The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operatin...The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability.展开更多
The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of th...The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of the diesel engine air path system,assuming that the system may simultaneously be affected by actuator faults and external random disturbances,a disturbance observer-based sliding mode controller is designed.Through the linear matrix inequality technique for solving observer and controller gains,optimal gain matrices can be obtained,eliminating the manual adjustment process of controller parameters and reducing the chattering phenomenon of the sliding mode surface.Finally,the effectiveness of the proposed method is verified through simulation analysis.展开更多
This paper investigates the issue of fault-tolerant control for swarm systems subject to switched graphs,actuator faults and obstacles.A geometric-based partial differential equation(PDE)framework is proposed to unify...This paper investigates the issue of fault-tolerant control for swarm systems subject to switched graphs,actuator faults and obstacles.A geometric-based partial differential equation(PDE)framework is proposed to unify collision-free trajectory generation and fault-tolerant control.To deal with the fault-induced force imbalances,the Riemannian metric is proposed to coordinate nominal controllers and the global one.Then,Riemannianbased trajectory length optimization is solved by gradient's dynamic model-heat flow PDE,under which a feasible trajectory satisfying motion constraints is achieved to guide the faulty system.Such virtual control force emerges autonomously through this metric adjustments.Further,the tracking error is rigorously proven to be exponential boundedness.Simulation results confirm the validity of these theoretical findings.展开更多
Hydraulic-electric systems are widely utilized in various applications.However,over time,these systems may encounter random faults such as loose cables,ambient environmental noise,or sensor aging,leading to inaccurate...Hydraulic-electric systems are widely utilized in various applications.However,over time,these systems may encounter random faults such as loose cables,ambient environmental noise,or sensor aging,leading to inaccurate sensor readings.These faults may result in system instability or compromise safety.In this paper,we propose a fault compensation control system to mitigate the effects of sensor faults and ensure system safety.Specifically,we utilize the pressure sensor within the system to implement the control process and evaluate performance based on the piston position.First,we develop a mathematical model to identify optimal parameters for the fault estimation model based on the Lyapunov stability principle.Next,we design an unknown input observer that estimates the state vector and detects pressure sensor faults using a linear matrix inequality optimization algorithm.The estimated pressure faults are incorporated into the fault compensation control system to counteract their effects via a fault residual coefficient.The discrepancy between the feedback state and the estimated state determines this coefficient.We assess the piston position’s performance through pressure control to evaluate the proposed model’s effectiveness.Finally,the system simulation results are analyzed to validate the efficiency of the proposed model.When a pressure sensor fault occurs,the proposed approach effectively minimizes position control errors,enhancing overall system stability.When a pressure sensor fault occurs,the proposed model compensates for the fault to mitigate the impact of pressure problem,thereby enhancing the position control quality of the EHA system.The fault compensation method ensures over 90%system performance,with its effectiveness becoming more evident under pressure sensor faults.展开更多
The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may ...The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings.展开更多
Permanent-magnet synchronous machines(PMSMs)are widely used in robotics,rail transportation,and electric vehicles owing to their high power density,high efficiency,and high power factor.However,PMSMs often operate in ...Permanent-magnet synchronous machines(PMSMs)are widely used in robotics,rail transportation,and electric vehicles owing to their high power density,high efficiency,and high power factor.However,PMSMs often operate in harsh environments,where critical components such as windings and permanent magnets(PMs)are susceptible to failures.These faults can lead to a significant degradation in performance,posing substantial challenges to the reliable operation of PMSMs.This paper presents a comprehensive review of common fault types in PMSMs,along with their corresponding fault diagnosis and fault-tolerant control strategies.The underlying mechanisms of typical faults are systematically analyzed,followed by a detailed comparison of various diagnostic and fault-tolerant control methods to evaluate their respective advantages and limitations.Finally,the review concludes by identifying key research gaps in PMSM fault diagnosis and fault-tolerant control,while proposing potential future directions for advancing this field.展开更多
