期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Prediction of hot-rolled strip crown based on Boruta and extremely randomized trees algorithms 被引量:4
1
作者 Li Wang Song-lin He +1 位作者 Zhi-ting Zhao Xian-du Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第5期1022-1031,共10页
The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanc... The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanced data.This limitation results in poor production quality and efficiency,leading to increased production costs.Thus,a novel strip crown prediction model that uses the Boruta and extremely randomized trees(Boruta-ERT)algorithms to address this issue was proposed.To improve the accuracy of our model,we utilized the synthetic minority over-sampling technique to balance the imbalance data sets.The Boruta-ERT prediction model was then used to select features and predict the strip crown.With the 2160 mm hot rolling production lines of a steel plant serving as the research object,the experimental results showed that 97.01% of prediction data have an absolute error of less than 8 lm.This level of accuracy met the control requirements for strip crown and demonstrated significant benefits for the improvement in production quality of steel strip. 展开更多
关键词 Hot-rolled strip Data improvement Strip crown Feature selection Boruta algorithm Extremely randomized trees algorithm
原文传递
Enhancing Navigability:An Algorithm for Constructing Tag Trees 被引量:1
2
作者 Chong Chen Pengcheng Luo 《Journal of Data and Information Science》 CSCD 2017年第2期56-75,共20页
Purpose: This study introduces an algorithm to construct tag trees that can be used as a userfriendly navigation tool for knowledge sharing and retrieval by solving two issues of previous studies, i.e. semantic drift... Purpose: This study introduces an algorithm to construct tag trees that can be used as a userfriendly navigation tool for knowledge sharing and retrieval by solving two issues of previous studies, i.e. semantic drift and structural skew.Design/methodology/approach: Inspired by the generality based methods, this study builds tag trees from a co-occurrence tag network and uses the h-degree as a node generality metric. The proposed algorithm is characterized by the following four features:(1) the ancestors should be more representative than the descendants,(2) the semantic meaning along the ancestor-descendant paths needs to be coherent,(3) the children of one parent are collectively exhaustive and mutually exclusive in describing their parent, and(4) tags are roughly evenly distributed to their upper-level parents to avoid structural skew. Findings: The proposed algorithm has been compared with a well-established solution Heymann Tag Tree(HTT). The experimental results using a social tag dataset showed that the proposed algorithm with its default condition outperformed HTT in precision based on Open Directory Project(ODP) classification. It has been verified that h-degree can be applied as a better node generality metric compared with degree centrality.Research limitations: A thorough investigation into the evaluation methodology is needed, including user studies and a set of metrics for evaluating semantic coherence and navigation performance.Practical implications: The algorithm will benefit the use of digital resources by generating a flexible domain knowledge structure that is easy to navigate. It could be used to manage multiple resource collections even without social annotations since tags can be keywords created by authors or experts, as well as automatically extracted from text.Originality/value: Few previous studies paid attention to the issue of whether the tagging systems are easy to navigate for users. The contributions of this study are twofold:(1) an algorithm was developed to construct tag trees with consideration given to both semanticcoherence and structural balance and(2) the effectiveness of a node generality metric, h-degree, was investigated in a tag co-occurrence network. 展开更多
关键词 Semantic coherence Structural balance Tag tree Resources navigation algorithm
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
3
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
A Traffic Scheduling Strategy in SDN Data Center Based on Fibonacci Tree Optimization Algorithm
4
作者 Wang Yaomin Hu Ping +3 位作者 Zeng Jing Li Donghong Yuan Lu Long Hua 《China Communications》 2025年第11期176-191,共16页
To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in t... To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in the operator data center.Fibonacci tree optimization algorithm(FTO)is embedded into the analysis prediction and the online scheduling stages,the FTO traffic scheduling strategy is proposed.By taking the global optimal and the multi-modal optimization advantage of FTO,the traffic scheduling optimal solution and many suboptimal solutions can be obtained.The experiment results show that the FTO traffic scheduling strategy can schedule traffic in data center networks reasonably,and improve the load balancing in the operator data center network effectively. 展开更多
关键词 Fibonacci tree optimization algorithm(FTO) multi-modal optimization SDN data center traffic scheduling
在线阅读 下载PDF
A Physical Layer Network Coding Based Tag Anti-Collision Algorithm for RFID System 被引量:3
5
