期刊文献+
共找到1,242篇文章
< 1 2 63 >
每页显示 20 50 100
基于OLHS-IAOO-KELM的尾矿坝渗透系数反演模型及应用
1
作者 管子懿 沈振中 《水电能源科学》 北大核心 2026年第1期138-142,197,共6页
尾矿坝是由尾砂长期堆积而成的,分层复杂、渗透系数不均一,为获取能反映其整体渗透特性的代表性渗透系数,提出一种新的反演方法。采用最优拉丁超立方抽样(OLHS)获取均布的尾矿坝渗透系数组合样本,将其代入有限元模型进行正分析得到测点... 尾矿坝是由尾砂长期堆积而成的,分层复杂、渗透系数不均一,为获取能反映其整体渗透特性的代表性渗透系数,提出一种新的反演方法。采用最优拉丁超立方抽样(OLHS)获取均布的尾矿坝渗透系数组合样本,将其代入有限元模型进行正分析得到测点水头值样本,两者结合构成数据集,通过核极限学习机(KELM)建立从渗透系数到测点水头的非线性映射关系,利用融合拉丁超立方抽样初始化种群、重心反向学习和自适应趋优边界改进的不实野燕麦优化(IAOO)算法对KELM的超参数进行优化,建立了基于OLHS-IAOO-KELM的尾矿坝渗透系数反演模型,并将其应用于工程实例中。通过该模型反演得到的尾矿坝渗透系数值合理,7个测点经渗流正分析得到的计算水头和实测水头的相对误差不超过2.08%,满足工程精度要求,且尾矿坝典型断面的渗流场位势分布符合一般规律。与其他模型相比较,该模型的反演结果误差最小。该模型的准确性和鲁棒性高,在尾矿坝渗透系数反演中具有实用价值。 展开更多
关键词 尾矿坝 渗透系数 反演分析 改进不实野燕麦优化算法 核极限学习机
原文传递
基于新代数等价变换求解Fisher市场均衡问题的全牛顿步内点算法
2
作者 迟晓妮 张璐 +1 位作者 刘三阳 张所滨 《工程数学学报》 北大核心 2026年第1期1-14,共14页
权互补问题是互补问题的一类重要推广,当权向量为零向量时,该问题就化为互补问题。非零权向量的存在使得权互补问题的理论和算法更为复杂。权互补问题的应用广泛,科学、经济等领域中的一大类均衡问题都可以转化为权互补问题进行求解,比... 权互补问题是互补问题的一类重要推广,当权向量为零向量时,该问题就化为互补问题。非零权向量的存在使得权互补问题的理论和算法更为复杂。权互补问题的应用广泛,科学、经济等领域中的一大类均衡问题都可以转化为权互补问题进行求解,比如Fisher市场均衡问题可化为一种斜对称的权互补问题。提出了一种求解Fisher市场均衡问题的线性权互补模型的新全牛顿步内点算法。基于中心方程的新代数等价变换形式,运用核函数φ(t)=t2计算搜索方向。该核函数首次被用于求解线性权互补问题。算法每次迭代仅使用一个全牛顿步,无需进行线搜索,节省运行内存。证明算法的收敛性及多项式复杂度,最后通过数值算例验证了算法的有效性。 展开更多
关键词 线性权互补问题 Fisher市场均衡 全牛顿步 内点算法 核函数 代数等价变换
在线阅读 下载PDF
SPI阈值智能优化算法
3
作者 韩玉信 陈金锤 +2 位作者 罗海波 任磊 孙磊 《电子工艺技术》 2026年第1期54-58,共5页
随着电子产品微型化、高密度集成化的发展趋势,印制电路板(PCB)设计复杂度持续提升,对SMT锡膏印刷的工艺要求也日趋严苛。当前产线普遍依赖焊膏检测设备(Solder Paste Inspection,SPI)来拦截和管控印刷缺陷,然而,SPI阈值参数的确定主要... 随着电子产品微型化、高密度集成化的发展趋势,印制电路板(PCB)设计复杂度持续提升,对SMT锡膏印刷的工艺要求也日趋严苛。当前产线普遍依赖焊膏检测设备(Solder Paste Inspection,SPI)来拦截和管控印刷缺陷,然而,SPI阈值参数的确定主要依赖于工程经验,缺乏基于数据的科学分析,导致相对于最终加工结果的“漏检”或“误报”。鉴于此,提出一种基于工业大数据分析的SPI阈值智能设定方法,旨在优化锡膏印刷质量管控体系。 展开更多
关键词 印刷质量控制 SPI阈值 高斯核密度估计 遗传算法
在线阅读 下载PDF
多策略改进COA算法优化LSSVM的变压器故障诊断研究 被引量:3
4
作者 李斌 白翔旭 《电工电能新技术》 北大核心 2025年第4期112-119,共8页