In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is co...In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is constructed by fusing the system state and the reference trajectory, which aims to transform the optimal fault-tolerant tracking control design with actuator faults into the optimal regulation problem of the conventional nonlinear error system. Subsequently, in order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain an initial admissible tracking policy. Then, the constructed model neural network(NN) is pretrained to recognize the system dynamics and calculate trajectory control. The critic and action NNs are constructed to output the approximate cost function and approximate tracking control,respectively. The Hamilton-Jacobi-Bellman equation of the error system is solved online through the action-critic framework. In theoretical analysis, it is proved that all concerned signals are uniformly ultimately bounded according to the Lyapunov principle.The tracking control law can approach the optimal tracking control within a finite approximation error. Finally, two experimental examples are conducted to indicate the effectiveness and superiority of the developed fault-tolerant tracking control scheme.展开更多
The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes th...The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes the sensor prone to failure.Sensor failure has the potential to compromise aircraft safety.In order to improve the safety of the aircraft braking system,a fault detection and fault-tolerant control(FDFTC)strategy for the aircraft brake pressure sensor is designed.Firstly,a model based on a bidirectional long short-term memory(Bi-LSTM)network is constructed to estimate the brake pressure.Then,the residual sequence is obtained by comparing the measured pressure with the estimated pressure.On this basis,the improved sequential probability ratio test(SPRT)method based on mathematical statistics is applied to analyze the residual sequence to detect the fault.Finally,simulation and hardware-in-the-loop(HIL)testing results indicate that the proposed FDFTC strategy can detect sensor faults in time and efficiently complete braking when faults occur.Hence,the proposed FDFTC strategy can effectively deal with the faults of the aircraft brake pressure sensor,which is of great significance to improve the reliability and safety of the aircraft.展开更多
Fault tolerance is essential for reliable and sustainable smart city infrastructure.Interconnected IoT systems must function under frequent faults,limited resources,and complex conditions.Existing research covers vari...Fault tolerance is essential for reliable and sustainable smart city infrastructure.Interconnected IoT systems must function under frequent faults,limited resources,and complex conditions.Existing research covers various fault-tolerant methods.However,current reviews often lack system-level critique and multidimensional analysis.This study provides a structured review of fault tolerance strategies across layered IoT architectures in smart cities.It evaluates fault detection,containment,and recovery techniques using specific metrics.These include fault visibility,propagation depth,containment score,and energy-resilience trade-offs.The analysis uses comparative tables,architecture-aware discussions,and conceptual plots.It investigates the impact of fault tolerance on decision-making in Supervisory Control And Data Acquisition(SCADA)systems,sensor networks,and real-time controllers.Simulation results and logic-based design support the relationships between evaluation metrics.Findings show a common reliance on redundancy and reactive methods.Many techniques fail to address cross-layer propagation,context-aware adaptation,and silent fault impact on user trust.The study combines these overlooked aspects into a system-level framework.This survey identifies performance bottlenecks and supports the design of adaptive,energy-efficient,and transparent IoT systems.The results contribute to bridging technical reliability with public trust,supporting scalable and responsible smart city development.展开更多
In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on t...In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on the output redefinition method and Adaptive Dynamic Programming(ADP).The intelligent FTC scheme consists of two main parts:a basic fault-tolerant and stable controller and an ADP-based supplementary controller.In the basic FTC part,an output redefinition approach is designed to make zero-dynamics stable with respect to the new output.Then,Ideal Internal Dynamic(IID)is obtained using an optimal bounded inversion approach,and a tracking controller is designed for the new output to realize output tracking of the nonminimum phase HSV system.For the ADP-based compensation control part,an ActionDependent Heuristic Dynamic Programming(ADHDP)adopting an actor-critic learning structure is utilized to further optimize the tracking performance of the HSV control system.Finally,simulation results are provided to verify the effectiveness and efficiency of the proposed FTC algorithm.展开更多
