期刊文献+
共找到3,157篇文章
< 1 2 158 >
每页显示 20 50 100
Optimized Deployment Method for Finite Access Points Based on Virtual Force Fusion Bat Algorithm
1
作者 Jian Li Qing Zhang +2 位作者 Tong Yang Yu’an Chen Yongzhong Zhan 《Computer Modeling in Engineering & Sciences》 2025年第9期3029-3051,共23页
In the deployment of wireless networks in two-dimensional outdoor campus spaces,aiming at the problem of efficient coverage of the monitoring area by limited number of access points(APs),this paper proposes a deployme... In the deployment of wireless networks in two-dimensional outdoor campus spaces,aiming at the problem of efficient coverage of the monitoring area by limited number of access points(APs),this paper proposes a deployment method of multi-objective optimization with virtual force fusion bat algorithm(VFBA)using the classical four-node regular distribution as an entry point.The introduction of Lévy flight strategy for bat position updating helps to maintain the population diversity,reduce the premature maturity problem caused by population convergence,avoid the over aggregation of individuals in the local optimal region,and enhance the superiority in global search;the virtual force algorithm simulates the attraction and repulsion between individuals,which enables individual bats to precisely locate the optimal solution within the search space.At the same time,the fusion effect of virtual force prompts the bat individuals to move faster to the potential optimal solution.To validate the effectiveness of the fusion algorithm,the benchmark test function is selected for simulation testing.Finally,the simulation result verifies that the VFBA achieves superior coverage and effectively reduces node redundancy compared to the other three regular layout methods.The VFBA also shows better coverage results when compared to other optimization algorithms. 展开更多
关键词 Multi-objective optimization deployment virtual force algorithm bat algorithm fusion algorithm
在线阅读 下载PDF
Fusion Algorithm Based on Improved A^(*)and DWA for USV Path Planning
2
作者 Changyi Li Lei Yao Chao Mi 《哈尔滨工程大学学报(英文版)》 2025年第1期224-237,共14页
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh... The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs. 展开更多
关键词 Improved A^(*)algorithm Optimized DWA algorithm Unmanned surface vehicles Path planning fusion algorithm
在线阅读 下载PDF
Multi-sensor Hybrid Fusion Algorithm Based on Adaptive Square-root Cubature Kalman Filter 被引量:6
3
作者 Xiaogong Lin Shusheng Xu Yehai Xie 《Journal of Marine Science and Application》 2013年第1期106-111,共6页
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r... In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms. 展开更多
关键词 hybrid fusion algorithm square-root cubature Kalman filter adaptive filter fault detection
在线阅读 下载PDF
An Improved Medical Image Fusion Algorithm for Anatomical and Functional Medical Images 被引量:2
4
作者 CHEN Mei-ling TAO Ling QIAN Zhi-yu 《Chinese Journal of Biomedical Engineering(English Edition)》 2009年第2期84-92,共9页
In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical ima... In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical images.In this paper,the traditional method of wavelet fusion is improved and a new fusion algorithm of anatomical and functional medical images,in which high-frequency and low-frequency coefficients are studied respectively.When choosing high-frequency coefficients,the global gradient of each sub-image is calculated to realize adaptive fusion,so that the fused image can reserve the functional information;while choosing the low coefficients is based on the analysis of the neighborbood region energy,so that the fused image can reserve the anatomical image's edge and texture feature.Experimental results and the quality evaluation parameters show that the improved fusion algorithm can enhance the edge and texture feature and retain the function information and anatomical information effectively. 展开更多
关键词 medical image fusion wavelet transform fusion algorithm quality evaluation
在线阅读 下载PDF
Adaptive Multisensor Tracking Fusion Algorithm for Air-borne Distributed Passive Sensor Network
5
作者 Zhen Ding Hongcai Zhang & Guanzhong Dai (Department of Automatic Control, Northwestern Polytechnical UniversityShaanxi, Xi’an 710072, P.R.China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第3期15-23,共9页
Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new... Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm. 展开更多
关键词 Passive tracking system Error analysis fusion algorithm Distributed passive sensornetwork Distributed estimation.
