Sciences》 2025年第6期2711-2765,共55页
In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classificati... In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency. 展开更多
关键词 Feature selection(FS) gene expression profile(GEP) cancer classification evolutionary algorithms(EAs) dynamic-length chromosome
暂未订购
Numbering and Generating Quantum Algorithms
17
作者 Mohamed A. El-Dosuky 《Journal of Computer and Communications》 2025年第2期126-141,共16页
Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct ap... Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms. 展开更多
关键词 Quantum algorithms Numbering Computable Programs Quantum Key Distribution
在线阅读 下载PDF
A Comprehensive Review of Face Detection/Recognition Algorithms and Competitive Datasets to Optimize Machine Vision
18
作者 Mahmood Ul Haq Muhammad Athar Javed Sethi +3 位作者 Sadique Ahmad Naveed Ahmad Muhammad Shahid Anwar Alpamis Kutlimuratov 《Computers, Materials & Continua》 2025年第7期1-24,共24页
Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensi... Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research. 展开更多
关键词 Face recognition algorithms face detection techniques face recognition/detection datasets
在线阅读 下载PDF
LOCAL STRUCTURE-PRESERVING ALGORITHMS FOR THE KLEIN-GORDON-ZAKHAROV EQUATION 被引量:1
19
作者 汪佳玲 周政婷 王雨顺 《Acta Mathematica Scientia》 SCIE CSCD 2023年第3期1211-1238,共28页
In this paper, using the concatenating method, a series of local structure-preserving algorithms are obtained for the Klein-Gordon-Zakharov equation, including four multisymplectic algorithms, four local energy-preser... In this paper, using the concatenating method, a series of local structure-preserving algorithms are obtained for the Klein-Gordon-Zakharov equation, including four multisymplectic algorithms, four local energy-preserving algorithms, four local momentumpreserving algorithms;of these, local energy-preserving and momentum-preserving algorithms have not been studied before. The local structure-preserving algorithms mentioned above are more widely used than the global structure-preserving algorithms, since local preservation algorithms can be preserved in any time and space domains, which overcomes the defect that global preservation algorithms are limited to boundary conditions. In particular, under appropriate boundary conditions, local preservation laws are global preservation laws.Numerical experiments conducted can support the theoretical analysis well. 展开更多
关键词 Klein-Gordon-Zakharov(KGZ)equation local preservation law local momentum-preserving algorithms multi-symplectic algorithms local energy-preserving algorithms
在线阅读 下载PDF
Parallel Optimization of Program Instructions Using Genetic Algorithms
20
作者 Petre Anghelescu 《Computers, Materials & Continua》 SCIE EI 2021年第6期3293-3310,共18页
This paper describes an efficient solution to parallelize softwareprogram instructions, regardless of the programming language in which theyare written. We solve the problem of the optimal distribution of a set ofinst... This paper describes an efficient solution to parallelize softwareprogram instructions, regardless of the programming language in which theyare written. We solve the problem of the optimal distribution of a set ofinstructions on available processors. We propose a genetic algorithm to parallelize computations, using evolution to search the solution space. The stagesof our proposed genetic algorithm are: The choice of the initial populationand its representation in chromosomes, the crossover, and the mutation operations customized to the problem being dealt with. In this paper, geneticalgorithms are applied to the entire search space of the parallelization ofthe program instructions problem. This problem is NP-complete, so thereare no polynomial algorithms that can scan the solution space and solve theproblem. The genetic algorithm-based method is general and it is simple andefficient to implement because it can be scaled to a larger or smaller number ofinstructions that must be parallelized. The parallelization technique proposedin this paper was developed in the C# programming language, and our resultsconfirm the effectiveness of our parallelization method. Experimental resultsobtained and presented for different working scenarios confirm the theoreticalresults, and they provide insight on how to improve the exploration of a searchspace that is too large to be searched exhaustively. 展开更多
关键词 Parallel instruction execution parallel algorithms genetic algorithms parallel genetic algorithms artificial intelligence techniques evolutionary strategies
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部