For the multicopter with more than four rotors,the rotor fault information is unobservable,which limits the applica-tion of active fault-tolerant on multicopters.This paper applies an existing fault-tolerant control m...For the multicopter with more than four rotors,the rotor fault information is unobservable,which limits the applica-tion of active fault-tolerant on multicopters.This paper applies an existing fault-tolerant control method for quadcopter to multi-copter with more than four rotors.Without relying on rotor fault information,this method is able to stabilize the multicopter with multiple rotor failures,which is validated on the hexacopter and octocopter using the hardware-in-the-loop simulations.Addi-tionally,the hardware-in-the-loop simulations demonstrate that a more significant tilt angle in flight will inhibit the maximum tolera-ble number of rotor failures of a multicopter.The more signifi-cant aerodynamic drag moment will make it difficult for the mul-ticopter to regain altitude control after rotor failure.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,whe...In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,where high performance,efficiency,and reliability are crucial.The ability of the drive system to maintain long-term fault-tolerant control(FTC)operation after a failure is essential.The likelihood of inverter failures surpasses that of other components in the drive system,highlighting its critical importance.Long-term FTC operation ensures the system retains its fundamental functions until safe repairs or replacements can be made.The focus of developing a FTC strategy has shifted from basic FTC operations to enhancing the post-fault quality to accommodate the realities of prolonged operation post-failure.This paper primarily investigates FTC strategies for inverter failures in various motor drive systems over the past decade.These strategies are categorized into three types based on post-fault operational quality:rescue,remedy,and reestablishment.The paper discusses each typical control strategy and its research focus,the strengths and weaknesses of various algorithms,and recent advancements in FTC.Finally,this review summarizes effective FTC techniques for inverter failures in motor drive systems and suggests directions for future research.展开更多
This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of pr...This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.展开更多
Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants t...Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants to maintain the storage state consistently.However,with the improvement of network environment complexity and system scale,blockchain development is limited by the performance,security,and scalability of the consensus protocol.To address this problem,this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance(PBFT)and proposes a Byzantine fault-tolerant(BFT)consensus protocol based on collaborative filtering recommendation(CRBFT).Specifically,an improved collaborative filtering recommendation method is designed to use the similarity between a node’s recommendation opinions and those of the recommender as a basis for determining whether to adopt the recommendation opinions.This can amplify the recommendation voice of good nodes,weaken the impact of cunningmalicious nodes on the trust value calculation,andmake the calculated resultsmore accurate.In addition,the nodes are given voting power according to their trust value,and a weight randomelection algorithm is designed and implemented to reduce the risk of attack.The experimental results show that CRBFT can effectively eliminate various malicious nodes and improve the performance of blockchain systems in complex network environments,and the feasibility of CRBFT is also proven by theoretical analysis.展开更多
Double-integrator multi-agent systems(MASs)might not achieve dynamical consensus,even if only partial agents suffer from self-sensing function failures(SSFFs).SSFFs might be asynchronous in real engineering applicatio...Double-integrator multi-agent systems(MASs)might not achieve dynamical consensus,even if only partial agents suffer from self-sensing function failures(SSFFs).SSFFs might be asynchronous in real engineering application.The existing fault-tolerant dynamical consensus protocol suitable for synchronous SSFFs cannot be directly used to tackle fault-tolerant dynamical consensus of double-integrator MASs with partial agents subject to asynchronous SSFFs.Motivated by these facts,this paper explores a new fault-tolerant dynamical consensus protocol suitable for asynchronous SSFFs.First,multi-hop communication together with the idea of treating asynchronous SSFFs as multiple piecewise synchronous SSFFs is used for recovering the connectivity of network topology among all normal agents.Second,a fault-tolerant dynamical consensus protocol is designed for double-integrator MASs by utilizing the history information of an agent subject to SSFF for computing its own state information at the instants when its minimum-hop normal neighbor set changes.Then,it is theoretically proved that if the strategy of network topology connectivity recovery and the fault-tolerant dynamical consensus protocol with proper time-varying gains are used simultaneously,double-integrator MASs with all normal agents and all agents subject to SSFFs can reach dynamical consensus.Finally,comparison numerical simulations are given to illustrate the effectiveness of the theoretical results.展开更多
This study presents a tracking and fault-tolerant controller architecture for uncertain steer-by-wire(SbW)systems using model predictive control in the presence of actuator malfunction and the nonlinear properties of ...This study presents a tracking and fault-tolerant controller architecture for uncertain steer-by-wire(SbW)systems using model predictive control in the presence of actuator malfunction and the nonlinear properties of tire lateral stiffness coefficients.By changing the internal model,the model predictive control(MPC)technique was used to achieve optimal tracking performance under the actuator output limitation variation problem and uncertain system parameters.System parameters and state estimates were simultaneously provided by the fault detection and isolation modules to detect actuator failure using the coupling estimation approach.The estimation accuracy was further improved by considering the replacement errors as virtual noise,which was also estimated during the estimation process.Simulation and experimental results demonstrate that the proposed fault-tolerant control technique can identify motor faults and conduct fault-tolerant control based on fault identification,showing good front-wheel steering angle tracking performance under both normal and fault conditions.展开更多