作者 Cuixiang Wang Xing Shao +1 位作者 Yifan Meng Jun Gao 《Computers, Materials & Continua》 SCIE EI 2021年第1期931-945,共15页
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w... In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93. 展开更多
关键词 Radio frequency identification(RFID) tag anti-collision algorithm physical layer network coding binary search tree algorithm
在线阅读 下载PDF
OPTIMAL ALGORITHM FOR NO TOOl-RETRACTIONS CONTOUR-PARALLEL OFFSET TOOL-PATH LINKING 被引量:8
6
作者 HAO Yongtao JIANG Lili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期21-25,共5页
A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on th... A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on the parent/child relationships among the tool-path loops (TPLs) is presented. The direction, tool-path loop, leaf/branch, layer number, and the corresponding points of the TPL-tree are introduced. By defining TPL as a vector, and by traveling throughout the tree, a CPO tool-path without tool-retractions can be derived. 展开更多
关键词 Contour-parallel offset machining Tool-path loops Tool-path loop tree Optimal algorithm
在线阅读 下载PDF
Parameter Identification of Magic Formula Tire Model Based on Fibonacci Tree Optimization Algorithm 被引量:2
7
作者 FENG Shilin ZHAO Youqun +2 位作者 DENG Huifan WANG Qiuwei CHEN Tingting 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第5期647-657,共11页
The magic formula(MF)tire model is a semi-empirical tire model that can precisely simulate tire behavior.The heuristic optimization algorithm is typically used for parameter identification of the MF tire model.To avoi... The magic formula(MF)tire model is a semi-empirical tire model that can precisely simulate tire behavior.The heuristic optimization algorithm is typically used for parameter identification of the MF tire model.To avoid the defect of the traditional heuristic optimization algorithm that can easily fall into the local optimum,a parameter identification method based on the Fibonacci tree optimization(FTO)algorithm is proposed,which is used to identify the parameters of the MF tire model.The proposed method establishes the basic structure of the Fibonacci tree alternately through global and local searches and completes optimization accordingly.The global search rule in the original FTO was modified to improve its efficiency.The results of independent repeated experiments on two typical multimodal function optimizations and the parameter identification results showed that FTO was not sensitive to the initial values.In addition,it had a better global optimization performance than genetic algorithm(GA)and particle swarm optimization(PSO).The root mean square error values optimized with FTO were 5.09%,10.22%,and 3.98%less than the GA,and 6.04%,4.47%,and 16.42%less than the PSO in pure lateral and longitudinal forces,and pure aligning torque parameter identification.The parameter identification method based on FTO was found to be effective. 展开更多
关键词 magic formula tire model parameter identification Fibonacci tree optimization(FTO)algorithm
原文传递
Research on Scholarship Evaluation System based on Decision Tree Algorithm 被引量:1
8
作者 YIN Xiao WANG Ming-yu 《电脑知识与技术》 2015年第3X期11-13,共3页
Under the modern education system of China, the annual scholarship evaluation is a vital thing for many of the collegestudents. This paper adopts the classification algorithm of decision tree C4.5 based on the betteri... Under the modern education system of China, the annual scholarship evaluation is a vital thing for many of the collegestudents. This paper adopts the classification algorithm of decision tree C4.5 based on the bettering of ID3 algorithm and constructa data set of the scholarship evaluation system through the analysis of the related attributes in scholarship evaluation information.And also having found some factors that plays a significant role in the growing up of the college students through analysis and re-search of moral education, intellectural education and culture&PE. 展开更多
关键词 data mining scholarship evaluation system decision tree algorithm C4.5 algorithm
在线阅读 下载PDF
An efficient embedding tree matching algorithm based on metaphoric dependency syntax tree
9
作者 冯少荣 肖文俊 《Journal of Central South University》 SCIE EI CAS 2009年第2期275-279,共5页
To find out all dependency relationships in which metaphors probably exist between syntax constituents in a given sentence,a dependency tree matching algorithm oriented to Chinese metaphor processing is proposed based... To find out all dependency relationships in which metaphors probably exist between syntax constituents in a given sentence,a dependency tree matching algorithm oriented to Chinese metaphor processing is proposed based on a research of unordered tree inclusion matching.In this algorithm,the pattern library is composed of formalization dependency syntax trees that are derived from large-scale metaphor sentences.These kinds of metaphor sentences are saved in the pattern library in advance.The main process of this algorithm is up-down searching and bottom-up backtracking revising.The algorithm discovers potential metaphoric structures in Chinese sentences from metaphoric dependency pattern library.Finally,the feasibility and efficiency of the new matching algorithm are further testified by the results of a series of experiments on dependency pattern library.Hence,accurate dependency relationships can be achieved through this algorithm. 展开更多
