Evolutionary computation (EC) is one of the fastest growing areas in computer science that solves intractable optimization problems by emulating biologic evolution and organizational behaviors in nature. To de- sign...Evolutionary computation (EC) is one of the fastest growing areas in computer science that solves intractable optimization problems by emulating biologic evolution and organizational behaviors in nature. To de- sign an EC algorithm, one needs to determine a set of algorithmic configurations like operator selections and parameter settings. How to design an effective and ef- ficient adaptation scheme for adjusting the configura- tions of EC algorithms has become a significant and promising research topic in the EC research community. This paper intends to provide a comprehensive survey on this rapidly growing field. We present a classification of adaptive EC (AEC) algorithms from the perspective of how an adaptation scheme is designed, involving the adaptation objects, adaptation evidences, and adapta- tion methods. In particular, by analyzing tile popula- tion distribution characteristics of EC algorithms, we discuss why and how the evolutionary state information of EC can be estimated and utilized for designing ef- fective EC adaptation schemes. Two AEC algorithms using the idea of evolutionary state estimation, includ- ing the clustering-based adaptive genetic algorithm and the adaptive particle swarm optimization algorithm are presented in detail. Some potential directions for the re- search of AECs are also discussed in this paper.展开更多
A new algorithm for pass adaptation in plate rolling is developedto improve thickness accuracy of plate products. The feature of thealgorithm is that it uses the measured data rather than the schedulecalculated data i...A new algorithm for pass adaptation in plate rolling is developedto improve thickness accuracy of plate products. The feature of thealgorithm is that it uses the measured data rather than the schedulecalculated data in adaptation, which leads to notable improvem- entin prediction accuracy of the rolling parameters and thicknessaccuracy of products can be improved according. Results show thatthis adaptive algorithm is effective in practice.展开更多
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s...A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is in...The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference.展开更多
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle...Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.展开更多
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz...The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.展开更多
A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in s...A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in structured grids. Unnecessary redundant points and elements are avoided by using the mesh free local clouds refinement technology in shock influencing regions and regions near large curvature places on the boundary. Inviscid compressible flows over NACA0012 and RAE2822 airfoils are computed. Finally numerical results validate the accuracy of the above method.展开更多
On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in t...On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in the adaptive filter in the AANC system, derives the recursive formulas of LMS algorithm. and obtains the LMS algorithm in computer simulation using FIR and IIR filters in AANC system. By means of simulation, we compare the attenuation levels with various input signals in AANC system and discuss the effects of step factor, order of filters and sound delay on the algorithm's convergence rate and attenuation level.We also discuss the attenuation levels with sound feedback using are and IIR filters in AANC system.展开更多
This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain ...This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.展开更多
Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is aut...Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is automatic when the signal to noise ratio(SNR) is unknown.If the frequency-locked loop(FLL) or the phase-locked loop(PLL) with fixed loop bandwidth, or Kalman filter with fixed noise variance is adopted, the accretion of estimation error and filter divergence may be caused.Therefore, the Kalman filter algorithm with adaptive capability is adopted to suppress filter divergence.Through analyzing the inadequacies of Sage–Husa adaptive filtering algorithm, this paper introduces a weighted adaptive filtering algorithm for autonomous radio.The introduced algorithm may resolve the defect of Sage–Husa adaptive filtering algorithm that the noise covariance matrix is negative definite in filtering process.In addition, the upper diagonal(UD) factorization and innovation adaptive control are used to reduce model estimation errors,suppress filter divergence and improve filtering accuracy.The simulation results indicate that compared with the Sage–Husa adaptive filtering algorithm, this algorithm has better capability to adapt to the loop, convergence performance and tracking accuracy, which contributes to the effective and accurate carrier tracking in low SNR environment, showing a better application prospect.展开更多
This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the...This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.展开更多
In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps...In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps to produce a uniform initial population is used to enhance the optimization efficiency of the genetic algorithm. The crossover and mutation probabilities are improved by using the function of sigmoid and they can be adjusted nonlinearly between average fitness and maximal fitness with individual fitness. Based on the analyses of different structures between the LIM and the rotary induction motor (RIM) and referring to the analysis method of the RIM, the steady-state characteristics of the LIM that considers the end effects of the LIM is calculated and the optimal design model of the thrust-power ratio index is also presented. Through the comparison between the optimal scheme and the old scheme, the thrust-power ratio index of the LIM is obviously increased and the validity of the NAGA is proved.展开更多