在线阅读 下载PDF
A new PQ disturbances identification method based on combining neural network with least square weighted fusion algorithm
6
作者 吕干云 程浩忠 翟海保 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期649-653,共5页
A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances... A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above. 展开更多
关键词 PQ disturbances identification combining neural network LS weighted fusion algorithm improved PLL system
在线阅读 下载PDF
Analysis and Evaluation of IKONOS Image Fusion Algorithm Based on Land Cover Classification
7
作者 Xia JING Yan BAO 《Asian Agricultural Research》 2015年第1期52-56 60,60,共6页
Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object ima... Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object images was also depended upon the sensor types and special research purposes. Firstly,five fusion methods,i. e. IHS,Brovey,PCA,SFIM and Gram-Schmidt,were briefly described in the paper. And then visual judgment and quantitative statistical parameters were used to assess the five algorithms. Finally,in order to determine which one is the best suitable fusion method for land cover classification of IKONOS image,the maximum likelihood classification( MLC) was applied using the above five fusion images. The results showed that the fusion effect of SFIM transform and Gram-Schmidt transform were better than the other three image fusion methods in spatial details improvement and spectral information fidelity,and Gram-Schmidt technique was superior to SFIM transform in the aspect of expressing image details. The classification accuracy of the fused image using Gram-Schmidt and SFIM algorithms was higher than that of the other three image fusion methods,and the overall accuracy was greater than 98%. The IHS-fused image classification accuracy was the lowest,the overall accuracy and kappa coefficient were 83. 14% and 0. 76,respectively. Thus the IKONOS fusion images obtained by the Gram-Schmidt and SFIM were better for improving the land cover classification accuracy. 展开更多