In this paper,a novel robust composite sliding mode controller(RCSMC)is proposed to accommodate actuator faults for a quadrotor UAV subject to unknown disturbances.The closed-loop system is divided into two parts:the ...In this paper,a novel robust composite sliding mode controller(RCSMC)is proposed to accommodate actuator faults for a quadrotor UAV subject to unknown disturbances.The closed-loop system is divided into two parts:the nominal system without disturbances which is controlled by the designed baseline controller,and the equivalent total disturbances including parameter uncertainties and actuator faults,which is estimated by the developed adaptive finite-time extended state observer(AFTESO).The estimated total disturbances are rejected by RCSMC and the asymptotic stability of flight control system is guaranteed.The proposed method is verified through numerical simulations.展开更多
The photovoltaic system is experiencing great growth in the production of electrical energy these days.It plays a vital role in the production of electrical energy in isolated towns.It is generally either stand-alone ...The photovoltaic system is experiencing great growth in the production of electrical energy these days.It plays a vital role in the production of electrical energy in isolated towns.It is generally either stand-alone or connected to a network.The energy produced by the photovoltaic generator is in continuous form;the conversion from its continuous form to the alternating form requires a converter:the inverter.In order to improve the quality of the waveform,we moved from the classic solar inverter to multilevel inverters.These multilevel inverters are equipped with power switches which are required to withstand strong fluctuations in the voltage produced by the GPV(photovoltaic generator).It is obvious that the degradation of the inverter leads to a distortion of the wave quality.This article presents the simulation of the GPV-Chopper Boost-Inverter chain in fault-tolerant cascaded H-bridges in order to overcome the difficulties of voltage constraints experienced by power switches(IGBT:insulated gate bipolar transistor).The results of simulations carried out in Matlab/Simulink show good performance of the designed inverter model.展开更多
This paper presents a novel method for optimizing the contact force of a hexapod robot to enhance its dynamic motion stability when one of its legs fails.The proposed approach aims to improve the Force Angle Stability...This paper presents a novel method for optimizing the contact force of a hexapod robot to enhance its dynamic motion stability when one of its legs fails.The proposed approach aims to improve the Force Angle Stability Margin(FASM)and adapt the foot trajectory through contact force optimization to achieve safe and stable motion on various terrains.The foot force optimization approach is designed to optimize the FASM,a factor rarely considered in existing contact force optimization methods.By formulating the problem of enhancing the motion stability of the hexapod robot as a Quadratic Programming(QP)optimization problem,this approach can effectively address this issue.Simulations of a hexapod robot using a fault-tolerant gait,along with real field experiments,were conducted to validate the effectiveness and feasibility of the contact force optimization approach.The results demonstrate that this approach can be used to design a motion controller for a hexapod robot with a significantly improved motion stability.In summary,the proposed contact force optimization method offers a promising solution for enhancing the motion stability of hexapod robots with single leg failures and has the potential to significantly advance the development of fault-tolerant hexapod robots for various applications.展开更多
基金supported by Southern Marine Science and Engineering Guangdong Laboratory Grant No.SML2023SP229。
文摘The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability.
基金Supported by the National Key R&D Program of China(2021YFB2011300)the National Natural Science Foundation of China(52275044,52205299)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(Z23E050032)the China Postdoctoral Science Foundation(2022M710304).
文摘The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of the diesel engine air path system,assuming that the system may simultaneously be affected by actuator faults and external random disturbances,a disturbance observer-based sliding mode controller is designed.Through the linear matrix inequality technique for solving observer and controller gains,optimal gain matrices can be obtained,eliminating the manual adjustment process of controller parameters and reducing the chattering phenomenon of the sliding mode surface.Finally,the effectiveness of the proposed method is verified through simulation analysis.
基金supported in part by the National Natural Science Foundation of China under Grant 62303144,62020106003,U22A2044in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ23F030013.