为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混... 为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混沌映射、透镜反向学习、Levy飞行等策略对浣熊优化算法(COA)进行优化,提高全局寻优能力;然后,应用ICOA算法进行LSSVM参数寻优,构建ICOA-LSSVM故障诊断模型;最后,将特征提取后的数据导入ICOA-LSSVM中并与其他模型对比。实验结果表明所提方法准确率为96.19%,相比其他诊断模型具有更高的故障诊断精度。 展开更多
关键词 变压器故障诊断 浣熊优化算法 核主成分分析 最小二乘支持向量机
在线阅读 下载PDF
基于GMDE和MFO-MKELM算法的往复压缩机轴承故障诊断研究 被引量:2
5
作者 李彦阳 王金东 +1 位作者 宁留洋 马磊 《机械传动》 北大核心 2025年第2期170-176,共7页
【目的】针对往复压缩机轴承间隙振动信号呈现局部强非平稳性、非线性等特点,导致出现轴承故障特征提取困难、识别准确率不高等问题,提出了基于广义多尺度散布熵(Generalized Multi-scale Dispersal Entropy,GMDE)和飞蛾捕焰优化-多核... 【目的】针对往复压缩机轴承间隙振动信号呈现局部强非平稳性、非线性等特点,导致出现轴承故障特征提取困难、识别准确率不高等问题,提出了基于广义多尺度散布熵(Generalized Multi-scale Dispersal Entropy,GMDE)和飞蛾捕焰优化-多核极限学习机智能模型算法(Moth Flame Catching Optimization and Multiple Kernel Extreme Learning Machine,MFO-MKELM)的往复压缩机轴承故障诊断新方法。【方法】首先,针对多尺度散布熵在粗粒化过程中采用均值粗粒化方式、在一定程度“中和”了原始信号的动力学突变行为、降低了熵值分析准确性,提出了一种广义多尺度散布熵算法,并提取往复压缩机轴承间隙振动信号的故障特征;接着,将多项式核函数和改进高斯核函数进行线性组合,构建多核极限学习机智能识别算法,并针对提取的特征向量集进行了故障诊断研究。【结果】仿真结果表明,该诊断方法识别准确率达98.6%,实现了轴承不同种类故障的高效、智能诊断。 展开更多
关键词 往复压缩机 广义多尺度散布熵 飞蛾捕焰优化算法 多核极限学习机
在线阅读 下载PDF
基于ARIMA算法的玉米籽粒储藏温度预测研究 被引量:1
6
作者 陈思羽 徐爱迪 +3 位作者 刘春山 王淑铭 马浏轩 韩雪双 《农机化研究》 北大核心 2025年第9期171-177,186,共8页
外界环境变化对粮堆内部温度的影响较大,针对夏季温度高、湿度大、易发生腐烂霉变的特点,利用夏季高温试验周期内储粮仓各层的温度数据,基于ARIMA算法进行玉米籽粒储藏短期温度预测。利用差分法、ACF图、PACF图确定模型中d、p、q等参数... 外界环境变化对粮堆内部温度的影响较大,针对夏季温度高、湿度大、易发生腐烂霉变的特点,利用夏季高温试验周期内储粮仓各层的温度数据,基于ARIMA算法进行玉米籽粒储藏短期温度预测。利用差分法、ACF图、PACF图确定模型中d、p、q等参数,依据确定的温度预测模型对未来7 d仓内各粮层的温度进行预测,并将预测值与试验值进行对比,通过绝对误差MAE、相对误差MSE评价指标对模型进行评估,结果表明:第1层模型预测值与实际值的绝对误差MAE的平均值为2.96℃,相对误差MSE的平均值为11.37%;第2层模型预测值与实际值的绝对误差MAE的平均值为0.5℃,相对误差MSE的平均值为1.80%;第3层模型预测值与实际值的绝对误差MAE的平均值为0.57℃,相对误差MSE的平均值为1.91%;第4层模型预测值与实际值的绝对误差MAE的平均值为0.28℃,相对误差MSE的平均值为1.02%,各层相对误差均控制在16%以内。试验结果表明建立的ARIMA温度预测模型较适合玉米籽粒储藏短期温度预测,为保障储粮品质提供了理论依据。 展开更多
关键词 玉米籽粒 储藏 ARIMA算法 温度预测
在线阅读 下载PDF
基于专利推荐方法的产学研合作伙伴预测 被引量:1
7
作者 刘行兵 戴学微 海本禄 《科技管理研究》 2025年第11期73-81,共9页
