This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of c...This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of chiral cell nodal circles while improving load transmission efficiency and enhancing manufacturing precision for 3D printing applications.A parametric design framework,integrating finite element analysis and optimization modules,is developed to enhance the wing’s multidirectional stiffness.The optimization process demonstrates that the distribution of chiral structural ligaments and nodal circles significantly affects wing deformation.The stiffness gradient optimization results reveal a variation of over 78%in tail stiffness performance between the best and worst parameter combinations.Experimental outcomes suggest that this strategy can develop metamaterials with enhanced deformability,offering a promising approach for designing morphing wings.展开更多
Aiming at the problem that the trajectory tracking performance of redundant manipulator corresponding to the target position is difficult to optimize,the trajectory tracking method of redundant manipulator based on PS...Aiming at the problem that the trajectory tracking performance of redundant manipulator corresponding to the target position is difficult to optimize,the trajectory tracking method of redundant manipulator based on PSO algorithm optimization is studied.The kinematic diagram of redundant manipulator is created,to derive the equation of motion trajectory of redundant manipulator end.Pseudo inverse Jacobi matrix is used to solve the problem of manipulator redundancy.Based on the tracking ellipse of redundant manipulator,the tracking shape of redundant manipulator is determined with the overall tracking index as the second index,and the optimization method of tracking index is proposed.The redundant manipulator contour is located by active contour model,on this basis,combined with particle swarm optimization algorithm,the point coordinates on the circumference with the relevant joint point as the center and joint length as the radius are selected as the algorithm particles for iteration,and the optimal tracking results of the overall redundant manipulator trajectory are obtained.The experimental results show that under the proposed method,the tracking error of the redundant manipulator is low,and the error jump range is small.It shows that this method has high tracking accuracy and reliability.展开更多
In order to solve the problem of vibration bounce caused by the contact between moving and stationary contacts in the process of switching on,two-degree-of-freedom motion differential equation of the contact system is...In order to solve the problem of vibration bounce caused by the contact between moving and stationary contacts in the process of switching on,two-degree-of-freedom motion differential equation of the contact system is established.Genetic algorithm is used to optimize the pull in process of AC contactor.The whole process of contact bounce was observed and analyzed by high-speed photography experiment.The theory and experimental results were very similar.The iron core has collided before the contact is separated,which further aggravates the contact bounce.When the iron core bounces collided again,the bounce of the contact was not affected.During the operation of the contactor,the movement of the moving iron core will cause slight vibration of the system.The contact bounce time and the maximum amplitude are reduced.The research results provide a theoretical basis for further control and reduction of contact bounce.展开更多
We propose the concept of thermal demultiplexer, which can split the heat flux in different frequency ranges intodifferent directions. We demonstrate this device concept in a honeycomb lattice with dangling atoms. Fro...We propose the concept of thermal demultiplexer, which can split the heat flux in different frequency ranges intodifferent directions. We demonstrate this device concept in a honeycomb lattice with dangling atoms. From the view ofeffective negative mass, we give a qualitative explanation of how the dangling atoms change the original transport property.We first design a two-mass configuration thermal demultiplexer, and find that the heat flux can flow into different ports incorresponding frequency ranges roughly. Then, to improve the performance, we choose the suitable masses of danglingatoms and optimize the four-mass configuration with genetic algorithm. Finally, we give out the optimal configuration witha remarkable effect. Our study finds a way to selectively split spectrum-resolved heat to different ports as phonon splitter,which would provide a new means to manipulate phonons and heat, and to guide the design of phononic thermal devices inthe future.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narw...This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals,“unicorns of the sea”,particularly the use of their distinctive spiral tusks,which play significant roles in hunting,searching prey,navigation,echolocation,and complex social interaction.Particularly,the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the Arctic ice.These functions provide a strong assessment basis for investigating the algorithm’s prowess at balancing exploration and exploitation,convergence speed,and solution accuracy.The performance of the NWOA is evaluated on 30 benchmark test functions.A comparison study using the Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Perfumer Optimization Algorithm(POA),Candle Flame Optimization(CFO)Algorithm,Particle Swarm Optimization(PSO)Algorithm,and Genetic Algorithm(GA)validates the results.As evidenced in the experimental results,NWOA is capable of yielding competitive outcomes among these well-known optimizers,whereas in several instances.These results suggest thatNWOAhas proven to be an effective and robust optimization tool suitable for solving many different complex optimization problems from the real world.展开更多
The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is n...The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap.展开更多
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability...Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches.展开更多
Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper propose...Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution.展开更多
This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated ...This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.展开更多