An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive gene...An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.展开更多
There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fi...There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.展开更多
The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorit...The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.展开更多
A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal i...A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal is used to update the step-size, leading to a considerably improved convergence rate in a low SNR situation and reduced steady-state bias and MSE. The theoretical expression for steady-state bounds on the step-size is derived, and the influence factors on the stable performance of the algorithm theoretically are analyzed. A normalized power factor is then introduced to control variation of step-size in its steady-state bounds. This technique prevents divergence due to the influence of large power input signal and improves robustness. Numerical experiments are performed to demonstrate superiority of the proposed method.展开更多
Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges,...Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges, which has motivated the application of metamodel-assisted computational intelligence algorithms to solve them. Such algorithms combine a computational intelligence optimizer which employs a population of candidate solutions, with a metamodel which is a computationally cheaper approximation of the expensive computer simulation. However, although a variety of metamodels and optimizers have been proposed, the optimal types to employ are problem dependant. Therefore, a priori prescribing the type of metamodel and optimizer to be used may degrade its effectiveness. Leveraging on this issue, this study proposes a new computational intelligence algorithm which autonomously adapts the type of the metamodel and optimizer during the search by selecting the most suitable types out of a family of candidates at each stage. Performance analysis using a set of test functions demonstrates the effectiveness of the proposed algorithm, and highlights the merit of the proposed adaptation approach.展开更多
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic...Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock.展开更多
文摘Evolutionary computation (EC) is one of the fastest growing areas in computer science that solves intractable optimization problems by emulating biologic evolution and organizational behaviors in nature. To de- sign an EC algorithm, one needs to determine a set of algorithmic configurations like operator selections and parameter settings. How to design an effective and ef- ficient adaptation scheme for adjusting the configura- tions of EC algorithms has become a significant and promising research topic in the EC research community. This paper intends to provide a comprehensive survey on this rapidly growing field. We present a classification of adaptive EC (AEC) algorithms from the perspective of how an adaptation scheme is designed, involving the adaptation objects, adaptation evidences, and adapta- tion methods. In particular, by analyzing tile popula- tion distribution characteristics of EC algorithms, we discuss why and how the evolutionary state information of EC can be estimated and utilized for designing ef- fective EC adaptation schemes. Two AEC algorithms using the idea of evolutionary state estimation, includ- ing the clustering-based adaptive genetic algorithm and the adaptive particle swarm optimization algorithm are presented in detail. Some potential directions for the re- search of AECs are also discussed in this paper.
文摘A new algorithm for pass adaptation in plate rolling is developedto improve thickness accuracy of plate products. The feature of thealgorithm is that it uses the measured data rather than the schedulecalculated data in adaptation, which leads to notable improvem- entin prediction accuracy of the rolling parameters and thicknessaccuracy of products can be improved according. Results show thatthis adaptive algorithm is effective in practice.
基金The National Natural Science Foundation of China(No.U19B2031).
文摘A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
基金supported by the Shan⁃dong Provincial Natural Science Foundation(No.ZR2022MF314).
文摘The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference.
基金Supported by National Key R&D Program of China(Grant No.2019YFE0121300)。
文摘Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.
文摘The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.
文摘A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in structured grids. Unnecessary redundant points and elements are avoided by using the mesh free local clouds refinement technology in shock influencing regions and regions near large curvature places on the boundary. Inviscid compressible flows over NACA0012 and RAE2822 airfoils are computed. Finally numerical results validate the accuracy of the above method.
文摘On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in the adaptive filter in the AANC system, derives the recursive formulas of LMS algorithm. and obtains the LMS algorithm in computer simulation using FIR and IIR filters in AANC system. By means of simulation, we compare the attenuation levels with various input signals in AANC system and discuss the effects of step factor, order of filters and sound delay on the algorithm's convergence rate and attenuation level.We also discuss the attenuation levels with sound feedback using are and IIR filters in AANC system.
