In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to ...In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to fundamentally improve.This can be considered a true challenge in the realm of AI-assisted judicial decision-making.By examining the court’s acceptance,integration,and trade-offs of AI technology embedded in the judicial field,the exploration of potential conflicts,interactions,and even mutual shaping between the two will not only reshape their conceptual connotations and intellectual boundaries but also strengthen the cognition and re-interpretation of the basic principles and core values of the judicial trial system.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous drivi...This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous driving practitioners,this paper firstly puts forward a logical framework for designing a cerebrum-like autonomous driving system.Secondly,situated on this framework,it builds a hierarchical finite state machine(HFSM)model as well as a TOPSIS-GRA algorithm for making ICV autonomous driving decisions by employing a data fusion approach between the entropy weight method(EWM)and analytic hierarchy process method(AHP)and by employing a model fusion approach between the technique for order preference by similarity to an ideal solution(TOPSIS)and grey relational analysis(GRA).The HFSM model is composed of two layers:the global FSM model and the local FSM model.The decision of the former acts as partial input information of the latter and the result of the latter is sent forward to the local pathplanning module,meanwhile pulsating feedback to the former as real-time refresh data.To identify different traffic scenarios in a cerebrum-like way,the global FSM model is designed as 7 driving behavior states and 17 driving characteristic events,and the local FSM model is designed as 16 states and 8 characteristic events.In respect to designing a cerebrum-like algorithm for state transition,this paper firstly fuses AHP weight and EWM weight at their output layer to generate a synthetic weight coefficient for each characteristic event;then,it further fuses TOPSIS method and GRA method at the model building layer to obtain the implementable order of state transition.To verify the feasibility,reliability,and safety of theHFSMmodel aswell as its TOPSISGRA state transition algorithm,this paper elaborates on a series of simulative experiments conducted on the PreScan8.50 platform.The results display that the accuracy of obstacle detection gets 98%,lane line prediction is beyond 70 m,the speed of collision avoidance is higher than 45 km/h,the distance of collision avoidance is less than 5 m,path planning time for obstacle avoidance is averagely less than 50 ms,and brake deceleration is controlled under 6 m/s2.These technical indexes support that the driving states set and characteristic events set for the HFSM model as well as its TOPSIS-GRA algorithm may bring about cerebrum-like decision-making effectiveness for ICV autonomous driving under 5G-V2X intelligent road infrastructure.展开更多
Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluatin...Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluating AI algorithms by metric scores on data sets.However the evaluation of algorithms in AI is challenging because the evaluation of the same type of algorithm has many data sets and evaluation metrics.Different algorithms may have individual strengths and weaknesses in evaluation metric scores on separate data sets,lacking the credibility and validity of the evaluation.Moreover,evaluation of algorithms requires repeated experiments on different data sets,reducing the attention of researchers to the research of the algorithms itself.Crucially,this approach to evaluating comparative metric scores does not take into account the algorithm’s ability to solve problems.And the classical algorithm evaluation of time and space complexity is not suitable for evaluating AI algorithms.Because classical algorithms input is infinite numbers,whereas AI algorithms input is a data set,which is limited and multifarious.According to the AI algorithm evaluation without response to the problem solving capability,this paper summarizes the features of AI algorithm evaluation and proposes an AI evaluation method that incorporates the problem-solving capabilities of algorithms.展开更多
With the rapid advancement of medical artificial intelligence(AI)technology,particularly the widespread adoption of AI diagnostic systems,ethical challenges in medical decision-making have garnered increasing attentio...With the rapid advancement of medical artificial intelligence(AI)technology,particularly the widespread adoption of AI diagnostic systems,ethical challenges in medical decision-making have garnered increasing attention.This paper analyzes the limitations of algorithmic ethics in medical decision-making and explores accountability mechanisms,aiming to provide theoretical support for ethically informed medical practices.The study highlights how the opacity of AI algorithms complicates the definition of decision-making responsibility,undermines doctor-patient trust,and affects informed consent.By thoroughly investigating issues such as the algorithmic“black box”problem and data privacy protection,we develop accountability assessment models to address ethical concerns related to medical resource allocation.Furthermore,this research examines the effective implementation of AI diagnostic systems through case studies of both successful and unsuccessful applications,extracting lessons on accountability mechanisms and response strategies.Finally,we emphasize that establishing a transparent accountability framework is crucial for enhancing the ethical standards of medical AI systems and protecting patients’rights and interests.展开更多
Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This ...Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%.展开更多
With the increasing deployment of Unmanned Aerial Vehicle-Hangar(UAV-H)clusters in dynamic environments such as disaster response and precision agriculture,existing networking schemes often struggle with adaptability ...With the increasing deployment of Unmanned Aerial Vehicle-Hangar(UAV-H)clusters in dynamic environments such as disaster response and precision agriculture,existing networking schemes often struggle with adaptability to complex scenarios,while traditional Vertical Handoff(VHO)algorithms fail to fully address the unique challenges of UAV-H systems,including high-speed mobility and limited computational resources.To bridge this gap,this paper proposes a heterogeneous network architecture integrating 5th Generation Mobile Communication Technology(5G)cellular networks and self-organizing mesh networks for UAV-H clusters,accompanied by a novel VHO algorithm.The proposed algorithm leverages Multi-Attribute Decision-Making(MADM)theory combined with Genetic Algorithm(GA)optimization,incorporating edge computing to enable real-time decision-making and offload computational tasks efficiently.By constructing a utility function through attribute and weight matrices,the algorithm ensures UAV-H clusters dynamically select the optimal network access with the highest utility value.Simulation results demonstrate that the proposed method reduces network handoff times by 26.13%compared to the Decision Tree VHO(DT-VHO),effectively mitigating the ping-pong effect,and enhancing total system throughput by 19.99%under the same conditions.In terms of handoff delay,it outperforms the Artificial Neural Network VHO(ANN-VHO),significantly improving the Quality of Service(QoS).Finally,real-world hardware platform experiments validate the algorithm’s feasibility and superior performance in practical UAV-H cluster operations.This work provides a robust solution for seamless network connectivity in high-mobility UAV clusters,offering critical support for emerging applications requiring reliable and efficient wireless communication.展开更多
Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human f...Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human factors engineering(HFE).Firstly, based on the brief review of research status of HFE, it gives structural description to emergency in the process of cooperative engagement and analyzes intervention of commanders. After that,constraint conditions of intervention decision-making of commanders based on HFE(IDMCBHFE) are given, and the mathematical model, which takes the overall efficiency value of handling emergencies as the objective function, is established. Then, through combining K-best and variable neighborhood search(VNS) algorithm, a K-best optimization variable neighborhood search mixed algorithm(KBOVNSMA) is designed to solve the model. Finally,through three groups of simulation experiments, effectiveness and superiority of the proposed algorithm are verified.展开更多
Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the...Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.展开更多
According to the size of the projector function to evaluate the merits of the program, Projection Pursuit method is applied to real estate investment decision-making by using the real coding based on Accelerating Gene...According to the size of the projector function to evaluate the merits of the program, Projection Pursuit method is applied to real estate investment decision-making by using the real coding based on Accelerating Genetic Algorithm (RAGA) to optimize the Projection Pursuit Classification (PPC) process and a wide range of indicators value was projected linearly. The results are reasonable and verified with an example. At the same time, the subjective of the target weight can be avoided. It provides decision-makers with comprehensive information on all the indicators of new ideas and new展开更多
Preoperative assessment of the liver volume and function of the remnant liver is a mandatory prerequisite before performing major hepatectomy. The aim of this work is to develop and test a software application for eva...Preoperative assessment of the liver volume and function of the remnant liver is a mandatory prerequisite before performing major hepatectomy. The aim of this work is to develop and test a software application for evaluation of the residual function of the liver prior to the intervention of the surgeons. For this purpose, a complete software platform consisting of three basic modules: liver volume segmentation, visualization, and virtual cutting, was developed and tested. Liver volume segmentation is based on a patient examination with non-contrast abdominal Computed Tomography (CT). The basis of the segmentation is a multiple seeded region growing algorithm adapted for use with CT images without contrast-enhancement. Virtual tumor resection is performed interactively by outlining the liver region on the CT images. The software application then processes the results to produce a three-dimensional (3D) image of the “resected” region. Finally, 3D rendering module provides possibility for easy and fast interpretation of the segmentation results. The visual outputs are accompanied with quantitative measures that further provide estimation of the residual liver function and based on them the surgeons could make a better decision. The developed system was tested and verified with twenty abdominal CT patient sets consisting of different numbers of tomographic images. Volumes, obtained by manual tracing of two surgeon experts, showed a mean relative difference of 4.5%. The application was used in a study that demonstrates the need and the added value of such a tool in practice and in education.展开更多
Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinfor...Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA.展开更多
Formation and scheduling are the most important decisions in the virtual modular manufacturing system;however,the global performance optimization of the system may be sacrificed via the superposition of two independen...Formation and scheduling are the most important decisions in the virtual modular manufacturing system;however,the global performance optimization of the system may be sacrificed via the superposition of two independent decision-making results.The joint decision of formation and scheduling is very important for system design.Complex and discrete manufacturing enterprises such as shipbuilding and aerospace often comprise multiple tasks,processes,and parallel machines,resulting in complex routes.The queuing time of parts in front of machines may account for 90%of the production cycle time.This study established a weighted allocation model of a formation-scheduling joint decision problem considering queuing time in system.To solve this nondeterministic polynomial(NP)problem,an adaptive differential evolution-simulated annealing(ADE-SA)algorithm is proposed.Compared with the standard differential evolution(DE)algorithm,the adaptive mutation factor overcomes the disadvantage that the scale of DE’s differential vector is difficult to control.The selection strategy of the SA algorithm compensates for the deficiency that DE’s greedy strategy may fall into a local optimal solution.The comparison results of four algorithms of a series of random examples demonstrate that the overall performance of ADE-SA is superior to the genetic algorithm,and average iteration,maximum completion time,and move time are 24%,11%,and 7%lower than the average of other three algorithms,respectively.The method can generate the joint decision-making scheme with better overall performance,and effectively identify production bottlenecks through quantitative analysis of queuing time.展开更多
文摘In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to fundamentally improve.This can be considered a true challenge in the realm of AI-assisted judicial decision-making.By examining the court’s acceptance,integration,and trade-offs of AI technology embedded in the judicial field,the exploration of potential conflicts,interactions,and even mutual shaping between the two will not only reshape their conceptual connotations and intellectual boundaries but also strengthen the cognition and re-interpretation of the basic principles and core values of the judicial trial system.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
基金funded by Chongqing Science and Technology Bureau (No.cstc2021jsyj-yzysbAX0008)Chongqing University of Arts and Sciences (No.P2021JG13)2021 Humanities and Social Sciences Program of Chongqing Education Commission (No.21SKGH227).
文摘This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous driving practitioners,this paper firstly puts forward a logical framework for designing a cerebrum-like autonomous driving system.Secondly,situated on this framework,it builds a hierarchical finite state machine(HFSM)model as well as a TOPSIS-GRA algorithm for making ICV autonomous driving decisions by employing a data fusion approach between the entropy weight method(EWM)and analytic hierarchy process method(AHP)and by employing a model fusion approach between the technique for order preference by similarity to an ideal solution(TOPSIS)and grey relational analysis(GRA).The HFSM model is composed of two layers:the global FSM model and the local FSM model.The decision of the former acts as partial input information of the latter and the result of the latter is sent forward to the local pathplanning module,meanwhile pulsating feedback to the former as real-time refresh data.To identify different traffic scenarios in a cerebrum-like way,the global FSM model is designed as 7 driving behavior states and 17 driving characteristic events,and the local FSM model is designed as 16 states and 8 characteristic events.In respect to designing a cerebrum-like algorithm for state transition,this paper firstly fuses AHP weight and EWM weight at their output layer to generate a synthetic weight coefficient for each characteristic event;then,it further fuses TOPSIS method and GRA method at the model building layer to obtain the implementable order of state transition.To verify the feasibility,reliability,and safety of theHFSMmodel aswell as its TOPSISGRA state transition algorithm,this paper elaborates on a series of simulative experiments conducted on the PreScan8.50 platform.The results display that the accuracy of obstacle detection gets 98%,lane line prediction is beyond 70 m,the speed of collision avoidance is higher than 45 km/h,the distance of collision avoidance is less than 5 m,path planning time for obstacle avoidance is averagely less than 50 ms,and brake deceleration is controlled under 6 m/s2.These technical indexes support that the driving states set and characteristic events set for the HFSM model as well as its TOPSIS-GRA algorithm may bring about cerebrum-like decision-making effectiveness for ICV autonomous driving under 5G-V2X intelligent road infrastructure.