Performance-based warranties(PBWs)are widely used in industry and manufacturing.Given that PBW can impose financial burdens on manufacturers,rational maintenance decisions are essential for expanding profit margins.Th...Performance-based warranties(PBWs)are widely used in industry and manufacturing.Given that PBW can impose financial burdens on manufacturers,rational maintenance decisions are essential for expanding profit margins.This paper proposes an optimization model for PBW decisions for systems affected by Gamma degradation processes,incorporating periodic inspection.A system performance degradation model is established.Preventive maintenance probability and corrective renewal probability models are developed to calculate expected warranty costs and system availability.A benefits function,which includes incentives,is constructed to optimize the initial and subsequent inspection intervals and preventive maintenance thresholds,thereby maximizing warranty profit.An improved sparrow search algorithm is developed to optimize the model,with a case study on large steam turbine rotor shafts.The results suggest the optimal PBW strategy involves an initial inspection interval of approximately 20 months,with subsequent intervals of about four months,and a preventive maintenance threshold of approximately 37.39 mm wear.When compared to common cost-minimization-based condition maintenance strategies and PBW strategies that do not differentiate between initial and subsequent inspection intervals,the proposed PBW strategy increases the manufacturer’s profit by 1%and 18%,respectively.Sensitivity analyses provide managerial recommendations for PBW implementation.The PBW strategy proposed in this study significantly increases manufacturers’profits by optimizing inspection intervals and preventive maintenance thresholds,and manufacturers should focus on technological improvement in preventive maintenance and cost control to further enhance earnings.展开更多
As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphas...As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios.展开更多
Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of ...Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.展开更多
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u...The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.展开更多
Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality ...Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms.展开更多
This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow an...This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow and Eagle Optimization Algorithm (HS-SBOA) is proposed. Initially, the algorithm employs Iterative Mapping to generate an initial sparrow and eagle population, enhancing the diversity of the population during the global search phase. Subsequently, an adaptive weighting strategy is introduced during the exploration phase of the algorithm to achieve a balance between exploration and exploitation. Finally, to avoid the algorithm falling into local optima, a Cauchy mutation operation is applied to the current best individual. To validate the performance of the HS-SBOA algorithm, it was applied to the CEC2021 benchmark function set and three practical engineering problems, and compared with other optimization algorithms such as the Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA) to test the effectiveness of the improved algorithm. The simulation experimental results show that the HS-SBOA algorithm demonstrates significant advantages in terms of convergence speed and accuracy, thereby validating the effectiveness of its improved strategies.展开更多
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource...The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.展开更多
Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software ...Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software defect prediction can be effectively performed using traditional features,but there are some redundant or irrelevant features in them(the presence or absence of this feature has little effect on the prediction results).These problems can be solved using feature selection.However,existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset.In order to reduce the impact of these shortcomings,this paper proposes a new feature selection method Cubic TraverseMa Beluga whale optimization algorithm(CTMBWO)based on the improved Beluga whale optimization algorithm(BWO).The goal of this study is to determine how well the CTMBWO can extract the features that are most important for correctly predicting software defects,improve the accuracy of fault prediction,reduce the number of the selected feature and mitigate the risk of overfitting,thereby achieving more efficient resource utilization and better distribution of test workload.The CTMBWO comprises three main stages:preprocessing the dataset,selecting relevant features,and evaluating the classification performance of the model.The novel feature selection method can effectively improve the performance of SDP.This study performs experiments on two software defect datasets(PROMISE,NASA)and shows the method’s classification performance using four detailed evaluation metrics,Accuracy,F1-score,MCC,AUC and Recall.The results indicate that the approach presented in this paper achieves outstanding classification performance on both datasets and has significant improvement over the baseline models.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52075026 and 52192632)the Fundamental Research Funds for the Central Universities(Grant No.YWF-22-L-1119)。
文摘This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of chiral cell nodal circles while improving load transmission efficiency and enhancing manufacturing precision for 3D printing applications.A parametric design framework,integrating finite element analysis and optimization modules,is developed to enhance the wing’s multidirectional stiffness.The optimization process demonstrates that the distribution of chiral structural ligaments and nodal circles significantly affects wing deformation.The stiffness gradient optimization results reveal a variation of over 78%in tail stiffness performance between the best and worst parameter combinations.Experimental outcomes suggest that this strategy can develop metamaterials with enhanced deformability,offering a promising approach for designing morphing wings.
