期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
1
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
2
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Variable Projection Order Adaptive Filtering Algorithm for Self-interference Cancellation in Airborne Radars
3
作者 LI Haorui GAO Ying +1 位作者 GUO Xinyu OU Shifeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期497-508,共12页
The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is in... The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference. 展开更多
关键词 adaptive filtering algorithm airborne radar variable projection order mean squared deviation self-interference cancellation
在线阅读 下载PDF
Effect of Tooth Geometry on Multi-cycle Meshing Temperature of POM Worm Gears:Parametric Study via an Adaptive Iteration Algorithm
4
作者 Kaixing Li Wujiao Xu +1 位作者 Yonggang Liu Datong Qin 《Chinese Journal of Mechanical Engineering》 2025年第2期427-439,共13页
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle... Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry. 展开更多
关键词 POM worm gears Multi-cycle meshing temperature Adaptive iteration algorithm Tooth geometry parameters Parametric study
在线阅读 下载PDF
A survey on algorithm adaptation in evolutionary computation
5
作者 Jun ZHANG Wei-Neng CHEN +4 位作者 Zhi-Hui ZHAN Wei-Jie YU Yuan-Long LI Ni CHEN Qi ZHOU 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第1期16-31,共16页
Evolutionary computation (EC) is one of the fastest growing areas in computer science that solves intractable optimization problems by emulating biologic evolution and organizational behaviors in nature. To de- sign... Evolutionary computation (EC) is one of the fastest growing areas in computer science that solves intractable optimization problems by emulating biologic evolution and organizational behaviors in nature. To de- sign an EC algorithm, one needs to determine a set of algorithmic configurations like operator selections and parameter settings. How to design an effective and ef- ficient adaptation scheme for adjusting the configura- tions of EC algorithms has become a significant and promising research topic in the EC research community. This paper intends to provide a comprehensive survey on this rapidly growing field. We present a classification of adaptive EC (AEC) algorithms from the perspective of how an adaptation scheme is designed, involving the adaptation objects, adaptation evidences, and adapta- tion methods. In particular, by analyzing tile popula- tion distribution characteristics of EC algorithms, we discuss why and how the evolutionary state information of EC can be estimated and utilized for designing ef- fective EC adaptation schemes. Two AEC algorithms using the idea of evolutionary state estimation, includ- ing the clustering-based adaptive genetic algorithm and the adaptive particle swarm optimization algorithm are presented in detail. Some potential directions for the re- search of AECs are also discussed in this paper. 展开更多
关键词 evolutionary algorithm (EA) evolution- ary computation (EC) algorithm adaptation parameter control
原文传递
An adaptive algorithm for pass adaptation in plate rolling
6
作者 Zhichun Mu, WeimingLi, and Ke LiuInformation Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期396-399,共4页
A new algorithm for pass adaptation in plate rolling is developedto improve thickness accuracy of plate products. The feature of thealgorithm is that it uses the measured data rather than the schedulecalculated data i... A new algorithm for pass adaptation in plate rolling is developedto improve thickness accuracy of plate products. The feature of thealgorithm is that it uses the measured data rather than the schedulecalculated data in adaptation, which leads to notable improvem- entin prediction accuracy of the rolling parameters and thicknessaccuracy of products can be improved according. Results show thatthis adaptive algorithm is effective in practice. 展开更多
关键词 adaptive algorithm plate rolling measured data
在线阅读 下载PDF
Inversion of Seabed Geotechnical Properties in the Arctic Chukchi Deep Sea Basin Based on Time Domain Adaptive Search Matching Algorithm
7
作者 AN Long XU Chong +5 位作者 XING Junhui GONG Wei JIANG Xiaodian XU Haowei LIU Chuang YANG Boxue 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期933-942,共10页
The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained... The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement. 展开更多
关键词 time domain adaptive search matching algorithm acoustic impedance inversion sedimentary grain size Arctic Ocean Chukchi Deep Sea Basin
在线阅读 下载PDF
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
8
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 Adaptive Grasshopper Optimization algorithm(AGOA) Cluster Head(CH) network lifetime Teaching-Learning-based Optimization algorithm(TLOA) Wireless Sensor Networks(WSNs)
在线阅读 下载PDF
ADAPTIVE GENETIC ALGORITHM BASED ON SIX FUZZY LOGIC CONTROLLERS 被引量:3
9
作者 朱力立 张焕春 经亚枝 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期230-235,共6页
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz... The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP. 展开更多
关键词 adaptive genetic algorithm fuzzy controller dynamic parameters control TSP
在线阅读 下载PDF
MESH FREE ADAPTIVE ALGORITHM FOR SOLVING EULER EQUATIONS ON STRUCTURED GRID POINTS 被引量:1
10
作者 马志华 陈红全 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第4期271-275,共5页
A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in s... A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in structured grids. Unnecessary redundant points and elements are avoided by using the mesh free local clouds refinement technology in shock influencing regions and regions near large curvature places on the boundary. Inviscid compressible flows over NACA0012 and RAE2822 airfoils are computed. Finally numerical results validate the accuracy of the above method. 展开更多
关键词 mesh free adaptive algorithm local refinement Euler equations
