期刊文献+
共找到12,190篇文章
< 1 2 250 >
每页显示 20 50 100
Flexible Monolithic 3D-Integrated Self-Powered Tactile Sensing Array Based on Holey MXene Paste
1
作者 Mengjie Wang Chen Chen +9 位作者 Yuhang Zhang Yanan Ma Li Xu Dan‑Dan Wu Bowen Gao Aoyun Song Li Wen Yongfa Cheng Siliang Wang Yang Yue 《Nano-Micro Letters》 2026年第2期772-785,共14页
Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sen... Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics. 展开更多
关键词 Holey MXene Microsupercapacitor Tactile sensor Monolithic 3D integration Deep learning algorithm
在线阅读 下载PDF
Parameterized Algorithmics for Computational Social Choice:Nine Research Challenges
2
作者 Robert Bredereck Jiehua Chen +3 位作者 Piotr Faliszewski Jiong Guo Rolf Niedermeier Gerhard J.Woeginger 《Tsinghua Science and Technology》 SCIE EI CAS 2014年第4期358-373,共16页
Computational Social Choice is an interdisciplinary research area involving Economics, Political Science,and Social Science on the one side, and Mathematics and Computer Science(including Artificial Intelligence and ... Computational Social Choice is an interdisciplinary research area involving Economics, Political Science,and Social Science on the one side, and Mathematics and Computer Science(including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context. This work is dedicated to Jianer Chen, one of the strongest problem solvers in the history of parameterized algorithmics,on the occasion of his 60 th birthday. 展开更多
关键词 NP-hard problems parameterized complexity fixed-parameter tractability kernelization exact algorithms voting decision making cake cutting
原文传递
应用精确Zoeppritz方程的叠前PP-PS波联合非线性反演方法
3
作者 杨涛 王鹏起 +3 位作者 李庆春 霍科宇 李伟 何煦鹍 《石油地球物理勘探》 北大核心 2025年第1期152-162,203,共12页
叠前AVO反演是获取地层物性参数的重要手段,传统的叠前AVO反演方法多基于近似反射系数方程,往往在特定的地质环境或大入射角情况下精度较低。为克服这些不足,文中提出了一种基于精确Zoeppritz方程的叠前PP-PS波联合非线性反演方法。该... 叠前AVO反演是获取地层物性参数的重要手段,传统的叠前AVO反演方法多基于近似反射系数方程,往往在特定的地质环境或大入射角情况下精度较低。为克服这些不足,文中提出了一种基于精确Zoeppritz方程的叠前PP-PS波联合非线性反演方法。该方法将多目标的全局优化算法与纵横波联合反演相结合,可同时对PP和PS波两个目标函数进行优化,从而实现完全非线性参数反演。为解决传统PP-PS波联合反演中PS波地震资料权重系数给定困难的问题,在贝叶斯框架下建立了PP-PS波联合反演的多目标函数,并引入多目标智能优化算法——SPEA2求解构建的反演多目标函数。单井合成地震记录、Marmousi模型合成地震记录以及实际地震数据的测试结果表明,该叠前PP-PS波联合非线性反演方法能够高精度地估计地层的弹性参数,在处理复杂地层和大入射角地震数据时反演效果优于传统的AVO反演方法。 展开更多
关键词 精确Zoeppritz 方程 叠前AVO 反演 SPEA2(Strength Pareto Evolutionary Algorithm 2) PP-PS 波联合 反演 贝叶斯框架
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
4
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
5
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search Algorithm
在线阅读 下载PDF
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh 被引量:1
6
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
7
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
8
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
9
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Predicting Academic Performance Levels in Higher Education:A Data-Driven Enhanced Fruit Fly Optimizer Kernel Extreme Learning Machine Model 被引量:1
10
作者 Zhengfei Ye Yongli Yang +1 位作者 Yi Chen Huiling Chen 《Journal of Bionic Engineering》 2025年第4期1940-1962,共23页
Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.T... Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.To address this gap,this study collected 3278 questionnaires from seven universities across four provinces in China to analyze the key factors affecting college students’academic performance.A machine learning framework,CQFOA-KELM,was developed by enhancing the Fruit Fly Optimization Algorithm(FOA)with Covariance Matrix Adaptation Evolution Strategy(CMAES)and Quadratic Approximation(QA).CQFOA significantly improved population diversity and was validated on the IEEE CEC2017 benchmark functions.The CQFOA-KELM model achieved an accuracy of 98.15%and a sensitivity of 98.53%in predicting college students’academic performance.Additionally,it effectively identified the key factors influencing academic performance through the feature selection process. 展开更多
关键词 Academic achievement Machine learning Teacher-student relationships Swarm intelligence algorithms Fruit fly optimization algorithm
在线阅读 下载PDF
Particle Swarm Optimization: Advances, Applications, and Experimental Insights 被引量:1
11
作者 Laith Abualigah 《Computers, Materials & Continua》 2025年第2期1539-1592,共54页
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a... Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future. 展开更多
关键词 Particle swarm optimization(PSO) optimization algorithms data mining machine learning engineer-ing design energy systems healthcare applications ROBOTICS comparative analysis algorithm performance evaluation
在线阅读 下载PDF
Anomaly monitoring and early warning of electric moped charging device with infrared image 被引量:1
12
作者 LI Jiamin HAN Bo JIANG Mingshun 《Optoelectronics Letters》 2025年第3期136-141,共6页
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor... Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image. 展开更多
关键词 detection methods divide image anomaly monitoring temperature detection median filtering algorithm infrared image processing image segmentation algorithm electric moped charging devicessuch
原文传递
Rendered image denoising method with filtering guided by lighting information 被引量:1
13
作者 MA Minghui HU Xiaojuan +2 位作者 ZHANG Ripei CHEN Chunyi YU Haiyang 《Optoelectronics Letters》 2025年第4期242-248,共7页
The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions a... The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality. 展开更多
关键词 establish paramet rendered image denoising Monte Carlo method filtering guided lighting information denoising algorithms image segmentation algorithm rendered image denoising method monte carlo methodhoweverthe
原文传递
CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer 被引量:1
14
作者 Yu Zhang Sheng Wang +1 位作者 Fanming Zeng Yijie Lin 《Energy Engineering》 2025年第3期1137-1151,共15页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid. 展开更多
关键词 MULTI-OBJECTIVE optimization algorithm hybrid energy storage MICRO-GRID CCHP