文摘This paper investigates the issue of fault-tolerant control for swarm systems subject to switched graphs,actuator faults and obstacles.A geometric-based partial differential equation(PDE)framework is proposed to unify collision-free trajectory generation and fault-tolerant control.To deal with the fault-induced force imbalances,the Riemannian metric is proposed to coordinate nominal controllers and the global one.Then,Riemannianbased trajectory length optimization is solved by gradient's dynamic model-heat flow PDE,under which a feasible trajectory satisfying motion constraints is achieved to guide the faulty system.Such virtual control force emerges autonomously through this metric adjustments.Further,the tracking error is rigorously proven to be exponential boundedness.Simulation results confirm the validity of these theoretical findings.
基金supported by Nguyen Tat Thanh University,Ho Chi Minh City,Vietnam,provided with the facilities required to carry out this work.
文摘Hydraulic-electric systems are widely utilized in various applications.However,over time,these systems may encounter random faults such as loose cables,ambient environmental noise,or sensor aging,leading to inaccurate sensor readings.These faults may result in system instability or compromise safety.In this paper,we propose a fault compensation control system to mitigate the effects of sensor faults and ensure system safety.Specifically,we utilize the pressure sensor within the system to implement the control process and evaluate performance based on the piston position.First,we develop a mathematical model to identify optimal parameters for the fault estimation model based on the Lyapunov stability principle.Next,we design an unknown input observer that estimates the state vector and detects pressure sensor faults using a linear matrix inequality optimization algorithm.The estimated pressure faults are incorporated into the fault compensation control system to counteract their effects via a fault residual coefficient.The discrepancy between the feedback state and the estimated state determines this coefficient.We assess the piston position’s performance through pressure control to evaluate the proposed model’s effectiveness.Finally,the system simulation results are analyzed to validate the efficiency of the proposed model.When a pressure sensor fault occurs,the proposed approach effectively minimizes position control errors,enhancing overall system stability.When a pressure sensor fault occurs,the proposed model compensates for the fault to mitigate the impact of pressure problem,thereby enhancing the position control quality of the EHA system.The fault compensation method ensures over 90%system performance,with its effectiveness becoming more evident under pressure sensor faults.
基金supported in part by the National Natural Science Foundation of China under Grants 61991404,62103093 and 62473089the Research Program of the Liaoning Liaohe Laboratory,China under Grant LLL23ZZ-05-01+5 种基金the Key Research and Development Program of Liaoning Province of China under Grant 2023JH26/10200011the 111 Project 2.0 of China under Grant B08015,the National Key Research and Development Program of China under Grant 2022YFB3305905the Xingliao Talent Program of Liaoning Province of China under Grant XLYC2203130the Natural Science Foundation of Liaoning Province of China under Grants 2024JH3/10200012 and 2023-MS-087the Open Research Project of the State Key Laboratory of Industrial Control Technology of China under Grant ICT2024B12the Fundamental Research Funds for the Central Universities of China under Grants N2108003 and N2424004.
文摘The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings.
基金supported by National Natural Science Foundation of China under Project 52437003 and 52421004in part by the National Key R&D Program of China under Project 2023YFB3406000in part by Heilongjiang Provincial Natural Science Foundation under Project YQ2022E029.
文摘Permanent-magnet synchronous machines(PMSMs)are widely used in robotics,rail transportation,and electric vehicles owing to their high power density,high efficiency,and high power factor.However,PMSMs often operate in harsh environments,where critical components such as windings and permanent magnets(PMs)are susceptible to failures.These faults can lead to a significant degradation in performance,posing substantial challenges to the reliable operation of PMSMs.This paper presents a comprehensive review of common fault types in PMSMs,along with their corresponding fault diagnosis and fault-tolerant control strategies.The underlying mechanisms of typical faults are systematically analyzed,followed by a detailed comparison of various diagnostic and fault-tolerant control methods to evaluate their respective advantages and limitations.Finally,the review concludes by identifying key research gaps in PMSM fault diagnosis and fault-tolerant control,while proposing potential future directions for advancing this field.