关键词 pattern recognition tree matching algorithm dependency tree rule matching metaphor information processing
在线阅读 下载PDF
Research on Monitoring and Intervention Systems for College Students’ Mental Health Based on Artificial Intelligence
10
作者 Meng Lyu 《Journal of Contemporary Educational Research》 2025年第1期116-122,共7页
Due to the existing“island”state of psychological and behavioral data,there is no way for anyone to access students’psychological and behavioral histories.This limits the comprehensive understanding and effective i... Due to the existing“island”state of psychological and behavioral data,there is no way for anyone to access students’psychological and behavioral histories.This limits the comprehensive understanding and effective intervention of college students’mental health status.Therefore,this article constructs an artificial intelligence-based psychological health and intervention system for college students.Firstly,this article obtains psychological health testing data of college students through online platforms or on-campus system design,distribution of questionnaires,feedback from close contacts of students,and internal campus resources.Then,the architecture of a mental health monitoring system is designed.Its overall architecture includes a data collection layer,a data processing layer,a decision tree algorithm layer,and an evaluation display layer.The system uses the C4.5 decision tree algorithm to calculate the information gain of the processed sample data,selects the attribute with the maximum value,and constructs a decision tree structure model to evaluate students’mental health.Finally,this article studies the evaluation of students’mental health status by combining multidimensional information such as the SCL-90 scale,self-assessment scale,and student behavior data.Experimental data shows that the system can effectively identify students’mental health problems and provide precise intervention measures based on their situation,with high accuracy and practicality. 展开更多
关键词 Artificial intelligence Psychological health monitoring College students Dynamic monitoring Decision tree algorithm
在线阅读 下载PDF
Analysing Effectiveness of Sentiments in Social Media Data Using Machine Learning Techniques
11
作者 Thambusamy Velmurugan Mohandas Archana Ajith Singh Nongmaithem 《Journal of Computer and Communications》 2025年第1期136-151,共16页
Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in ... Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in different database repositories every day. Most of the review data are useful to new customers for theier further purchases as well as existing companies to view customers feedback about various products. Data Mining and Machine Leaning techniques are familiar to analyse such kind of data to visualise and know the potential use of the purchased items through online. The customers are making quality of products through their sentiments about the purchased items from different online companies. In this research work, it is analysed sentiments of Headphone review data, which is collected from online repositories. For the analysis of Headphone review data, some of the Machine Learning techniques like Support Vector Machines, Naive Bayes, Decision Trees and Random Forest Algorithms and a Hybrid method are applied to find the quality via the customers’ sentiments. The accuracy and performance of the taken algorithms are also analysed based on the three types of sentiments such as positive, negative and neutral. 展开更多
关键词 Support Vector Machine Random Forest algorithm Naive Bayes algorithm Machine Learning Techniques Decision Tree algorithm
在线阅读 下载PDF
An intersection method for locating earthquakes in complex velocity models 被引量:1
12
作者 赵爱华 丁志峰 《Applied Geophysics》 SCIE CSCD 2007年第4期294-300,共7页
The intersection method is one of the basic approaches for locating earthquakes and is not only robust but also efficient. However, its location accuracy is not high, especially for focal depth because the velocity mo... The intersection method is one of the basic approaches for locating earthquakes and is not only robust but also efficient. However, its location accuracy is not high, especially for focal depth because the velocity model used for the conventional intersection method is based on homogeneous or laterally homogeneous media, which is too simple. In order to improve the accuracy, we have modified the existing intersection method. In the modified approach, the earthquake loci are not assumed to be circular or hyperbolic and calculation accuracy is improved using a minimum traveltime tree algorithm for tracing rays. The numerical model shows that the modified method can locate earthquakes in complex velocity models. 展开更多
关键词 Earthquake location intersection method ray tracing minimum traveltime tree algorithm
在线阅读 下载PDF
THE METHODS OF EXTRACTING WATER INFORMATION FROM SPOT IMAGE 被引量:5
13
作者 DUJin-kang FENGXue-zhi 《Chinese Geographical Science》 SCIE CSCD 2002年第1期68-72,共5页
Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers base... Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers based on the spectral responding characteristics of water bodies and other objects, was developed and put forward to delineate water bodies. Another algorithm of decision tree classification based on both spectral characteristics and auxiliary information of DEM and slope (DTDS) was also designed for water bodies extraction. In addition, supervised classification method of maximum likelyhood classification (MLC), and unsupervised method of interactive self organizing dada analysis technique (ISODATA) were used to extract waterbodies for comparison purpose. An index was designed and used to assess the accuracy of different methods adopted in the research. Results have shown that water extraction accuracy was variable with respect to the various techniques applied. It was low using ISODATA, very high using DT algorithm and much higher using both DTDS and MLC. 展开更多
关键词 water body decision tree algorithm accuracy assessment
在线阅读 下载PDF
Fast and accurate calculation of seismic wave travel time in 3D TTI media 被引量:1
14
作者 Mao Yuan-Tong Zhao Ai-Hua 《Applied Geophysics》 SCIE CSCD 2021年第4期545-556,594,595,共14页
The Tilted tilted transversely isotropic(TTI)media,a kind of anisotropic medium,widely exists within the earth.For faster calculation of travel times in the TTI anisotropic media,we modifi ed a minimum traveltime tree... The Tilted tilted transversely isotropic(TTI)media,a kind of anisotropic medium,widely exists within the earth.For faster calculation of travel times in the TTI anisotropic media,we modifi ed a minimum traveltime tree algorithm with high effi ciency by dynamical modifi cation of the secondary wave propagation region during the spread of seismic waves.To manage the wavefront points in the modified version,we used a novel minimum heap sorting technique to reduce the time spent on selecting secondary waves points.In this study,seismic group velocities were obtained from analytical solutions in terms of phase angle,and the corresponding phase angles were determined by binary search rather than approximate equations for weakly anisotropic media.For the most time-consuming part of the secondary wave traveltime calculation,the parallel computation was initially performed using multiple cores and threads.Numerical examples showed that the improved method can calculate seismic travel times and ray paths faster and accurately in a 3D TTI medium.For four cores and eight threads,the computing speed increased by six times when compared to the conventional method. 展开更多
关键词 TTI media ray tracing minimum traveltime tree algorithm minimum heap sorting parallel computation
在线阅读 下载PDF
Vibration Based Tool Insert Health Monitoring Using Decision Tree and Fuzzy Logic 被引量:1
15
作者 Kundur Shantisagar R.Jegadeeshwaran +1 位作者 G.Sakthivel T.M.Alamelu Manghai 《Structural Durability & Health Monitoring》 EI 2019年第3期303-316,共14页
The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibrat... The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibration analysis along with machine learning and fuzzy logic approach.A non-carbide tool insert is considered for the process of cutting operation in a semi-automatic lathe,where the condition of tool is monitored using vibration characteristics.The vibration signals for conditions such as heathy,damaged,thermal and flank were acquired with the help of piezoelectric transducer and data acquisition system.The descriptive statistical features were extracted from the acquired vibration signal using the feature extraction techniques.The extracted statistical features were selected using a feature selection process through J48 decision tree algorithm.The selected features were classified using J48 decision tree and fuzzy to develop the fault diagnosis model for the improved predictive analysis.The decision tree model produced the classification accuracy as 94.78%with five selected features.The developed fuzzy model produced the classification accuracy as 94.02%with five membership functions.Hence,the decision tree has been proposed as a suitable fault diagnosis model for predicting the tool insert health condition under different fault conditions. 展开更多
关键词 Statistical features J48 decision tree algorithm confusion matrix fuzzy logic WEKA
在线阅读 下载PDF
Methods and Means for Small Dynamic Objects Recognition and Tracking 被引量:1
16
作者 Dmytro Kushnir 《Computers, Materials & Continua》 SCIE EI 2022年第11期3649-3665,共17页
A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects... A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects ranging from 8 to 14 mm.This article examines methods and tools for recognizing and tracking the class of small moving objects,such as ants.To fulfill those aims,a customized You Only Look Once Ants Recognition(YOLO_AR)Convolutional Neural Network(CNN)has been trained to recognize Messor Structor ants in the laboratory using the LabelImg object marker tool.The proposed model is an extension of the You Only Look Once v4(Yolov4)512×512 model with an additional Self Regularized Non–Monotonic(Mish)activation function.Additionally,the scalable solution for continuous object recognizing and tracking was implemented.This solution is based on the OpenDatacam system,with extended Object Tracking modules that allow for tracking and counting objects that have crossed the custom boundary line.During the study,the methods of the alignment algorithm for finding the trajectory of moving objects were