基金This work has been supported by the Ningbo National Natural Science Foundation(2019A610124)General Project of Education Department of Zhejiang Province(Y201737089).
文摘Aiming at the problem that the trajectory tracking performance of redundant manipulator corresponding to the target position is difficult to optimize,the trajectory tracking method of redundant manipulator based on PSO algorithm optimization is studied.The kinematic diagram of redundant manipulator is created,to derive the equation of motion trajectory of redundant manipulator end.Pseudo inverse Jacobi matrix is used to solve the problem of manipulator redundancy.Based on the tracking ellipse of redundant manipulator,the tracking shape of redundant manipulator is determined with the overall tracking index as the second index,and the optimization method of tracking index is proposed.The redundant manipulator contour is located by active contour model,on this basis,combined with particle swarm optimization algorithm,the point coordinates on the circumference with the relevant joint point as the center and joint length as the radius are selected as the algorithm particles for iteration,and the optimal tracking results of the overall redundant manipulator trajectory are obtained.The experimental results show that under the proposed method,the tracking error of the redundant manipulator is low,and the error jump range is small.It shows that this method has high tracking accuracy and reliability.
基金Natural Science Foundation of Shaanxi Province(No.2011J2009)。
文摘In order to solve the problem of vibration bounce caused by the contact between moving and stationary contacts in the process of switching on,two-degree-of-freedom motion differential equation of the contact system is established.Genetic algorithm is used to optimize the pull in process of AC contactor.The whole process of contact bounce was observed and analyzed by high-speed photography experiment.The theory and experimental results were very similar.The iron core has collided before the contact is separated,which further aggravates the contact bounce.When the iron core bounces collided again,the bounce of the contact was not affected.During the operation of the contactor,the movement of the moving iron core will cause slight vibration of the system.The contact bounce time and the maximum amplitude are reduced.The research results provide a theoretical basis for further control and reduction of contact bounce.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11935010 and 11775159)the Shanghai Science and Technology Committee,China(Grant Nos.18ZR1442800 and 18JC1410900)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
文摘We propose the concept of thermal demultiplexer, which can split the heat flux in different frequency ranges intodifferent directions. We demonstrate this device concept in a honeycomb lattice with dangling atoms. From the view ofeffective negative mass, we give a qualitative explanation of how the dangling atoms change the original transport property.We first design a two-mass configuration thermal demultiplexer, and find that the heat flux can flow into different ports incorresponding frequency ranges roughly. Then, to improve the performance, we choose the suitable masses of danglingatoms and optimize the four-mass configuration with genetic algorithm. Finally, we give out the optimal configuration witha remarkable effect. Our study finds a way to selectively split spectrum-resolved heat to different ports as phonon splitter,which would provide a new means to manipulate phonons and heat, and to guide the design of phononic thermal devices inthe future.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
文摘This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals,“unicorns of the sea”,particularly the use of their distinctive spiral tusks,which play significant roles in hunting,searching prey,navigation,echolocation,and complex social interaction.Particularly,the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the Arctic ice.These functions provide a strong assessment basis for investigating the algorithm’s prowess at balancing exploration and exploitation,convergence speed,and solution accuracy.The performance of the NWOA is evaluated on 30 benchmark test functions.A comparison study using the Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Perfumer Optimization Algorithm(POA),Candle Flame Optimization(CFO)Algorithm,Particle Swarm Optimization(PSO)Algorithm,and Genetic Algorithm(GA)validates the results.As evidenced in the experimental results,NWOA is capable of yielding competitive outcomes among these well-known optimizers,whereas in several instances.These results suggest thatNWOAhas proven to be an effective and robust optimization tool suitable for solving many different complex optimization problems from the real world.
文摘The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap.
文摘Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches.
基金supported by the Shaanxi Province Natural Science Basic Research Program Project(2024JC-YBMS-572)partially funded by Yan’an University Graduate Education Innovation Program Project(YCX2023032,YCX2023033,YCX2024094,YCX2024097)the“14th Five Year Plan Medium and Long Term Major Scientific Research Project”(2021ZCQ015)of Yan’an University.