基金funded by the General Program of the National Natural Science Foundation of China grant number[62277022].
文摘Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluating AI algorithms by metric scores on data sets.However the evaluation of algorithms in AI is challenging because the evaluation of the same type of algorithm has many data sets and evaluation metrics.Different algorithms may have individual strengths and weaknesses in evaluation metric scores on separate data sets,lacking the credibility and validity of the evaluation.Moreover,evaluation of algorithms requires repeated experiments on different data sets,reducing the attention of researchers to the research of the algorithms itself.Crucially,this approach to evaluating comparative metric scores does not take into account the algorithm’s ability to solve problems.And the classical algorithm evaluation of time and space complexity is not suitable for evaluating AI algorithms.Because classical algorithms input is infinite numbers,whereas AI algorithms input is a data set,which is limited and multifarious.According to the AI algorithm evaluation without response to the problem solving capability,this paper summarizes the features of AI algorithm evaluation and proposes an AI evaluation method that incorporates the problem-solving capabilities of algorithms.
文摘With the rapid advancement of medical artificial intelligence(AI)technology,particularly the widespread adoption of AI diagnostic systems,ethical challenges in medical decision-making have garnered increasing attention.This paper analyzes the limitations of algorithmic ethics in medical decision-making and explores accountability mechanisms,aiming to provide theoretical support for ethically informed medical practices.The study highlights how the opacity of AI algorithms complicates the definition of decision-making responsibility,undermines doctor-patient trust,and affects informed consent.By thoroughly investigating issues such as the algorithmic“black box”problem and data privacy protection,we develop accountability assessment models to address ethical concerns related to medical resource allocation.Furthermore,this research examines the effective implementation of AI diagnostic systems through case studies of both successful and unsuccessful applications,extracting lessons on accountability mechanisms and response strategies.Finally,we emphasize that establishing a transparent accountability framework is crucial for enhancing the ethical standards of medical AI systems and protecting patients’rights and interests.
基金funded by King Fahd University of Petroleum&Minerals,Saudi Arabia under IRC-SES grant#INRE 2217.
文摘Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%.
基金supported by the Key R&D Plan of Shandong Province(Major Science and Technology Innovation Project)No.2023CXGC0107012024 City-University Integrated Development Strategic Engineering Project No.JNSX2024066.
文摘With the increasing deployment of Unmanned Aerial Vehicle-Hangar(UAV-H)clusters in dynamic environments such as disaster response and precision agriculture,existing networking schemes often struggle with adaptability to complex scenarios,while traditional Vertical Handoff(VHO)algorithms fail to fully address the unique challenges of UAV-H systems,including high-speed mobility and limited computational resources.To bridge this gap,this paper proposes a heterogeneous network architecture integrating 5th Generation Mobile Communication Technology(5G)cellular networks and self-organizing mesh networks for UAV-H clusters,accompanied by a novel VHO algorithm.The proposed algorithm leverages Multi-Attribute Decision-Making(MADM)theory combined with Genetic Algorithm(GA)optimization,incorporating edge computing to enable real-time decision-making and offload computational tasks efficiently.By constructing a utility function through attribute and weight matrices,the algorithm ensures UAV-H clusters dynamically select the optimal network access with the highest utility value.Simulation results demonstrate that the proposed method reduces network handoff times by 26.13%compared to the Decision Tree VHO(DT-VHO),effectively mitigating the ping-pong effect,and enhancing total system throughput by 19.99%under the same conditions.In terms of handoff delay,it outperforms the Artificial Neural Network VHO(ANN-VHO),significantly improving the Quality of Service(QoS).Finally,real-world hardware platform experiments validate the algorithm’s feasibility and superior performance in practical UAV-H cluster operations.This work provides a robust solution for seamless network connectivity in high-mobility UAV clusters,offering critical support for emerging applications requiring reliable and efficient wireless communication.