文摘This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.
基金supported by Program for New Century Excellent Talents in University of China (No.NCET-120030)National Natural Science Foundation of China (No.91438116)
文摘Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is automatic when the signal to noise ratio(SNR) is unknown.If the frequency-locked loop(FLL) or the phase-locked loop(PLL) with fixed loop bandwidth, or Kalman filter with fixed noise variance is adopted, the accretion of estimation error and filter divergence may be caused.Therefore, the Kalman filter algorithm with adaptive capability is adopted to suppress filter divergence.Through analyzing the inadequacies of Sage–Husa adaptive filtering algorithm, this paper introduces a weighted adaptive filtering algorithm for autonomous radio.The introduced algorithm may resolve the defect of Sage–Husa adaptive filtering algorithm that the noise covariance matrix is negative definite in filtering process.In addition, the upper diagonal(UD) factorization and innovation adaptive control are used to reduce model estimation errors,suppress filter divergence and improve filtering accuracy.The simulation results indicate that compared with the Sage–Husa adaptive filtering algorithm, this algorithm has better capability to adapt to the loop, convergence performance and tracking accuracy, which contributes to the effective and accurate carrier tracking in low SNR environment, showing a better application prospect.
基金supported by the State Key Program of National Natural Science of China(Grant No.60736025)the National Natural Science Foundation of China(Grant No.60905056)the National Basic Research Program of China(973 Program)(Grant No.2009CB72400102)
文摘This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.
文摘In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps to produce a uniform initial population is used to enhance the optimization efficiency of the genetic algorithm. The crossover and mutation probabilities are improved by using the function of sigmoid and they can be adjusted nonlinearly between average fitness and maximal fitness with individual fitness. Based on the analyses of different structures between the LIM and the rotary induction motor (RIM) and referring to the analysis method of the RIM, the steady-state characteristics of the LIM that considers the end effects of the LIM is calculated and the optimal design model of the thrust-power ratio index is also presented. Through the comparison between the optimal scheme and the old scheme, the thrust-power ratio index of the LIM is obviously increased and the validity of the NAGA is proved.
文摘An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.
基金Project(60574030) supported by the National Natural Science Foundation of ChinaKey Project(60634020) supported by the National Natural Science Foundation of China
文摘There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.
基金Project(50905037) supported by the National Natural Science Foundation of ChinaProject(20092304120014) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China+2 种基金 Project(20100471021) supported by the China Postdoctoral Science Foundation Project(LBH-Q09134) supported by Heilongjiang Postdoctoral Science-Research Foundation,China Project (HEUFT09013) supported by the Foundation of Harbin Engineering University,China
文摘The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.
文摘A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal is used to update the step-size, leading to a considerably improved convergence rate in a low SNR situation and reduced steady-state bias and MSE. The theoretical expression for steady-state bounds on the step-size is derived, and the influence factors on the stable performance of the algorithm theoretically are analyzed. A normalized power factor is then introduced to control variation of step-size in its steady-state bounds. This technique prevents divergence due to the influence of large power input signal and improves robustness. Numerical experiments are performed to demonstrate superiority of the proposed method.
文摘Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges, which has motivated the application of metamodel-assisted computational intelligence algorithms to solve them. Such algorithms combine a computational intelligence optimizer which employs a population of candidate solutions, with a metamodel which is a computationally cheaper approximation of the expensive computer simulation. However, although a variety of metamodels and optimizers have been proposed, the optimal types to employ are problem dependant. Therefore, a priori prescribing the type of metamodel and optimizer to be used may degrade its effectiveness. Leveraging on this issue, this study proposes a new computational intelligence algorithm which autonomously adapts the type of the metamodel and optimizer during the search by selecting the most suitable types out of a family of candidates at each stage. Performance analysis using a set of test functions demonstrates the effectiveness of the proposed algorithm, and highlights the merit of the proposed adaptation approach.
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
基金supported by the National Natural Science Foundation of China (No.50609028)
文摘Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock.