期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Variable Projection Order Adaptive Filtering Algorithm for Self-interference Cancellation in Airborne Radars
1
作者 LI Haorui GAO Ying +1 位作者 GUO Xinyu OU Shifeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期497-508,共12页
The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is in... The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference. 展开更多
关键词 adaptive filtering algorithm airborne radar variable projection order mean squared deviation self-interference cancellation
在线阅读 下载PDF
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
2
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed Kalman filtering algorithm Stochastic cooperative information condition Sensor networks (L_(p))-exponential stability Stochastic regression model
原文传递
Amplitude phase control for electro-hydraulic servo system based on normalized least-mean-square adaptive filtering algorithm 被引量:5
3
作者 姚建均 富威 +1 位作者 胡胜海 韩俊伟 《Journal of Central South University》 SCIE EI CAS 2011年第3期755-759,共5页
The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorit... The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision. 展开更多
关键词 amplitude attenuation phase delay normalized least-mean-square adaptive filtering algorithm tracking performance electro- hydraulic servo system
在线阅读 下载PDF
Collaborative Filtering Algorithms Based on Kendall Correlation in Recommender Systems 被引量:3
4
作者 YAO Yu ZHU Shanfeng CHEN Xinmeng 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1086-1090,共5页
In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of consider... In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of considering the relative order of the users' ratings. Kendall based algorithm is based upon a more general model and thus could be more widely applied in e-commerce. Another discovery of this work is that the consideration of only positive correlated neighbors in prediction, in both Pearson and Kendall algorithms, achieves higher accuracy than the consideration of all neighbors, with only a small loss of coverage. 展开更多
关键词 Kendall correlation collaborative filtering algorithms recommender systems positive correlation
在线阅读 下载PDF
A novel fast classification filtering algorithm for LiDAR point clouds based on small grid density clustering 被引量:5
5
作者 Xingsheng Deng Guo Tang Qingyang Wang 《Geodesy and Geodynamics》 CSCD 2022年第1期38-49,共12页
Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in... Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in practice,making it impossible to cluster point clouds data directly,and the filtering error is also too large.Moreover,many existing filtering algorithms have poor classification results in discontinuous terrain.This article proposes a new fast classification filtering algorithm based on density clustering,which can solve the problem of point clouds classification in discontinuous terrain.Based on the spatial density of LiDAR point clouds,also the features of the ground object point clouds and the terrain point clouds,the point clouds are clustered firstly by their elevations,and then the plane point clouds are selected.Thus the number of samples and feature dimensions of data are reduced.Using the DBSCAN clustering filtering method,the original point clouds are finally divided into noise point clouds,ground object point clouds,and terrain point clouds.The experiment uses 15 sets of data samples provided by the International Society for Photogrammetry and Remote Sensing(ISPRS),and the results of the proposed algorithm are compared with the other eight classical filtering algorithms.Quantitative and qualitative analysis shows that the proposed algorithm has good applicability in urban areas and rural areas,and is significantly better than other classic filtering algorithms in discontinuous terrain,with a total error of about 10%.The results show that the proposed method is feasible and can be used in different terrains. 展开更多
关键词 Small grid density clustering DBSCAN Fast classification filtering algorithm
原文传递
Adaptive Median Filtering Algorithm Based on Divide and Conquer and Its Application in CAPTCHA Recognition 被引量:2
6
作者 Wentao Ma Jiaohua Qin +3 位作者 Xuyu Xiang Yun Tan Yuanjing Luo Neal NXiong 《Computers, Materials & Continua》 SCIE EI 2019年第3期665-677,共13页
As the first barrier to protect cyberspace,the CAPTCHA has made significant contributions to maintaining Internet security and preventing malicious attacks.By researching the CAPTCHA,we can find its vulnerability and ... As the first barrier to protect cyberspace,the CAPTCHA has made significant contributions to maintaining Internet security and preventing malicious attacks.By researching the CAPTCHA,we can find its vulnerability and improve the security of CAPTCHA.Recently,many studies have shown that improving the image preprocessing effect of the CAPTCHA,which can achieve a better recognition rate by the state-of-theart machine learning algorithms.There are many kinds of noise and distortion in the CAPTCHA images of this experiment.We propose an adaptive median filtering algorithm based on divide and conquer in this paper.Firstly,the filtering window data quickly sorted by the data correlation,which can greatly improve the filtering efficiency.Secondly,the size of the filtering window is adaptively adjusted according to the noise density.As demonstrated in the experimental results,the proposed scheme can achieve superior performance compared with the conventional median filter.The algorithm can not only effectively detect the noise and remove it,but also has a good effect in preservation details.Therefore,this algorithm can be one of the most strong tools for various CAPTCHA image recognition and related applications. 展开更多
关键词 Image preprocessing machine learning CAPTCHA recognition adaptive median filtering algorithm.