基金supported by the National Natural Science Foundation of China(61573017)the Doctoral Foundation of Air Force Engineering University(KGD08101604)
文摘Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human factors engineering(HFE).Firstly, based on the brief review of research status of HFE, it gives structural description to emergency in the process of cooperative engagement and analyzes intervention of commanders. After that,constraint conditions of intervention decision-making of commanders based on HFE(IDMCBHFE) are given, and the mathematical model, which takes the overall efficiency value of handling emergencies as the objective function, is established. Then, through combining K-best and variable neighborhood search(VNS) algorithm, a K-best optimization variable neighborhood search mixed algorithm(KBOVNSMA) is designed to solve the model. Finally,through three groups of simulation experiments, effectiveness and superiority of the proposed algorithm are verified.
基金Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the LargeGroup Research Project underGrant Number(R.G.P.2/181/44).
文摘Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.
文摘According to the size of the projector function to evaluate the merits of the program, Projection Pursuit method is applied to real estate investment decision-making by using the real coding based on Accelerating Genetic Algorithm (RAGA) to optimize the Projection Pursuit Classification (PPC) process and a wide range of indicators value was projected linearly. The results are reasonable and verified with an example. At the same time, the subjective of the target weight can be avoided. It provides decision-makers with comprehensive information on all the indicators of new ideas and new
文摘Preoperative assessment of the liver volume and function of the remnant liver is a mandatory prerequisite before performing major hepatectomy. The aim of this work is to develop and test a software application for evaluation of the residual function of the liver prior to the intervention of the surgeons. For this purpose, a complete software platform consisting of three basic modules: liver volume segmentation, visualization, and virtual cutting, was developed and tested. Liver volume segmentation is based on a patient examination with non-contrast abdominal Computed Tomography (CT). The basis of the segmentation is a multiple seeded region growing algorithm adapted for use with CT images without contrast-enhancement. Virtual tumor resection is performed interactively by outlining the liver region on the CT images. The software application then processes the results to produce a three-dimensional (3D) image of the “resected” region. Finally, 3D rendering module provides possibility for easy and fast interpretation of the segmentation results. The visual outputs are accompanied with quantitative measures that further provide estimation of the residual liver function and based on them the surgeons could make a better decision. The developed system was tested and verified with twenty abdominal CT patient sets consisting of different numbers of tomographic images. Volumes, obtained by manual tracing of two surgeon experts, showed a mean relative difference of 4.5%. The application was used in a study that demonstrates the need and the added value of such a tool in practice and in education.
基金This research was funded by the Project of the National Natural Science Foundation of China,Grant Number 62106283.
文摘Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA.
基金supported by the National Natural Science Foundation of China(Grant No.:71972090).
文摘Formation and scheduling are the most important decisions in the virtual modular manufacturing system;however,the global performance optimization of the system may be sacrificed via the superposition of two independent decision-making results.The joint decision of formation and scheduling is very important for system design.Complex and discrete manufacturing enterprises such as shipbuilding and aerospace often comprise multiple tasks,processes,and parallel machines,resulting in complex routes.The queuing time of parts in front of machines may account for 90%of the production cycle time.This study established a weighted allocation model of a formation-scheduling joint decision problem considering queuing time in system.To solve this nondeterministic polynomial(NP)problem,an adaptive differential evolution-simulated annealing(ADE-SA)algorithm is proposed.Compared with the standard differential evolution(DE)algorithm,the adaptive mutation factor overcomes the disadvantage that the scale of DE’s differential vector is difficult to control.The selection strategy of the SA algorithm compensates for the deficiency that DE’s greedy strategy may fall into a local optimal solution.The comparison results of four algorithms of a series of random examples demonstrate that the overall performance of ADE-SA is superior to the genetic algorithm,and average iteration,maximum completion time,and move time are 24%,11%,and 7%lower than the average of other three algorithms,respectively.The method can generate the joint decision-making scheme with better overall performance,and effectively identify production bottlenecks through quantitative analysis of queuing time.