Hardware/software partitioning is an important step in the design of embedded systems. In this paper, the hardware/software partitioning problem is modeled as a constrained binary integer programming problem, which is...Hardware/software partitioning is an important step in the design of embedded systems. In this paper, the hardware/software partitioning problem is modeled as a constrained binary integer programming problem, which is further converted equivalently to an unconstrained binary integer programming problem by a penalty method. A local search method, HSFM, is developed to obtain a discrete local minimizer of the unconstrained binary integer programming problem. Next, an auxiliary function, which has the same global optimal solutions as the unconstrained binary integer programming problem, is constructed, and its properties are studied. We show that applying HSFM to minimize the auxiliary function can escape from previous local optima by the increase of the parameter value successfully. Finally, a discrete dynamic convexized method is developed to solve the hardware/software partitioning problem. Computational results and comparisons indicate that the proposed algorithm can get high-quality solutions.展开更多
This paper focuses on the algorithmic aspects for the hardware/software (HW/SW) partitioning which searches a reasonable composition of hardware and software components which not only satisfies the constraint of har...This paper focuses on the algorithmic aspects for the hardware/software (HW/SW) partitioning which searches a reasonable composition of hardware and software components which not only satisfies the constraint of hardware area but also optimizes the execution time. The computational model is extended so that all possible types of communications can be taken into account for the HW/SW partitioning. Also, a new dynamic programming algorithm is proposed on the basis of the computational model, in which source data, rather than speedup in previous work, of basic scheduling blocks are directly utilized to calculate the optimal solution. The proposed algorithm runs in O(n·A) for n code fragments and the available hardware area A. Simulation results show that the proposed algorithm solves the HW/SW partitioning without increase in running time, compared with the algorithm cited in the literature.展开更多
基金Supported by the National Natural Science Foundation of China(11301255)the Fund by Collaborative Innovation Center of IoT Industrialization and Intelligent Production,Minjiang University(IIC1703)+1 种基金Foundation of Minjiang University(MYK17032)the Program for New Century Excellent Talents in Fujian Province University
文摘Hardware/software partitioning is an important step in the design of embedded systems. In this paper, the hardware/software partitioning problem is modeled as a constrained binary integer programming problem, which is further converted equivalently to an unconstrained binary integer programming problem by a penalty method. A local search method, HSFM, is developed to obtain a discrete local minimizer of the unconstrained binary integer programming problem. Next, an auxiliary function, which has the same global optimal solutions as the unconstrained binary integer programming problem, is constructed, and its properties are studied. We show that applying HSFM to minimize the auxiliary function can escape from previous local optima by the increase of the parameter value successfully. Finally, a discrete dynamic convexized method is developed to solve the hardware/software partitioning problem. Computational results and comparisons indicate that the proposed algorithm can get high-quality solutions.
文摘This paper focuses on the algorithmic aspects for the hardware/software (HW/SW) partitioning which searches a reasonable composition of hardware and software components which not only satisfies the constraint of hardware area but also optimizes the execution time. The computational model is extended so that all possible types of communications can be taken into account for the HW/SW partitioning. Also, a new dynamic programming algorithm is proposed on the basis of the computational model, in which source data, rather than speedup in previous work, of basic scheduling blocks are directly utilized to calculate the optimal solution. The proposed algorithm runs in O(n·A) for n code fragments and the available hardware area A. Simulation results show that the proposed algorithm solves the HW/SW partitioning without increase in running time, compared with the algorithm cited in the literature.