在线阅读 下载PDF
An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure
7
作者 吴凯 周日贵 罗佳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期223-237,共15页
As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most q... As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness. 展开更多
关键词 quantum color image processing anti-aliasing filtering algorithm quantum multiplier pyramid model
原文传递
Filtering algorithm of line structured light for long-distance obstacle detection
8
作者 邵海燕 张振海 李科杰 《Journal of Beijing Institute of Technology》 EI CAS 2016年第4期521-525,共5页
Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structure... Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible. 展开更多
关键词 unmanned ground vehicles line structured light concave and convex obstacles detec-tion ranked-order based adaptively extremum median (RAEM) filter filter algorithm
在线阅读 下载PDF
Study on the Heart Sound Signal Denoising Technology based on Integrated Filtering Algorithm
9
《International English Education Research》 2013年第12期93-95,共3页
In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise ... In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise from the new waveform. There are a lot of shortcomings in the use of such a method. The features of new waveform are difficult to be controlled, and thus the noise generated by the wave and the interference of wave will be disturbed by the filter to certain degree. In this paper, the integrated faltering algorithm is introduced, and a wave can be used in the studied use of small waveform, and also the high-order algorithm in mathematics is used, so that the frequency is controlled in a certain range, the frequency of heart sounds to be interfered is effectively reduced, and also the harmonic harm generated by the waveform is considered. After the signal sources are protected with some technologies, the effect of filtering and denoising is eventually achieved. 展开更多
关键词 Integrated filtering Algorithm Heart Sounds Denoising Technology filtering Algorithm
在线阅读 下载PDF
Anomaly monitoring and early warning of electric moped charging device with infrared image 被引量:1
10
作者 LI Jiamin HAN Bo JIANG Mingshun 《Optoelectronics Letters》 2025年第3期136-141,共6页
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor... Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image. 展开更多
关键词 detection methods divide image anomaly monitoring temperature detection median filtering algorithm infrared image processing image segmentation algorithm electric moped charging devicessuch
原文传递
APPLICATION OF INTERVAL KALMAN FILTER TO AN INTEGRATED GPS/INS SYSTEM 被引量:2
11
作者 何秀凤 陈永奇 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第1期41-47,共7页
An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applica... An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applicable only to linear interval systems, the extended interval Kalman filter (EIKF) algorithm for non linear integrated systems is developed. A high dynamic aircraft trajectory is designed to test the algorithm developed. The results of computer simulation indicate that the EIKF algorithm is consistent with the traditional SKF scheme, and is also effective for uncertain non linear integrated system. 展开更多
关键词 GPS INS Kalman filter simulation filter algorithm
在线阅读 下载PDF
Unmanned aerial vehicle positioning based on multi-sensor information fusion 被引量:4
12
作者 Wenjun Li Zhaoyu Fu 《Geo-Spatial Information Science》 SCIE CSCD 2018年第4期302-310,共9页
Unmanned aerial vehicle(UAV)positioning is one of the key techniques in the field of UAV navigation.Although the high positioning precision of UAV can be achieved through global positioning system(GPS),the frequency o... Unmanned aerial vehicle(UAV)positioning is one of the key techniques in the field of UAV navigation.Although the high positioning precision of UAV can be achieved through global positioning system(GPS),the frequency of updating signal in GPS is low and the energy consumption of GPS module is huge,which does not satisfy the real-time demand of UAV positioning.In this paper,a multi-sensor information fusion method based on GPS,inertial navigation system(INS),and the visible light sensors is proposed for UAV positioning.The Kalman filter combining with simulated annealing algorithm is used to estimate the position error between GPS or INS and the visible light sensors,and then the motion trajectory is corrected according to this position error information.Therefore,the positioning accuracy of UAV can be improved in case of only INS being available.Experimental results demonstrate that the proposed method can remarkably improve the positioning accuracy and greatly reduce the energy consumption. 展开更多
关键词 Kalman filter algorithm simulated annealing algorithm target tracking integrated positioning system
原文传递
Assimilation of Remote Sensing and Crop Model for LAI Estimation Based on Ensemble Kalman Filter 被引量:4
13
作者 LI Rui LI Cun-jun +4 位作者 DONG Ying-ying LIU Feng WANG Ji-hua YANG Xiao-dong PAN Yu-chun 《Agricultural Sciences in China》 CAS CSCD 2011年第10期1595-1602,共8页
Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only desi... Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only designed and realized the Ensemble Kalman Filtering algorithm (EnKF) assimilation by combing the crop growth model (CERES-Wheat) with remote sensing data, but also optimized and updated the key parameters (LAI) of winter wheat by using remote sensing data. Results showed that the assimilation LAI and the observation ones agreed with each other, and the R2 reached 0.8315. So assimilation remote sensing and crop model could provide reference data for the agricultural production. 展开更多
关键词 crop model ASSIMILATION Ensemble Kalman Filter algorithm leaf area index
在线阅读 下载PDF
Remaining lifetime prediction for nonlinear degradation device with random effect 被引量:4
14
作者 CAI Zhongyi CHEN Yunxiang +2 位作者 GUO Jiansheng ZHANG Qiang XIANG Huachun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期1101-1110,共10页
For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency ... For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency of the parameters estimation are not high, and the current degradation state of the target device is not accurately estimated. In this paper, a nonlinear Wiener degradation model with random effect is proposed and the corresponding probability density function(PDF) of the first hitting time(FHT)is deduced. A parameter estimation method based on modified expectation maximum(EM) algorithm is proposed to obtain the estimated value of fixed coefficient and the priori value of random coefficient in the model. The posterior value of the random coefficient and the current degradation state of target device are updated synchronously by the state space model(SSM) and the Kalman filter algorithm. The PDF of RL with random effect is deduced. A simulation example is analyzed to verify that the proposed method has the obvious advantage over the existing methods in parameter estimation error and RL prediction accuracy. 展开更多
关键词 remaining lifetime(RL) prediction nonlinear degradation model Wiener process random coefficient Kalman filter algorithm
在线阅读 下载PDF
A better carbon-water flux simulation in multiple vegetation types by data assimilation 被引量:6
15
作者 Qiuyu Liu Tinglong Zhang +3 位作者 Mingxi Du Huanlin Gao Qingfeng Zhang Rui Sun 《Forest Ecosystems》 SCIE CSCD 2022年第1期131-145,共15页
Background:The accurate estimation of carbon-water flux is critical for understanding the carbon and water cycles of terrestrial ecosystems and further mitigating climate change.Model simulations and observations have... Background:The accurate estimation of carbon-water flux is critical for understanding the carbon and water cycles of terrestrial ecosystems and further mitigating climate change.Model simulations and observations have been widely used to research water and carbon cycles of terrestrial ecosystems.Given the advantages and limitations of each method,combining simulations and observations through a data assimilation technique has been proven to be highly promising for improving carbon-water flux simulation.However,to the best of our knowledge,few studies have accomplished both parameter optimization and the updating of model state variables through data assimilation for carbon-water flux simulation in multiple vegetation types.And little is known about the variation of the performance of data assimilation for carbon-water flux simulation in different vegetation types.Methods:In this study,we assimilated leaf area index(LAI)time-series observations into a biogeochemical model(Biome-BGC)using different assimilation algorithms(ensemble Kalman filter algorithm(EnKF)and unscented Kalman filter(UKF))in different vegetation types(deciduous broad-leaved forest(DBF),evergreen broad-leaved forest(EBF)and grassland(GL))to simulate carbon-water flux.Results:The validation of the results against the eddy covariance measurements indicated that,overall,compared with the original simulation,assimilating the LAI into the Biome-BGC model improved the carbon-water flux simulations(R^(2)increased by 35%,root mean square error decreased by 10%;the sum of the absolute error decreased by 8%)but more significantly,improved the water flux simulations(R^(2)increased by 31%,root mean square error decreased by 18%;the sum of the absolute error decreased by 16%).Among the different forest types,the data assimilation techniques(both EnKF and UKF)achieved the best performance towards carbon-water flux in EBF(R^(2)increased by 44%,root mean square error decreased by 24%;the sum of the absolute error decreased by 28%),and the performances of EnKF and UKF showed slightly different when simulating carbon fluxes.Conclusion:We suggest that to reduce the uncertainty in global carbon-water flux quantification,forthcoming data assimilation treatment should consider the vegetation types where the data assimilation experiments are carried out,the simulated objectives and the assimilation algorithms. 展开更多
关键词 Biome-BGC model Leaf area index EVAPOTRANSPIRATION Net ecosystem CO_(2)exchange Ensemble Kalman filter algorithm Unscented Kalman filter
在线阅读 下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:3
16
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
在线阅读 下载PDF
Research of Large Field of View Scan Mode for Industrial CT 被引量:4
17
作者 傅健 路宏年 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第1期59-64,共6页