文摘Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution.
基金funded by the National Defense Science and Technology Innovation project,grant number ZZKY20223103the Basic Frontier InnovationProject at the Engineering University of PAP,grant number WJY202429+2 种基金the Basic Frontier lnnovation Project at the Engineering University of PAP,grant number WJY202408the Graduate Student Funding Priority Project,grant number JYWJ2024B006Key project of National Social Science Foundation,grant number 2023-SKJJ-A-116.
文摘This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.
基金supported by the National Natural Science Foundation of China(71871219).
文摘Performance-based warranties(PBWs)are widely used in industry and manufacturing.Given that PBW can impose financial burdens on manufacturers,rational maintenance decisions are essential for expanding profit margins.This paper proposes an optimization model for PBW decisions for systems affected by Gamma degradation processes,incorporating periodic inspection.A system performance degradation model is established.Preventive maintenance probability and corrective renewal probability models are developed to calculate expected warranty costs and system availability.A benefits function,which includes incentives,is constructed to optimize the initial and subsequent inspection intervals and preventive maintenance thresholds,thereby maximizing warranty profit.An improved sparrow search algorithm is developed to optimize the model,with a case study on large steam turbine rotor shafts.The results suggest the optimal PBW strategy involves an initial inspection interval of approximately 20 months,with subsequent intervals of about four months,and a preventive maintenance threshold of approximately 37.39 mm wear.When compared to common cost-minimization-based condition maintenance strategies and PBW strategies that do not differentiate between initial and subsequent inspection intervals,the proposed PBW strategy increases the manufacturer’s profit by 1%and 18%,respectively.Sensitivity analyses provide managerial recommendations for PBW implementation.The PBW strategy proposed in this study significantly increases manufacturers’profits by optimizing inspection intervals and preventive maintenance thresholds,and manufacturers should focus on technological improvement in preventive maintenance and cost control to further enhance earnings.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2024-00337489Development of Data Drift Management Technology to Overcome Performance Degradation of AI Analysis Models).
文摘As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.
基金supported by the National Natural Science Foundation of China(22408227,22238005)the Postdoctoral Research Foundation of China(GZC20231576).
文摘The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.
文摘Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms.
文摘This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow and Eagle Optimization Algorithm (HS-SBOA) is proposed. Initially, the algorithm employs Iterative Mapping to generate an initial sparrow and eagle population, enhancing the diversity of the population during the global search phase. Subsequently, an adaptive weighting strategy is introduced during the exploration phase of the algorithm to achieve a balance between exploration and exploitation. Finally, to avoid the algorithm falling into local optima, a Cauchy mutation operation is applied to the current best individual. To validate the performance of the HS-SBOA algorithm, it was applied to the CEC2021 benchmark function set and three practical engineering problems, and compared with other optimization algorithms such as the Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA) to test the effectiveness of the improved algorithm. The simulation experimental results show that the HS-SBOA algorithm demonstrates significant advantages in terms of convergence speed and accuracy, thereby validating the effectiveness of its improved strategies.
文摘The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.
文摘Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software defect prediction can be effectively performed using traditional features,but there are some redundant or irrelevant features in them(the presence or absence of this feature has little effect on the prediction results).These problems can be solved using feature selection.However,existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset.In order to reduce the impact of these shortcomings,this paper proposes a new feature selection method Cubic TraverseMa Beluga whale optimization algorithm(CTMBWO)based on the improved Beluga whale optimization algorithm(BWO).The goal of this study is to determine how well the CTMBWO can extract the features that are most important for correctly predicting software defects,improve the accuracy of fault prediction,reduce the number of the selected feature and mitigate the risk of overfitting,thereby achieving more efficient resource utilization and better distribution of test workload.The CTMBWO comprises three main stages:preprocessing the dataset,selecting relevant features,and evaluating the classification performance of the model.The novel feature selection method can effectively improve the performance of SDP.This study performs experiments on two software defect datasets(PROMISE,NASA)and shows the method’s classification performance using four detailed evaluation metrics,Accuracy,F1-score,MCC,AUC and Recall.The results indicate that the approach presented in this paper achieves outstanding classification performance on both datasets and has significant improvement over the baseline models.