高校与企业在知识与技术转移过程中面临的沟通障碍,已成为制约科研成果有效转化及企业创新能力提升的重要因素。为了解决这一问题,引入推荐算法,旨在提升双方的信息传递效率和合作协调性。以中国2014—2024年自然语言领域专利数据为样本... 高校与企业在知识与技术转移过程中面临的沟通障碍,已成为制约科研成果有效转化及企业创新能力提升的重要因素。为了解决这一问题,引入推荐算法,旨在提升双方的信息传递效率和合作协调性。以中国2014—2024年自然语言领域专利数据为样本,运用潜在狄利克雷分布(LDA)主题模型对专利文本进行主题建模和聚类,从创新性、相似性、组织距离和市场前景4个维度对专利文献进行全面评估。然后,利用核主成分分析算法(KPCA)对非线性专利指标进行权重分配和匹配度计算,实现基于Top-N思想预测企业的潜在合作伙伴。研究结果表明:该方法能够有效推荐与企业领域高度契合的潜在合作方和机构,促进科研成果的快速传播与应用,为产学研合作中的技术创新提供理论支持与实践路径。 展开更多
关键词 技术转移 推荐算法 核主成分分析算法
在线阅读 下载PDF
基于改进蜣螂优化算法深度混合核极限学习机的高压断路器故障诊断 被引量:1
8
作者 范兴明 许洪华 +3 位作者 张思舜 李涛 蒋延军 张鑫 《电工技术学报》 北大核心 2025年第12期3994-4003,共10页
针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的... 针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的固有模态分量(IMF);其次,提取各IMF分量的功率谱熵构建特征向量矩阵,并利用t分布-随机邻域嵌入算法(t-SNE)对特征向量进行数据降维;然后,引入融合Tent混沌映射、黄金正弦策略、自适应t分布扰动策略对传统蜣螂优化算法(DBO)进行改进,并使用IDBO对DHKELM进行参数优化,完成IDBO-DHKELM高压断路器故障诊断模型的构建;最后,通过搭建模拟故障的实物断路器实验平台进行验证,结果表明,该文提出的方法在故障诊断上的准确率达到了98.33%,相较于其他故障诊断模型在多项分类评价指标上均有显著提升,为准确、可靠地诊断高压断路器机械故障提供了新方案。 展开更多
关键词 高压断路器 改进蜣螂优化算法 深度混合核极限学习机 故障诊断 逐次变分模 态分解
在线阅读 下载PDF
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
9
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
原文传递
二元混合气体成分检测的改进蒲公英算法研究
10
作者 李鹏 汤炼海 +2 位作者 林事力 纵彪 于涛 《传感器与微系统》 北大核心 2025年第2期15-20,共6页
针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策... 针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策略(EOBL)引入蒲公英种子位置更新,提高原算法寻优精度。将该算法用于KELM参数寻优,建立改进DO(IDO)算法优化KELM模型,实现对二元混合气体的成分识别。实验结果表明:IDO算法优化的KELM模型对二元混合气体成分识别准确率可达99.71%,比原始KELM模型提高4.28%。 展开更多
关键词 改进蒲公英优化算法 核极限学习机 气体分类
在线阅读 下载PDF
基于多特征的IHO-KELM模拟电路故障诊断
11
作者 万军 王秋勇 高书苑 《现代电子技术》 北大核心 2025年第24期25-30,共6页
为了提高模拟电路故障诊断的准确率,提出一种基于多特征融合和改进的河马优化(IHO)算法优化核极限学习机(KELM)的故障诊断方法。首先,结合统计特征与加权马氏距离特征构造多特征融合的特征集;其次,在河马优化算法的基础上引入Sobol序列... 为了提高模拟电路故障诊断的准确率,提出一种基于多特征融合和改进的河马优化(IHO)算法优化核极限学习机(KELM)的故障诊断方法。首先,结合统计特征与加权马氏距离特征构造多特征融合的特征集;其次,在河马优化算法的基础上引入Sobol序列来初始化种群,并且加入动态莱维步长、正余弦算法振荡性与柯西分布随机性策略实现对HO的改进;最后,利用IHO对KELM的正则化参数(C)与核函数参数(g)寻优,以此建立IHO-KELM故障诊断模型,并且用BUCK电路进行仿真实验,验证方法的可行性与高效性。仿真实验结果表明,对比其他方法,所提方法显著提高了模拟电路故障的诊断准确率和效率。 展开更多