For industrial computed tomography systems, generation II scan mode has a large field of view but time consuming and generation III has a small field of view but fast. In order to realize the rapid ICT test of large ... For industrial computed tomography systems, generation II scan mode has a large field of view but time consuming and generation III has a small field of view but fast. In order to realize the rapid ICT test of large objects, a scan mode based on generation III called large field of view scan was discussed and its reconstruction algorithm based on FBP was deduced. The validity of the algorithm was verified by the results of computer simulation and experiments. Analysis showed that the effective scan field of view could be improved by more than 90% compared with that of generation III. 展开更多
关键词 industrial computed tomography fan beam scan filter back projection algorithm rebin algorithm non destructive testing
在线阅读 下载PDF
NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM 被引量:3
18
作者 ZHANG Qin TAO Ben-zao +1 位作者 ZHAO Chao-ying WANG Li 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第2期170-176,共7页
Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-p... Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-posed.The deviation in the estimation cannot be avoided.Furthermore,the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions.To solve the above problems in GPS dynamic positioning by using EKF,a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American.The method separates the spatial parts from temporal parts during processing the GPS filter problems,and solves the nonlinear GPS dynamic positioning,thus getting stable and reliable dynamic positioning solutions. 展开更多
关键词 GPS dynamic positioning Bancroft algorithm extended Kalman filter algorithm
在线阅读 下载PDF
Fusing Fixed and Hint Landmarks on Crowd Paths for Automatically Constructing Wi-Fi Fingerprint Database 被引量:2
19
作者 HUANG Zhengyong XIA Jun +3 位作者 YU Hui GUAN Yunfeng GAN Xiaoying LIU Jing 《China Communications》 SCIE CSCD 2015年第1期11-24,共14页
In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this ... In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this paper,a novel approach based on crowd paths to solve this problem is presented,which collects and constructs automatically fingerprints database for anonymous buildings through common crowd customers.However,the accuracy degradation problem may be introduced as crowd customers are not professional trained and equipped.Therefore,we define two concepts:fixed landmark and hint landmark,to rectify the fingerprint database in the practical system,in which common corridor crossing points serve as fixed landmark and cross point among different crowd paths serve as hint landmark.Machinelearning techniques are utilized for short range approximation around fixed landmarks and fuzzy logic decision technology is applied for searching hint landmarks in crowd traces space.Besides,the particle filter algorithm is also introduced to smooth the sample points in crowd paths.We implemented the approach on off-the-shelf smartphones and evaluate the performance.Experimental results indicate that the approach can availably construct WiFi fingerprint database without reduce the localization accuracy. 展开更多
关键词 indoor localization fingerprint database construction fixed landmarks hint landmarks particle filter algorithm
在线阅读 下载PDF
Robot SLAM with Ad hoc wireless network adapted to search and rescue environments 被引量:4
20
作者 WANG Hong-ling ZHANG Cheng-jin +1 位作者 SONG Yong PANG Bao 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期3033-3051,共19页
An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module ... An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module act as mobile nodes,with various on-board sensors,Tp-link wireless local area network cards,and Tp-link wireless routers.The master robot with embedded industrial PC and a complete robot control system autonomously performs the SLAM task by exchanging information with multiple followed-robots by using this self-organizing mobile wireless network.The PC on the remote console can monitor multi-robot SLAM on-site and provide direct motion control of the robots.This mobile Ad-WSN complements an environment devoid of usual GPS signals for the robots performing SLAM task in search and rescue environments.In post-disaster areas,the network is usually absent or variable and the site scene is cluttered with obstacles.To adapt to such harsh situations,the proposed self-organizing mobile Ad-WSN enables robots to complete the SLAM process while improving the performances of object of interest identification and exploration area coverage.The information of localization and mapping can communicate freely among multiple robots and remote PC control center via this mobile Ad-WSN.Therefore,the autonomous master robot runs SLAM algorithms while exchanging information with multiple followed-robots and with the remote PC control center via this local WSN environment.Simulations and experiments validate the improved performances of the exploration area coverage,object marked,and loop closure,which are adapted to search and rescue post-disaster cluttered environments. 展开更多
关键词 search and rescue environments local Ad-WSN robot simultaneous localization and mapping distributed particle filter algorithms coverage area exploration
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部