基金supported in part by the National Natural Science Foundation of China(62222301,62373012,62473012,62021003)the National Science and Technology Major Project(2021ZD0112302,2021ZD0112301)the Beijing Natural Science Foundation(JQ19013)
文摘In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is constructed by fusing the system state and the reference trajectory, which aims to transform the optimal fault-tolerant tracking control design with actuator faults into the optimal regulation problem of the conventional nonlinear error system. Subsequently, in order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain an initial admissible tracking policy. Then, the constructed model neural network(NN) is pretrained to recognize the system dynamics and calculate trajectory control. The critic and action NNs are constructed to output the approximate cost function and approximate tracking control,respectively. The Hamilton-Jacobi-Bellman equation of the error system is solved online through the action-critic framework. In theoretical analysis, it is proved that all concerned signals are uniformly ultimately bounded according to the Lyapunov principle.The tracking control law can approach the optimal tracking control within a finite approximation error. Finally, two experimental examples are conducted to indicate the effectiveness and superiority of the developed fault-tolerant tracking control scheme.
基金Supported by National Natural Science Foundation of China(Grant No.52205045)National Key Research and Development Program of China(Grant No.2021YFB2011300)+2 种基金Aeronautical Science Foundation of China(Grant No.2022Z029051001)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ24E050006)Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(Nanjing University of Aeronautics and Astronautics)(Grant No.MCAS-E-0224G01).
文摘The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes the sensor prone to failure.Sensor failure has the potential to compromise aircraft safety.In order to improve the safety of the aircraft braking system,a fault detection and fault-tolerant control(FDFTC)strategy for the aircraft brake pressure sensor is designed.Firstly,a model based on a bidirectional long short-term memory(Bi-LSTM)network is constructed to estimate the brake pressure.Then,the residual sequence is obtained by comparing the measured pressure with the estimated pressure.On this basis,the improved sequential probability ratio test(SPRT)method based on mathematical statistics is applied to analyze the residual sequence to detect the fault.Finally,simulation and hardware-in-the-loop(HIL)testing results indicate that the proposed FDFTC strategy can detect sensor faults in time and efficiently complete braking when faults occur.Hence,the proposed FDFTC strategy can effectively deal with the faults of the aircraft brake pressure sensor,which is of great significance to improve the reliability and safety of the aircraft.
文摘Fault tolerance is essential for reliable and sustainable smart city infrastructure.Interconnected IoT systems must function under frequent faults,limited resources,and complex conditions.Existing research covers various fault-tolerant methods.However,current reviews often lack system-level critique and multidimensional analysis.This study provides a structured review of fault tolerance strategies across layered IoT architectures in smart cities.It evaluates fault detection,containment,and recovery techniques using specific metrics.These include fault visibility,propagation depth,containment score,and energy-resilience trade-offs.The analysis uses comparative tables,architecture-aware discussions,and conceptual plots.It investigates the impact of fault tolerance on decision-making in Supervisory Control And Data Acquisition(SCADA)systems,sensor networks,and real-time controllers.Simulation results and logic-based design support the relationships between evaluation metrics.Findings show a common reliance on redundancy and reactive methods.Many techniques fail to address cross-layer propagation,context-aware adaptation,and silent fault impact on user trust.The study combines these overlooked aspects into a system-level framework.This survey identifies performance bottlenecks and supports the design of adaptive,energy-efficient,and transparent IoT systems.The results contribute to bridging technical reliability with public trust,supporting scalable and responsible smart city development.
基金supported in part by the Science Center Program of National Natural Science Foundation of China(62373189,62188101,62020106003)the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures,China。
文摘In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on the output redefinition method and Adaptive Dynamic Programming(ADP).The intelligent FTC scheme consists of two main parts:a basic fault-tolerant and stable controller and an ADP-based supplementary controller.In the basic FTC part,an output redefinition approach is designed to make zero-dynamics stable with respect to the new output.Then,Ideal Internal Dynamic(IID)is obtained using an optimal bounded inversion approach,and a tracking controller is designed for the new output to realize output tracking of the nonminimum phase HSV system.For the ADP-based compensation control part,an ActionDependent Heuristic Dynamic Programming(ADHDP)adopting an actor-critic learning structure is utilized to further optimize the tracking performance of the HSV control system.Finally,simulation results are provided to verify the effectiveness and efficiency of the proposed FTC algorithm.
基金supported by the National Natural Science Foundation of China(61973015).
文摘For the multicopter with more than four rotors,the rotor fault information is unobservable,which limits the applica-tion of active fault-tolerant on multicopters.This paper applies an existing fault-tolerant control method for quadcopter to multi-copter with more than four rotors.Without relying on rotor fault information,this method is able to stabilize the multicopter with multiple rotor failures,which is validated on the hexacopter and octocopter using the hardware-in-the-loop simulations.Addi-tionally,the hardware-in-the-loop simulations demonstrate that a more significant tilt angle in flight will inhibit the maximum tolera-ble number of rotor failures of a multicopter.The more signifi-cant aerodynamic drag moment will make it difficult for the mul-ticopter to regain altitude control after rotor failure.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金supported in part by the National Natural Science Foundation of China under Grants 52025073 and 52107047in part by China Scholarship Council。
文摘In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,where high performance,efficiency,and reliability are crucial.The ability of the drive system to maintain long-term fault-tolerant control(FTC)operation after a failure is essential.The likelihood of inverter failures surpasses that of other components in the drive system,highlighting its critical importance.Long-term FTC operation ensures the system retains its fundamental functions until safe repairs or replacements can be made.The focus of developing a FTC strategy has shifted from basic FTC operations to enhancing the post-fault quality to accommodate the realities of prolonged operation post-failure.This paper primarily investigates FTC strategies for inverter failures in various motor drive systems over the past decade.These strategies are categorized into three types based on post-fault operational quality:rescue,remedy,and reestablishment.The paper discusses each typical control strategy and its research focus,the strengths and weaknesses of various algorithms,and recent advancements in FTC.Finally,this review summarizes effective FTC techniques for inverter failures in motor drive systems and suggests directions for future research.
基金supported by the National Natural Science Foundation of China (Nos. 52233014, U2241215)。
文摘This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(Grant No.62102449)awarded to W.J.Wang.
文摘Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants to maintain the storage state consistently.However,with the improvement of network environment complexity and system scale,blockchain development is limited by the performance,security,and scalability of the consensus protocol.To address this problem,this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance(PBFT)and proposes a Byzantine fault-tolerant(BFT)consensus protocol based on collaborative filtering recommendation(CRBFT).Specifically,an improved collaborative filtering recommendation method is designed to use the similarity between a node’s recommendation opinions and those of the recommender as a basis for determining whether to adopt the recommendation opinions.This can amplify the recommendation voice of good nodes,weaken the impact of cunningmalicious nodes on the trust value calculation,andmake the calculated resultsmore accurate.In addition,the nodes are given voting power according to their trust value,and a weight randomelection algorithm is designed and implemented to reduce the risk of attack.The experimental results show that CRBFT can effectively eliminate various malicious nodes and improve the performance of blockchain systems in complex network environments,and the feasibility of CRBFT is also proven by theoretical analysis.
基金National Natural Science Foundation of China(No.61876073)Fundamental Research Funds for the Central Universities of China(No.JUSRP21920)。
文摘Double-integrator multi-agent systems(MASs)might not achieve dynamical consensus,even if only partial agents suffer from self-sensing function failures(SSFFs).SSFFs might be asynchronous in real engineering application.The existing fault-tolerant dynamical consensus protocol suitable for synchronous SSFFs cannot be directly used to tackle fault-tolerant dynamical consensus of double-integrator MASs with partial agents subject to asynchronous SSFFs.Motivated by these facts,this paper explores a new fault-tolerant dynamical consensus protocol suitable for asynchronous SSFFs.First,multi-hop communication together with the idea of treating asynchronous SSFFs as multiple piecewise synchronous SSFFs is used for recovering the connectivity of network topology among all normal agents.Second,a fault-tolerant dynamical consensus protocol is designed for double-integrator MASs by utilizing the history information of an agent subject to SSFF for computing its own state information at the instants when its minimum-hop normal neighbor set changes.Then,it is theoretically proved that if the strategy of network topology connectivity recovery and the fault-tolerant dynamical consensus protocol with proper time-varying gains are used simultaneously,double-integrator MASs with all normal agents and all agents subject to SSFFs can reach dynamical consensus.Finally,comparison numerical simulations are given to illustrate the effectiveness of the theoretical results.