modified.I discovered that the Hungarian algorithm showed better results in tracking small objects than the K–D dimensional tree(k-d tree)matching algorithm used in OpenDataCam.Remarkably,such an algorithm showed better results with the implemented YOLO_AR model due to the lack of False Positives(FP).Therefore,I provided a new tracker module with a Hungarian matching algorithm verified on the Multiple Object Tracking(MOT)benchmark.Furthermore,additional customization parameters for object recognition and tracking results parsing and filtering were added,like boundary angle threshold(BAT)and past frames trajectory prediction(PFTP).Experimental tests confirmed the results of the study on a mobile device.During the experiment,parameters such as the quality of recognition and tracking of moving objects,the PFTP and BAT,and the configuration parameters of the neural network and boundary line model were analyzed.The results showed an increased tracking accuracy with the proposed methods by 50%.The study results confirmed the relevance of the topic and the effectiveness of the implemented methods and tools. 展开更多
关键词 Object detection artificial intelligence object tracking object counting small movable objects ants tracking ants recognition YOLO_AR Yolov4 Hungarian algorithm k-d tree algorithm MOT benchmark image labeling movement prediction
在线阅读 下载PDF
Condition Monitoring of Roller Bearing by K-star Classifier andK-nearest Neighborhood Classifier Using Sound Signal
17
作者 Rahul Kumar Sharma V.Sugumaran +1 位作者 Hemantha Kumar M.Amarnath 《Structural Durability & Health Monitoring》 EI 2017年第1期1-17,共17页
Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is v... Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is very important. In present study soundsignal is used to continuously monitor bearing health as sound signals of rotatingmachineries carry dynamic information of components. There are numerous studies inliterature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated withcondition monitoring using sound signal (Microphone) is less than the cost of transducerused to acquire vibration signal (Accelerometer). This paper employs sound signal forcondition monitoring of roller bearing by K-star classifier and k-nearest neighborhoodclassifier. The statistical feature extraction is performed from acquired sound signals. Thentwo-layer feature selection is done using J48 decision tree algorithm and random treealgorithm. These selected features were classified using K-star classifier and k-nearestneighborhood classifier and parametric optimization is performed to achieve the maximumclassification accuracy. The classification results for both K-star classifier and k-nearestneighborhood classifier for condition monitoring of roller bearing using sound signals werecompared. 展开更多
关键词 K-star k-nearest neighborhood K-NN machine learning approach conditionmonitoring fault diagnosis roller bearing decision tree algorithm J-48 random treealgorithm decision making two-layer feature selection sound signal statistical features
在线阅读 下载PDF
Network Decomposition and Maximum Independent Set Part Ⅱ: Application Research
18
作者 朱松年 朱嫱 《Journal of Southwest Jiaotong University(English Edition)》 2004年第1期1-14,共14页
According to the researches on theoretic basis in part Ⅰ of the paper, the spanning tree algorithms solving the maximum independent set both in even network and in odd network have been developed in this part, part ... According to the researches on theoretic basis in part Ⅰ of the paper, the spanning tree algorithms solving the maximum independent set both in even network and in odd network have been developed in this part, part Ⅱ of the paper. The algorithms transform first the general network into the pair sets network, and then decompose the pair sets network into a series of pair subsets by use of the characteristic of maximum flow passing through the pair sets network. As for the even network, the algorithm requires only one time of transformation and decomposition, the maximum independent set can be gained without any iteration processes, and the time complexity of the algorithm is within the bound of O(V3). However, as for the odd network, the algorithm consists of two stages. In the first stage, the general odd network is transformed and decomposed into the pseudo-negative envelope graphs and generalized reverse pseudo-negative envelope graphs alternately distributed at first; then the algorithm turns to the second stage, searching for the negative envelope graphs within the pseudo-negative envelope graphs only. Each time as a negative envelope graph has been found, renew the pair sets network by iteration at once, and then turn back to the first stage. So both stages form a circulation process up to the optimum. Two available methods, the adjusting search and the picking-off search are specially developed to deal with the problems resulted from the odd network. Both of them link up with each other harmoniously and are embedded together in the algorithm. Analysis and study indicate that the time complexity of this algorithm is within the bound of O(V5). 展开更多
关键词 Network transformation and decomposition Negative envelope graph Pseudo-negative envelope graph Spanning tree algorithm Adjusting search Picking-off search Polynomial time bound.
