The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and materia...The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and material flow are among the crucial aspects determining the efficiency of the production at a shipyard.This paper presents the initial design optimization of a shipyard layout using Nondominated Sorting Algorithm-Ⅱ(NSGA-Ⅱ)to find the optimal configuration of workstations in a shipyard layout.The proposed method focuses on simultaneously minimizing two material handling costs,namely work-based material handling and duration-based material handling.NSGA-Ⅱ determines the order of workstations in the shipyard layout.The semiflexible bay structure is then used in the workstation placement process from the sequence formed in NSGA-Ⅱ into a complete design.Considering that this study is a case of multiobjective optimization,the performance for both objectives at each iteration is presented in a 3D graph.Results indicate that after 500 iterations,the optimal configuration yields a work-based MHC of 163670.0 WBM-units and a duration-based MHC of 34750 DBM-units.Starting from a random solution,the efficiency of NSGA-Ⅱ demonstrates significant improvements,achieving a 50.19%reduction in work-based MHC and a 48.58%reduction in duration-based MHC.展开更多
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode...Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.展开更多
A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With t...A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With the establishment of the mathematic model of multi-UUT parallel test tasks and resources,the condition of multi-UUT resources mergence is analyzed to obtain minimum resource requirement under minimum test time.The definition of cost efficiency is put forward,followed by the design of gene coding and path selection project,which can satisfy multi-UUT parallel test tasks scheduling.At the threshold of the algorithm,GA is adopted to provide initial pheromone for ACA,and then dual-convergence pheromone feedback mode is applied in ACA to avoid local optimization and parameters dependence.The practical application proves that the algorithm has a remarkable effect on solving the problems of multi-UUT parallel test tasks scheduling and resources configuration.展开更多
基金Supported by Direktorat Riset dan Pengembangan(Directorate of Research and Development)Universitas Indonesia(NKB-690/UN2.RST/HKP.05.00/2022).
文摘The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and material flow are among the crucial aspects determining the efficiency of the production at a shipyard.This paper presents the initial design optimization of a shipyard layout using Nondominated Sorting Algorithm-Ⅱ(NSGA-Ⅱ)to find the optimal configuration of workstations in a shipyard layout.The proposed method focuses on simultaneously minimizing two material handling costs,namely work-based material handling and duration-based material handling.NSGA-Ⅱ determines the order of workstations in the shipyard layout.The semiflexible bay structure is then used in the workstation placement process from the sequence formed in NSGA-Ⅱ into a complete design.Considering that this study is a case of multiobjective optimization,the performance for both objectives at each iteration is presented in a 3D graph.Results indicate that after 500 iterations,the optimal configuration yields a work-based MHC of 163670.0 WBM-units and a duration-based MHC of 34750 DBM-units.Starting from a random solution,the efficiency of NSGA-Ⅱ demonstrates significant improvements,achieving a 50.19%reduction in work-based MHC and a 48.58%reduction in duration-based MHC.
基金supported by National Natural Science Foundation of China (No.60474059)Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z160).
文摘Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.
基金supported by“11th Five-year Projects”pre-research projects fund of the National Arming Department
文摘A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With the establishment of the mathematic model of multi-UUT parallel test tasks and resources,the condition of multi-UUT resources mergence is analyzed to obtain minimum resource requirement under minimum test time.The definition of cost efficiency is put forward,followed by the design of gene coding and path selection project,which can satisfy multi-UUT parallel test tasks scheduling.At the threshold of the algorithm,GA is adopted to provide initial pheromone for ACA,and then dual-convergence pheromone feedback mode is applied in ACA to avoid local optimization and parameters dependence.The practical application proves that the algorithm has a remarkable effect on solving the problems of multi-UUT parallel test tasks scheduling and resources configuration.