关键词 IKONOS IMAGE fusion algorithm COMPARISON Evaluatio
在线阅读 下载PDF
Anti-swarm UAV radar system based on detection data fusion
8
作者 WANG Pengfei HU Jinfeng +2 位作者 HU Wen WANG Weiguang DONG Hao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1167-1176,共10页
There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti... There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm. 展开更多
关键词 SWARM RADAR high resolution deep neural network fusion algorithm
在线阅读 下载PDF
Chlorophyll-a Estimation in Tachibana Bay by Data Fusion of GOCI and MODIS Using Linear Combination Index Algorithm
9
作者 Yuji Sakuno Keita Makio +2 位作者 Kazuhiko Koike Maung-Saw-Htoo-Thaw   Shigeru Kitahara 《Advances in Remote Sensing》 2013年第4期292-296,共5页
This study discusses the fusion of chlorophyll-a (Chl.a) estimates around Tachibana Bay (Nagasaki Prefecture, Japan) obtained from MODIS and GOCI satellite data. First, the equation of GOCI LCI was theoretically calcu... This study discusses the fusion of chlorophyll-a (Chl.a) estimates around Tachibana Bay (Nagasaki Prefecture, Japan) obtained from MODIS and GOCI satellite data. First, the equation of GOCI LCI was theoretically calculated on the basis of the linear combination index (LCI) method proposed by Frouin et al. (2006). Next, assuming a linear relationship between them, the MODIS LCI and GOCI LCI methods were compared by using the Rayleigh reflectance product dataset of GOCI and MODIS, collected on July 8, July 25, and July 31, 2012. The results were found to be correlated significantly. GOCI Chl.a estimates of the finally proposed method favorably agreed with the in-situ Chl.a data in Tachibana Bay. 展开更多
关键词 CHLOROPHYLL-A LCI algorithm GOCI MODIS Data fusion
暂未订购
一种基于机器学习的井间水驱优势通道识别方法 被引量:3
10
作者 杨二龙 陈柄君 +2 位作者 董驰 曾傲 张梓彤 《钻采工艺》 北大核心 2025年第1期157-164,共8页
井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不... 井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不足,措施见效井分析结果又属于后验知识,时效性差,导致识别的精度和效率较低。因此,本文以大庆油田特高含水典型区块M区块为例,结合主控因素分析方法构建特征参数集,应用粒子群算法(PSO)优化深度置信神经网络(DBN)的结构参数,通过逐层递推和全局优化融合、有监督和无监督学习算法融合提升模型性能,形成了一种基于机器学习算法的注采井间优势通道识别的方法。构建的优势通道识别PSO-DBN模型应用于典型区块,识别准确率比未经过优化的DBN神经网络模型预测准确率提高了2.8%,比MLP神经网络模型预测准确率提高了8.6%,通过增补无标注样本、实现有监督和无监督学习算法融合,可以进一步提升识别精度。 展开更多