关键词 模拟电路 故障诊断 河马优化算法 核极限学习机 加权马氏距离 多特征融合
在线阅读 下载PDF
基于数据分解与超参数优化的若干变体支持向量机月降水量预测
12
作者 周正道 黄斌 《节水灌溉》 北大核心 2025年第9期36-43,共8页
为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法... 为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法和麋鹿优化(EHO)算法,提出WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM月降水量时间序列预测模型,通过云南省大理州2个雨量站月降水量预测实例对18种模型进行验证。首先利用WPT1/WPT2/WPT3对实例月降水量时序数据进行分解处理,划分训练集和验证集;然后基于训练集构建HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数优化适应度函数,利用EHO优化适应度函数获得最优超参数;最后利用最优超参数建立WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM模型对实例各分量进行预测和重构。结果表明:①18种模型对月降水量均具有较好拟合、预测精度。其中WPT3-EHO-HRVM/HLSSVM/HSVM模型预测的平均绝对误差(MAE)、决定系数(R2)1.70~0.81 mm、0.9996~0.9999,优于其他对比模型,具有最小的预测误差;WPT2-EHO-HRVM/HLSSVM/HSVM模型预测效果较好,精度较高;WPT1-EHO-HRVM/HLSSVM/HSVM模型预测误差相对较大。②在相同分解层数和EHO优化情形下,通过线性组合不同核函数的EHOHRVM/HLSSVM/HSVM模型能更好地适应不同类型的数据分布,显著提升月降水量预测精度。③WPT3分解效果优于WPT2,远优于WPT1,月降水量预测精度随着WPT分解层数的增加而提高。④通过EHO优化HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数,能有效提升模型预测精度和预测效率。 展开更多
关键词 月降水量预测 小波包分解 麋鹿优化算法 混合核函数 支持向量机及其变体 超参数优化
在线阅读 下载PDF
基于深度置信网络的旋转机械在线故障诊断 被引量:1
13
作者 郭俊杰 郭正红 《计算机测量与控制》 2025年第1期60-68,共9页
针对现有旋转机械在线故障诊断算法所存在的数据遍历耗时长,检测准确率低,故障分类准确率低等不足,提出一种基于深度置信网络的故障诊断算法;先基于受限的玻尔兹曼机搭建深度置信网络框架,利用数据标签在输入层和后端的受限玻尔兹曼机... 针对现有旋转机械在线故障诊断算法所存在的数据遍历耗时长,检测准确率低,故障分类准确率低等不足,提出一种基于深度置信网络的故障诊断算法;先基于受限的玻尔兹曼机搭建深度置信网络框架,利用数据标签在输入层和后端的受限玻尔兹曼机之间建立联系;然后利用k-means算法压缩聚类处理数据集降低数据集的规模和复杂度;最后在不同故障特征的分类诊断方面,引入加入核函数的SVM分类算法,提升对不同机械故障类型的分类精度;实验结果显示,提出的旋转机械故障在线诊断方案的迭代效率高,数据遍历耗时少,训练集和测试集F1指标的分别为97.9%和97.4%,优于传统故障诊断算法。 展开更多
关键词 深度置信网络 改进K-MEANS算法 受限的玻尔兹曼机 核函数 SVM
在线阅读 下载PDF
基于MIC特征提取与ICEEMD-RIME-DHKELM的建筑业碳排放预测模型 被引量:2
14
作者 张新生 聂达文 陈章政 《环境工程》 2025年第4期46-58,共13页