在线阅读 下载PDF
Graph-Theoretic Approach to Network Analysis
19
作者 Nabil Hassan 《Computer Technology and Application》 2013年第12期625-634,共10页
Networks are a class of general systems represented by becomes a weighted graph visualizing the constraints imposed their UC-structure. Suppressing the nature of elements the network by interconnections rather than th... Networks are a class of general systems represented by becomes a weighted graph visualizing the constraints imposed their UC-structure. Suppressing the nature of elements the network by interconnections rather than the elements themselves. These constraints follow generalized Kirchhoff's laws derived from physical constraints. Once we have a graph; then the working environment becomes the graph-theory. An algorithm derived from graph theory is developed within the paper in order to analyze general networks. The algorithm is based on computing all the spanning trees in the graph G with an associated weight. This weight is the product ofadmittance's of the edges forming the spanning tree. In the first phase this algorithm computes a depth first spanning tree together with its cotree. Both are used as parents for controlled generation of off-springs. The control is represented in selecting the off-springs that were not generated previously. While the generation of off-springs, is based on replacement of one or more tree edges by cycle edges corresponding to cotree edges. The algorithm can generate a frequency domain analysis of the network. 展开更多
关键词 UC-structure NETWORK spanning tree depth-first search spanning trees generation algorithm.
在线阅读 下载PDF
Hybrid Cartesian Grid Method for Moving Boundary Problems
20
作者 Shen Zhiwei Zhao Ning 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期37-44,共8页
A hybrid Cartesian structured grid method is proposed for solving moving boundary unsteady problems. The near body region is discretized by using the body-fitted structured grids, while the remaining computational dom... A hybrid Cartesian structured grid method is proposed for solving moving boundary unsteady problems. The near body region is discretized by using the body-fitted structured grids, while the remaining computational domain is tessellated with the generated Cartesian grids. As the body moves, the structured grids move with the body and the outer boundaries of inside grids are used to generate new holes in the outside adaptive Cartesian grid to facilitate data communication. By using the alternating digital tree (ADT) algorithm, the computational time of hole-cutting and identification of donor cells can be reduced significantly. A compressible solver for unsteady flow problems is developed. A cell-centered, second-order accurate finite volume method is employed in spatial discreti- zation and an implicit dual-time stepping low-upper symmetric Gauss-Seidei (LU-SGS) approach is employed in temporal discretization. Geometry-based adaptation is used during unsteady simulation time steps when boundary moves and the flow solution is interpolated from the old Cartesian grids to the new one with inverse distance weigh- ting interpolation formula. Both laminar and turbulent unsteady cases are tested to demonstrate the accuracy and efficiency of the proposed method. Then, a 2-D store separation problem is simulated. The result shows that the hybrid Cartesian grid method can handle the unsteady flow problems involving large-scale moving boundaries. 展开更多
关键词 hybrid Cartesian grid l moving boundary alternating digital tree (ADT) algorithm unsteady flow
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部