关键词 特高含水油藏 井间优势通道 深度置信神经网络 算法融合 机器学习
在线阅读 下载PDF
矿井供电系统单相接地故障选线方法现状与发展趋势 被引量:3
11
作者 杨战社 张程 荣相 《煤矿安全》 北大核心 2025年第1期212-219,共8页
矿井供电系统常采用中性点不接地方式或经消弧线圈接地方式,由于井下环境的特殊性和复杂性,其单相接地故障选线问题一直没有得到很好的解决。分析并比较了2种接地方式的优缺点和系统发生单相接地故障时的选线难点。介绍了矿井供电系统... 矿井供电系统常采用中性点不接地方式或经消弧线圈接地方式,由于井下环境的特殊性和复杂性,其单相接地故障选线问题一直没有得到很好的解决。分析并比较了2种接地方式的优缺点和系统发生单相接地故障时的选线难点。介绍了矿井供电系统发生单相接地故障时的主动式选线法、被动式选线法(包括基于稳态信息选线法和基于暂态信息选线法)以及智能算法融合选线:主动式选线法主要通过检测注入信号判断故障线路;被动式选线法则基于故障发生后的稳态信息量和暂态信息量完成选线;智能算法融合选线能充分利用故障特征,发展前景广阔。针对目前故障选线方法未进行扰动识别、单一故障选线方法可靠性差、智能算法融合选线优势明显但未能得到很好应用等问题,提出了矿井供电系统故障选线方法的发展趋势。 展开更多
关键词 矿井供电系统 单相接地故障 主动式选线法 被动式选线法 智能算法融合选线
在线阅读 下载PDF
电气设备局部放电检测技术述评:2015—2025 被引量:3
12
作者 李军浩 韩旭涛 +4 位作者 王昊天 周阳 陈欢 郭若琛 司文荣 《高电压技术》 北大核心 2025年第7期3132-3158,共27页
局部放电作为电气设备绝缘劣化与故障发展的重要前兆,其检测与分析技术贯穿电气设备全生命周期,是评价绝缘状态最为关键的参量。近十年来,随着局部放电研究与实践的不断深入以及新兴技术的快速渗透,局部放电检测与分析技术实现了快速发... 局部放电作为电气设备绝缘劣化与故障发展的重要前兆,其检测与分析技术贯穿电气设备全生命周期,是评价绝缘状态最为关键的参量。近十年来,随着局部放电研究与实践的不断深入以及新兴技术的快速渗透,局部放电检测与分析技术实现了快速发展。该文从局部放电检测技术、定位方法与模式识别算法3个方面,系统综述了近十年来的重要研究成果。围绕局部放电检测中的误报漏报问题、现场缺陷模式识别准确性不足、局部放电动态诊断技术缺失、复杂工况下局放理论研究以及新型应用场景下检测与分析需求,深入讨论了当前研究与应用中存在的主要挑战。进一步提出,未来应加快多参量融合检测与新型传感技术的工程化应用,提升人工智能算法在实际现场缺陷识别中的实用性,加强局部放电动态诊断及复杂工况下局放演变机制研究,并拓展局放检测与分析技术在新兴场景下的应用。 展开更多
关键词 局部放电 检测技术 定位方法 诊断算法 多参量融合 光纤技术 人工智能 复杂工况
原文传递
基于AFD融合算法的运输机器人路径规划方法 被引量:1
13
作者 袁杰 张迎港 +3 位作者 加尔肯别克 张宁宁 刘超 谢霖伟 《农业机械学报》 北大核心 2025年第6期594-607,共14页
为提高运输机器人在导航中的自主性和安全性,需要进行有效合理的路径规划。本研究提出了一种改进型AFD(A*Fuzzy-DWA)融合算法,以解决经典A*算法在运输机器人路径规划中存在的问题,如搜索时间长、路径冗余、拐点多且不平滑、动态避障能... 为提高运输机器人在导航中的自主性和安全性,需要进行有效合理的路径规划。本研究提出了一种改进型AFD(A*Fuzzy-DWA)融合算法,以解决经典A*算法在运输机器人路径规划中存在的问题,如搜索时间长、路径冗余、拐点多且不平滑、动态避障能力不足等。该算法通过设计障碍率评价指标优化评价函数以减少搜索时间和遍历节点,进而设计Smooth Floyd方法简化全局路径,并采用圆内切平滑策略进一步优化路径,最后设计评价函数权重模糊推理方法提高局部路径规划效率,从而实现全面的路径优化。仿真实验结果表明,与对比算法相比,AFD算法在静态和动态环境下的全局及局部路径长度和运行时间均显著减小。实际场景验证进一步证实了该算法在提升运输机器人自主导航能力和安全性方面的有效性。 展开更多
关键词 运输机器人 路径规划 Smooth Floyd方法 圆内切策略 模糊推理 融合算法
在线阅读 下载PDF
融合改进A*和时间弹性带算法的自主移动机器人路径规划 被引量:1
14