为解决建筑业碳排放研究中影响因素选取局限性、数据预处理不足、碳排放复杂动态变化及非线性问题,提出了一种基于最大信息系数(MIC)特征提取、改进互补集合经验模态分解(ICEEMD)、雾凇优化算法(RIME)与深度混合核极限学习机(DHKELM)的... 为解决建筑业碳排放研究中影响因素选取局限性、数据预处理不足、碳排放复杂动态变化及非线性问题,提出了一种基于最大信息系数(MIC)特征提取、改进互补集合经验模态分解(ICEEMD)、雾凇优化算法(RIME)与深度混合核极限学习机(DHKELM)的建筑业碳排放量预测模型。首先,根据IPCC计算方法,从直接和间接两个方面测算1992—2021年我国建筑业碳排放量,基于STIRPAT模型选取年末总人口数、国内生产总值、建筑业房屋竣工面积和能源结构等17个影响建筑业碳排放量的因素,然后利用灰色关联分析和MIC方法两阶段筛选出12个关键影响因素;其次,使用ICEEMD将建筑业碳排放量分解为多个平稳序列和一个残差项,并将其分别代入RIME算法优化关键参数后的DHKELM模型中。最后,将各分解序列的预测结果相加获得建筑业碳排放预测值,并对比分析多种基准模型的预测结果。结果显示:MIC-ICEEMD-RIME-DHKELM模型的预测性能最优,其均方根误差、平均绝对误差、平均绝对百分比误差和绝对相关系数分别为0.2782亿t、0.2672亿t、1.3783%和0.9576,均优于其他模型,证明该模型适用于建筑业碳排放量的预测。该研究成果为建筑业的低碳发展提供理论支持和技术参考。 展开更多
关键词 建筑业 碳排放 最大信息系数 改进互补集合经验模态分解 雾凇优化算法 深度混合核极限学习机
原文传递
基于ICEEMDAN-KPCA-ICPA-LSTM的光伏发电功率预测 被引量:2
15
作者 姚钦才 向文国 +2 位作者 陈时熠 曹敬 郑涛 《动力工程学报》 北大核心 2025年第3期374-382,共9页
光伏发电预测对于新型电力系统的平稳运行至关重要。针对光伏发电短期预测,提出了一种融合改进的完全自适应噪声集合经验模态分解(ICEEMDAN)、核主成分分析(KPCA)和改进的食肉植物算法(ICPA)与长短期记忆网络(LSTM)的光伏发电预测方法... 光伏发电预测对于新型电力系统的平稳运行至关重要。针对光伏发电短期预测,提出了一种融合改进的完全自适应噪声集合经验模态分解(ICEEMDAN)、核主成分分析(KPCA)和改进的食肉植物算法(ICPA)与长短期记忆网络(LSTM)的光伏发电预测方法。首先,该方法通过ICEEMDAN提取气象数据中非线性信号的隐含特征;其次,采用核主成分分析降低分解后产生的冗余信息,并根据主成分贡献率大小选取模型输入参数;最后,对食肉植物算法(CPA)进行改进,构建ICPA-LSTM模型,并开展了晴天、雨天、多云和多变天气4种典型天气类型下光伏发电功率预测校验。结果表明:在不同天气情况下,所提模型的决定系数R 2均大于99%,相较于对照模型具有更好的预测性能。 展开更多
关键词 光伏发电预测 ICEEMDAN 长短期记忆网络 食肉植物算法 核主成分分析
在线阅读 下载PDF
基于K互近邻与核密度估计的DPC算法 被引量:2
16
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 K近邻 K互近邻 核密度估计
原文传递
区域和邻域级信息相结合的加强型PFCM含噪图像分割算法
17
作者 王小鹏 王海洲 陈浩然 《电子学报》 北大核心 2025年第5期1584-1595,共12页
针对可能性模糊C均值聚类(Possibilistic Fuzzy C-Means,PFCM)算法存在重合聚类,未考虑图像空间信息,对噪声鲁棒性差的问题,提出一种区域和邻域级信息相结合的加强型可能性模糊C均值算法.首先,设计了一种新的函数结构抑制重合聚类,该方... 针对可能性模糊C均值聚类(Possibilistic Fuzzy C-Means,PFCM)算法存在重合聚类,未考虑图像空间信息,对噪声鲁棒性差的问题,提出一种区域和邻域级信息相结合的加强型可能性模糊C均值算法.首先,设计了一种新的函数结构抑制重合聚类,该方法通过引入非线性衰减特性,更有效地调节不同隶属度点对不同簇的贡献,降低了簇之间的重合度;其次,通过局部方差约束,将图像区域级信息和其邻域级信息结合,充分利用图像的空间信息,提高对噪声的鲁棒性;最后,将核度量应用于聚类不相似度量,根据图像自有信息自适应地确定核函数带宽参数,进一步提高算法的灵活性.含噪合成图像、脑MRI(Magnetic Resonance Imaging)图像和含噪彩色图像分割实验表明,本文算法在分割结果视觉效果和性能评价指标均优于其他几种比较算法. 展开更多
关键词 图像分割 聚类算法 重合聚类 空间信息 核度量
在线阅读 下载PDF
求解多核学习的自适应随机递归梯度下降法 被引量:1
18
作者 王梅 任怡果 +1 位作者 刘勇 王志宝 《计算机技术与发展》 2025年第7期93-99,共7页