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
15
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Few-shot anomaly detection with adaptive feature transformation and descriptor construction 被引量:1
16
作者 Zhengnan HU Xiangrui ZENG +4 位作者 Yiqun LI Zhouping YIN Erli MENG Leyan ZHU Xianghao KONG 《Chinese Journal of Aeronautics》 2025年第3期491-504,共14页
Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which ... Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which require strict part qualification rates. Although being more efficient and practical, few-shot AD has not been well explored. The existing AD methods only extract features in a single frequency while defects exist in multiple frequency domains. Moreover, current methods have not fully leveraged the few-shot support samples to extract input-related normal patterns. To address these issues, we propose an industrial few-shot AD method, Feature Extender for Anomaly Detection (FEAD), which extracts normal patterns in multiple frequency domains from few-shot samples under the guidance of the input sample. Firstly, to achieve better coverage of normal patterns in the input sample, we introduce a Sample-Conditioned Transformation Module (SCTM), which transforms support features under the guidance of the input sample to obtain extra normal patterns. Secondly, to effectively distinguish and localize anomaly patterns in multiple frequency domains, we devise an Adaptive Descriptor Construction Module (ADCM) to build and select pattern descriptors in a series of frequencies adaptively. Finally, an auxiliary task for SCTM is designed to ensure the diversity of transformations and include more normal patterns into support features. Extensive experiments on two widely used industrial AD datasets (MVTec-AD and VisA) demonstrate the effectiveness of the proposed FEAD. 展开更多
关键词 Industrial applications Anomaly detection Learning algorithms Feature extraction Feature selection
原文传递
A Low Light Image Enhancement Method Based on Dehazing Physical Model 被引量:1
17
作者 Wencheng Wang Baoxin Yin +2 位作者 Lei Li Lun Li Hongtao Liu 《Computer Modeling in Engineering & Sciences》 2025年第5期1595-1616,共22页
In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,th... In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis.The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image,followed by image segmentation using a quadtree method.To improve the accuracy and robustness of atmospheric light estimation,the algorithm incorporates a genetic algorithm to optimize the quadtree-based estimation of atmospheric light regions.Additionally,this method employs an adaptive window adjustment mechanism to derive the dark channel prior image,which is subsequently refined using morphological operations and guided filtering.The final enhanced image is reconstructed through the hazy image degradation model.Extensive experimental evaluations across multiple datasets verify the superiority of the designed framework,achieving a peak signal-to-noise ratio(PSNR)of 17.09 and a structural similarity index(SSIM)of 0.74.These results indicate that the proposed algorithm not only effectively enhances image contrast and brightness but also outperforms traditional methods in terms of subjective and objective evaluation metrics. 展开更多
关键词 Dark channel prior quadtree decomposition genetic algorithm atmospheric light image enhancement
在线阅读 下载PDF
A survey on multi-objective,model-based,oil and gas field development optimization:Current status and future directions 被引量:1
18
作者 Auref Rostamian Matheus Bernardelli de Moraes +1 位作者 Denis Jose Schiozer Guilherme Palermo Coelho 《Petroleum Science》 2025年第1期508-526,共19页
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall... In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization. 展开更多
关键词 Derivative-free algorithms Ensemble-based optimization Gradient-based methods Life-cycle optimization Reservoir field development and management
原文传递
Dynamic effect web generation for heterogeneous UAV cluster using DQN-based NSGA-Ⅱ:Methods and applications 被引量:1
19
作者 Pei CHI Chen LIU +2 位作者 Jiang ZHAO Kun WU Yingxun WANG 《Chinese Journal of Aeronautics》 2025年第7期374-388,共15页
Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the bat... Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the battle for military superiority between nations.The construction of UAV cluster effect web is a kind of combinatorial optimization in essence.By selecting the optimal combination in the limited equipment concentration,the whole network can be optimized.Firstly,in order to improve the combinatorial optimization efficiency of UAV cluster effect web,NSGA-Ⅱbased on deep Q-network(DQN-based NSGA-Ⅱ)is proposed.This algorithm is used to solve the Multi-Objective Combinatorial Optimization(MOCO)problem in the construction of effect web.Secondly,a dynamic generation method is devised to solve the problem caused by the possible destruction of enemy and our node under the fierce confrontation between the two sides.Finally,the simulation results show that the DQN-based NSGA-Ⅱis better than the genetic algorithm with single operator.The comparison experiment shows that the weight of evaluation indexes will have a corresponding influence on the optimization results. 展开更多
关键词 Optimization Effect web Unmanned Aerial Vehicles(UAV) Deep learning Genetic algorithm
原文传递
Rapid pathologic grading-based diagnosis of esophageal squamous cell carcinoma via Raman spectroscopy and a deep learning algorithm 被引量:1
20
作者 Xin-Ying Yu Jian Chen +2 位作者 Lian-Yu Li Feng-En Chen Qiang He 《World Journal of Gastroenterology》 2025年第14期32-46,共15页
BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the e... BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification. 展开更多
关键词 Raman spectroscopy Esophageal neoplasia Early diagnosis Deep learning algorithm Rapid pathologic grading
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部