作者 牛继高 寇晓辉 侯军凯 《中原工学院学报》 2025年第2期24-33,共10页
为解决自主移动机器人路径规划过程中全局路径优化及避障处理时所遇到的问题,对传统A*路径规划算法进行改进,提出了一种改进A*算法和优化后的时间弹性带(TEB)算法的融合路径规划方案。首先,针对传统A*算法在路径规划中容易出现碰撞、搜... 为解决自主移动机器人路径规划过程中全局路径优化及避障处理时所遇到的问题,对传统A*路径规划算法进行改进,提出了一种改进A*算法和优化后的时间弹性带(TEB)算法的融合路径规划方案。首先,针对传统A*算法在路径规划中容易出现碰撞、搜索效率较低、冗余节点过多以及路径平滑性差等问题,在路径规划中设置了安全距离,并设计了调整启发函数权重的动态调节函数,利用斜率相等原理去除共线节点,采用贝塞尔曲线算法对路径进行平滑处理。其次,为了应对局部路径规划中可能发生的未知障碍物碰撞风险,通过参数配置方式优化了TEB算法。在此基础上,结合改进A*算法与优化的TEB算法,设计出一种融合路径规划算法方案。最后,通过仿真实验验证了改进A*算法在路径规划效率、安全性及平滑性方面均显著提升,并通过自主导航实验验证了融合算法的可行性和实用性。研究表明,所提出的算法不仅能够有效规划最优路径,还能在遇到未知障碍物时及时调整路径。 展开更多
关键词 自主移动机器人 路径规划 A*算法 TEB算法 融合算法
在线阅读 下载PDF
多噪声混合干扰系统的非线性滤波
15
作者 冯肖亮 郭亚光 闫晶晶 《控制工程》 北大核心 2025年第7期1177-1183,共7页
针对一类受高斯噪声和非高斯噪声混合干扰的非线性系统的滤波问题,若将混合噪声作为一类非高斯噪声进行处理,则滤波精度会因为忽略高斯噪声特性而受到影响。为此,基于“系统拆分+算法融合”的思想,设计了一种新的非高斯非线性滤波算法... 针对一类受高斯噪声和非高斯噪声混合干扰的非线性系统的滤波问题,若将混合噪声作为一类非高斯噪声进行处理,则滤波精度会因为忽略高斯噪声特性而受到影响。为此,基于“系统拆分+算法融合”的思想,设计了一种新的非高斯非线性滤波算法。首先,引入系统拆分权重,将多噪声混合干扰下的非线性系统拆分为若干个受单类噪声影响的子系统;然后,依据各个子系统的噪声特性设计对应的子滤波算法;最后,对各子滤波算法的滤波结果进行融合。此外,介绍了平分和动态更新2种权重设计方法。仿真结果表明,相比于将多类噪声视为一类高斯噪声或非高斯噪声的非线性滤波算法,所提算法在滤波精度方面具有明显优势。 展开更多
关键词 混合噪声 非线性滤波 系统拆分 算法融合
原文传递
基于改进蚁群融合DWA算法的路径规划方法
16
作者 李勇 张志安 《自动化与仪表》 2025年第8期67-72,共6页
针对单独使用蚁群或DWA算法难以同时有效实现全局规划路径最优和动态避障的问题,提出了一种基于蚁群算法与DWA算法的融合规划算法。通过改进启发函数、优化信息素的奖惩策略、设计信息素挥发系数自适应调整机制,对蚁群算法进行改进,有... 针对单独使用蚁群或DWA算法难以同时有效实现全局规划路径最优和动态避障的问题,提出了一种基于蚁群算法与DWA算法的融合规划算法。通过改进启发函数、优化信息素的奖惩策略、设计信息素挥发系数自适应调整机制,对蚁群算法进行改进,有效提高蚁群算法的全局最优规划效果。将改进蚁群算法与DWA算法进行融合,实现静态全局路径最优和动态避障的兼顾,通过多组仿真实验验证了算法的有效性和可行性。 展开更多
关键词 移动机器人 路径规划 蚁群算法 DWA算法 融合算法
在线阅读 下载PDF
结合深度残差与多特征融合的步态识别方法
17
作者 罗亚波 梁心语 +1 位作者 张峰 李存荣 《中国图象图形学报》 北大核心 2025年第5期1466-1478,共13页
目的步态识别是交通管理、监控安防领域的关键技术,为了解决现有步态识别算法无法充分捕捉和利用人体生物特征,在协变量干扰下模型精度降低的问题,本文提出一种深度提取和融合步态特征与身形特征的高精度步态识别方法。方法首先使用高... 目的步态识别是交通管理、监控安防领域的关键技术,为了解决现有步态识别算法无法充分捕捉和利用人体生物特征,在协变量干扰下模型精度降低的问题,本文提出一种深度提取和融合步态特征与身形特征的高精度步态识别方法。方法首先使用高分辨率网络(high resolution network,HRNet)提取出人体骨架关键点;以残差神经网络ResNet-50(residual network)为主干,利用深度残差模块的复杂特征学习能力,从骨架信息中充分提取相对稳定的身形特征与提供显性高效运动本质表达的步态特征;设计多分支特征融合(multi-branch feature fusion,MFF)模块,进行不同通道间的尺寸对齐与权重优化,通过动态权重矩阵调节各分支贡献,把身形特征和步态特征融合为区分度更强的总体特征。结果室内数据集采用跨视角多状态CASIA-B(Institute of Automation,Chinese Academy of Sciences)数据集,本文方法在跨视角实验中表现稳健;在多状态实验中,常规组的识别准确率为94.52%,外套干扰组在同类算法中的识别性能最佳。在开放场景数据集中,模型同样体现出较高的泛化能力,相比于现有算法,本文方法的准确率提升了4.1%。结论本文设计的步态识别方法充分利用了深度残差模块的特征提取能力与多特征融合的互补优势,面向复杂识别场景仍具有较高的模型识别精度与泛化能力。 展开更多