针对随机递归梯度法(SARAH)求解多核学习(MKL)的不足之处,如收敛速度缓慢以及计算成本高等问题,该文提出一种改进算法——基于随机Polyak步长(SPS)的小批量随机递归梯度下降算法(SPS-MSARAH)来求解多核学习优化问题。首先将小批量方法... 针对随机递归梯度法(SARAH)求解多核学习(MKL)的不足之处,如收敛速度缓慢以及计算成本高等问题,该文提出一种改进算法——基于随机Polyak步长(SPS)的小批量随机递归梯度下降算法(SPS-MSARAH)来求解多核学习优化问题。首先将小批量方法引入随机方差缩减类算法中,选取一个固定大小的样本集代替单个训练样本计算SARAH的梯度,降低传统随机梯度下降算法使用单个样本计算梯度导致较大的波动和不稳定性所带来的方差。在此基础上,使用随机Polyak步长自适应地更新小批量SARAH的步长,使得优化过程更加灵活和鲁棒,从而解决随机优化算法中步长选取的难题。为了验证该算法的有效性,在标准数据集上进行了详细的数值实验。实验结果显示,在求解大规模多核学习优化问题时,SPS-MSARAH算法不仅显著提高了收敛速度,还有效降低了计算复杂度。此外,对初始参数的敏感性问题也得到了很好的克服,展现出良好的鲁棒性。 展开更多
关键词 多核学习 随机递归梯度下降法 随机Polyak步长 小批量 凸优化
在线阅读 下载PDF
基于改进麻雀搜索算法优化核极限学习机的弹丸气动参数辨识 被引量:1
19
作者 高展鹏 易文俊 《电子测量与仪器学报》 北大核心 2025年第2期72-82,共11页
弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组... 弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组合模型来辨识弹丸的气动参数,为充分挖掘SSA算法性能,提高辨识精确度,将对SSA算法的初始化策略、收敛因子和加入者的位置更新策略进行改进,采用CEC2022测试函数对改进后的麻雀搜索算法(ISSA)的改进措施的有效性进行验证,并采用ISSA优化KELM的核参数和正则化系数,提出ISSA-KELM辨识模型。研究结果表明,直接采用极限学习机(ELM)算法的辨识精确度最低,无法描述非线性区域弹丸的气动参数特征,通过在ELM算法中引入核函数提出KELM方法可以将辨识精确度提高1~4个量级,KELM和SSA-KELM等模型在非线性区域的辨识结果与真实值还有一定的差距,而采用ISSA-KELM模型的辨识结果最为精确,相比较基本的ELM算法辨识结果提高约4~5个量级,可以准确获取弹丸的气动参数,本研究为精确飞行轨迹预测和导弹性能优化提供了可靠的技术支持。 展开更多
关键词 弹丸 麻雀搜索算法 核极限学习机 气动参数辨识 非线性
原文传递
改进蛇优化算法及其在短期风电功率预测中的应用 被引量:1
20
作者 周璇 赵梦玲 殷新宇 《云南大学学报(自然科学版)》 北大核心 2025年第2期255-265,共11页
为了对风电功率进行精确预测,基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、改进蛇优化算法(improved snake optimization,ISO)和核极限学习机(kernel extreme learning machine,KELM),提出... 为了对风电功率进行精确预测,基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、改进蛇优化算法(improved snake optimization,ISO)和核极限学习机(kernel extreme learning machine,KELM),提出了一种混合短期风电功率预测模型.首先,利用CEEMD将非平稳的风电功率数据分解为若干相对平稳的分量,以降低原始数据的不稳定性;然后,引入改进蛇优化算法对KELM参数进行优化,并对各平稳分量和残差构建CEEMD-ISO-KELM预测模型;最后,将各分量和残差的预测结果进行重构,得到最终的风电功率预测结果.仿真结果表明,与现有预测模型相比,提出的预测模型能够很好地预测风电功率的变化趋势,在短期风电功率预测中取得了较好的精度. 展开更多
关键词 短期风电功率 改进蛇优化算法 核极限学习机
在线阅读 下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部