基金Supported by Youth Fund of Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20200423)National Natural Science Foundation of China(Grant Nos.52102435,52072175)+2 种基金Jiangsu Outstanding Youth Fund Project of China(Grant No.BK20220078)Jiangsu Provincial Key R&D Plan of China(Grant No.BE2022053)Postgraduate Research&Practice Innovation Program of NUAA of China(Grant No.xcxjh20220210)。
文摘This study presents a tracking and fault-tolerant controller architecture for uncertain steer-by-wire(SbW)systems using model predictive control in the presence of actuator malfunction and the nonlinear properties of tire lateral stiffness coefficients.By changing the internal model,the model predictive control(MPC)technique was used to achieve optimal tracking performance under the actuator output limitation variation problem and uncertain system parameters.System parameters and state estimates were simultaneously provided by the fault detection and isolation modules to detect actuator failure using the coupling estimation approach.The estimation accuracy was further improved by considering the replacement errors as virtual noise,which was also estimated during the estimation process.Simulation and experimental results demonstrate that the proposed fault-tolerant control technique can identify motor faults and conduct fault-tolerant control based on fault identification,showing good front-wheel steering angle tracking performance under both normal and fault conditions.
基金supported by the Innovation Fund of Key Laboratory of High-Altitude Simulating Technology,AECC Sichuan Turbine Research Institute(18zd9101).
文摘In this paper,a novel robust composite sliding mode controller(RCSMC)is proposed to accommodate actuator faults for a quadrotor UAV subject to unknown disturbances.The closed-loop system is divided into two parts:the nominal system without disturbances which is controlled by the designed baseline controller,and the equivalent total disturbances including parameter uncertainties and actuator faults,which is estimated by the developed adaptive finite-time extended state observer(AFTESO).The estimated total disturbances are rejected by RCSMC and the asymptotic stability of flight control system is guaranteed.The proposed method is verified through numerical simulations.
文摘The photovoltaic system is experiencing great growth in the production of electrical energy these days.It plays a vital role in the production of electrical energy in isolated towns.It is generally either stand-alone or connected to a network.The energy produced by the photovoltaic generator is in continuous form;the conversion from its continuous form to the alternating form requires a converter:the inverter.In order to improve the quality of the waveform,we moved from the classic solar inverter to multilevel inverters.These multilevel inverters are equipped with power switches which are required to withstand strong fluctuations in the voltage produced by the GPV(photovoltaic generator).It is obvious that the degradation of the inverter leads to a distortion of the wave quality.This article presents the simulation of the GPV-Chopper Boost-Inverter chain in fault-tolerant cascaded H-bridges in order to overcome the difficulties of voltage constraints experienced by power switches(IGBT:insulated gate bipolar transistor).The results of simulations carried out in Matlab/Simulink show good performance of the designed inverter model.
基金The funding has been received from National Natural Science Foundation of China with Grant nos.52205013,52175012Fundamental Research Foundation for Universities of Heilongjiang Province with Grant no.2022-KYYWF-0122+1 种基金Natural Science Foundation of Heilongjiang Province with Grant no.LH2020E088Foundation of State Key Laboratory of Robotics and Systems with Grant no.SKLRS-2022-KF-18.
文摘This paper presents a novel method for optimizing the contact force of a hexapod robot to enhance its dynamic motion stability when one of its legs fails.The proposed approach aims to improve the Force Angle Stability Margin(FASM)and adapt the foot trajectory through contact force optimization to achieve safe and stable motion on various terrains.The foot force optimization approach is designed to optimize the FASM,a factor rarely considered in existing contact force optimization methods.By formulating the problem of enhancing the motion stability of the hexapod robot as a Quadratic Programming(QP)optimization problem,this approach can effectively address this issue.Simulations of a hexapod robot using a fault-tolerant gait,along with real field experiments,were conducted to validate the effectiveness and feasibility of the contact force optimization approach.The results demonstrate that this approach can be used to design a motion controller for a hexapod robot with a significantly improved motion stability.In summary,the proposed contact force optimization method offers a promising solution for enhancing the motion stability of hexapod robots with single leg failures and has the potential to significantly advance the development of fault-tolerant hexapod robots for various applications.