关键词 生物特征识别 步态识别 高分辨率网络 特征融合 残差神经网络
原文传递
基于MSG-SSD的复合绝缘子憎水性等级智能识别方法
18
作者 陈伟华 马士博 +1 位作者 闫孝姮 李健华 《电子测量与仪器学报》 北大核心 2025年第1期234-243,共10页
复合绝缘子憎水性等级的检测是电力系统巡检中的重要环节,针对现有方法存在检测效率低、实时性差及模型结构复杂的问题,提出一种基于MSG-SSD的复合绝缘子憎水性等级智能识别方法。首先,检测模型以SSD算法为基准,采用轻量级MobileNetV2... 复合绝缘子憎水性等级的检测是电力系统巡检中的重要环节,针对现有方法存在检测效率低、实时性差及模型结构复杂的问题,提出一种基于MSG-SSD的复合绝缘子憎水性等级智能识别方法。首先,检测模型以SSD算法为基准,采用轻量级MobileNetV2作为主干网络,在提升模型检测速度的同时实现网络的轻量化;其次,为增强对水迹特征的提取能力,构建高分辨率特征融合模块Sim-HRFPN,在特征融合的同时保留高分辨率的特征,以弥补因轻量化造成的精度损失;最后,为进一步提高模型的计算效率,将GhostConv替换额外预测特征层的传统卷积,在保持模型高性能的同时,减轻了计算负担。实验结果表明,相较于SSD,MSG-SSD的检测速度和检测精度分别提高48.17%和4.89%,计算量和参数量分别减少97.63%和82.99%。由此可知,改进模型不仅能精准识别和快速定位复合绝缘子的憎水性等级,而且满足边缘巡检设备轻量化部署的需求,为电力系统中复合绝缘子运行状态的智能检测提供了一种行之有效的方法。 展开更多
关键词 复合绝缘子 憎水性检测 智能识别 SSD算法 轻量化 特征融合
原文传递
基于多模态融合的新中式皮革女包设计创新应用 被引量:1
19
作者 刘玲玲 付焕娜 马彪 《皮革科学与工程》 北大核心 2025年第2期94-101,共8页
为探究新中式风格的智能化创新应用,推动传统文化的现代设计转化,以女包设计为例进行剖析。首先,对新中式风格与皮革女包、非物质文化遗产的关系进行分析,总结出新中式风格应用在女士皮包设计中的表现途径和文化内涵;其次,应用多模态融... 为探究新中式风格的智能化创新应用,推动传统文化的现代设计转化,以女包设计为例进行剖析。首先,对新中式风格与皮革女包、非物质文化遗产的关系进行分析,总结出新中式风格应用在女士皮包设计中的表现途径和文化内涵;其次,应用多模态融合理论对新中式女包特征进行提取并建立示范库;然后,应用遗传算法进行特征融合并输出设计方案;最后,以夏布、竹编类非遗元素与皮革女包的融合设计为例进行设计实践,验证了多模态融合与遗传算法结合的女包设计方法的有效性,为新中式皮革女包的智能化设计研究提供了理论方法,同时也为非遗文化的传播提供了新的思路。 展开更多
关键词 多模态融合 遗传算法 新中式风格 女式皮包 非遗文化 革制品
原文传递
基于GD-RRT-APF融合的机器人路径规划
20
作者 柴立平 马诗露 +1 位作者 朱利凯 李跃 《机械研究与应用》 2025年第2期174-178,共5页
文章提出一种目标导向下人工势场结合快速搜索树(GD-RRT-APF)的机器人路径规划算法,此算法在快速搜索树中添加目标导向启发,以减少搜索路径的随机扩展;同时结合人工势场目标点周围的势场分布优势,提升机器人路径规划的避障能力和路径最... 文章提出一种目标导向下人工势场结合快速搜索树(GD-RRT-APF)的机器人路径规划算法,此算法在快速搜索树中添加目标导向启发,以减少搜索路径的随机扩展;同时结合人工势场目标点周围的势场分布优势,提升机器人路径规划的避障能力和路径最优效果。仿真分析和实验验证表明,与传统RRT算法相比,该算法规划的路径更短,虽然耗时增加3.63 s,但计算效率更高。结果表明,该算法在有效避免碰撞的前提下,降低了传统RRT算法的随机性,能够快速生成平滑、短距离的路径,从而能更加高效地完成路径规划任务。 展开更多
关键词 RRT算法 APF算法 GD-RRT-APF融和算法 目标导向
在线阅读 下载PDF
上一页 1 2 158 下一页 到第
使用帮助 返回顶部