在线阅读 下载PDF
The Algorithms of Adaptive Active Noise Control Systems in a Duct
11
作者 韩秀苓 程凡 +1 位作者 高建林 李传光 《Journal of Beijing Institute of Technology》 EI CAS 1995年第1期85+80-85,共7页
On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in t... On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in the adaptive filter in the AANC system, derives the recursive formulas of LMS algorithm. and obtains the LMS algorithm in computer simulation using FIR and IIR filters in AANC system. By means of simulation, we compare the attenuation levels with various input signals in AANC system and discuss the effects of step factor, order of filters and sound delay on the algorithm's convergence rate and attenuation level.We also discuss the attenuation levels with sound feedback using are and IIR filters in AANC system. 展开更多
关键词 adaptive control system adaptive filters noise control /adaptive algorithm LMS algorithm
在线阅读 下载PDF
FREQUENCY-DOMAIN IMPLEMENTATION OF FILTERED-X ALGORITHMS WITH ON-LINE SYSTEM IDENTIFICATION FOR VIBRATION CONTROL
12
作者 陈卫东 顾仲权 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期99-103,共5页
This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain ... This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum. 展开更多
关键词 vibration reduction feedforward control adaptive filters vibration control adaptive algorithms
在线阅读 下载PDF
Variety classification and identification of maize seeds based on hyperspectral imaging method 被引量:1
13
作者 XUE Hang XU Xiping MENG Xiang 《Optoelectronics Letters》 2025年第4期234-241,共8页
In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering... In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering correction(MSC)-maximum-minimum normalization(MN)was identified as the optimal preprocessing technique.The competitive adaptive reweighted sampling(CARS),successive projections algorithm(SPA),and their combined methods were employed to extract feature wavelengths.Classification models based on back propagation(BP),support vector machine(SVM),random forest(RF),and partial least squares(PLS)were established using full-band data and feature wavelengths.Among all models,the(CARS-SPA)-BP model achieved the highest accuracy rate of 98.44%.This study offers novel insights and methodologies for the rapid and accurate identification of corn seeds as well as other crop seeds. 展开更多
关键词 feature extraction extract feature wavelengthsclassification models variety classification hyperspectral imaging combined preprocessing competitive adaptive reweighted sampling cars successive projections algorithm spa PREPROCESSING maize seeds
原文传递
Novel adaptive IMEX two-step Runge-Kutta temporal discretization methods for unsteady flows
14
作者 Xueyu QIN Jian YU +2 位作者 Xin ZHANG Zhenhua JIANG Chao YAN 《Chinese Journal of Aeronautics》 2025年第8期142-153,共12页
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un... Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over. 展开更多
关键词 Implicit-explicit temporal methods Two-step Runge-Kutta methods Adaptive algorithm Unsteady flows Navier-Stokes equations
原文传递
Kinematic Calibration of a 5-DoF Parallel Machining Robot with a Novel Adaptive and Weighted Identification Method Based on Generalized Cross Validation
15
作者 Lefeng Gu Fugui Xie 《Chinese Journal of Mechanical Engineering》 2025年第2期262-278,共17页
Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification ... Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively. 展开更多
关键词 Parallel machining robot Accurate kinematic calibration Weighted identification model Adaptive identification algorithm
在线阅读 下载PDF
Quantum-accelerated active distribution network planning based on coherent photonic quantum computers
16
作者 Yu Xin Haipeng Xie Wei Fu 《iEnergy》 2025年第2期107-120,共14页
Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing o... Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing offers a transformative approach to solve ADN planning.To fully leverage the potential of quantum computing,this paper proposes a photonic quantum acceleration algorithm.First,a quantum-accelerated framework for ADN planning is proposed on the basis of coherent photonic quantum computers.The ADN planning model is then formulated and decomposed into discrete master problems and continuous subproblems to facilitate the quantum optimization process.The photonic quantum-embedded adaptive alternating direction method of multipliers(PQA-ADMM)algorithm is subsequently proposed to equivalently map the discrete master problem onto a quantum-interpretable model,enabling its deployment on a photonic quantum computer.Finally,a comparative analysis with various solvers,including Gurobi,demonstrates that the proposed PQA-ADMM algorithm achieves significant speedup on the modified IEEE 33-node and IEEE 123-node systems,highlighting its effectiveness. 展开更多
关键词 Active distribution network planning coherent photonic quantum computer photonic quantum-embedded adaptive ADMM algorithm quantum computing
在线阅读 下载PDF
An Adaptive Hybrid Metaheuristic for Solving the Vehicle Routing Problem with Time Windows under Uncertainty
17
作者 Manuel J.C.S.Reis 《Computers, Materials & Continua》 2025年第11期3023-3039,共17页
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ... The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments. 展开更多
关键词 Vehicle routing problem with time windows(VRPTW) hybrid metaheuristic genetic algorithm local search uncertainty modeling stochastic optimization adaptive algorithms combinatorial optimization transportation and logistics robust scheduling
在线阅读 下载PDF
Sensitivity Analysis of Structural Dynamic Behavior Based on the Sparse Polynomial Chaos Expansion and Material Point Method
18
作者 Wenpeng Li Zhenghe Liu +4 位作者 Yujing Ma Zhuxuan Meng Ji Ma Weisong Liu Vinh Phu Nguyen 《Computer Modeling in Engineering & Sciences》 2025年第2期1515-1543,共29页
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-... This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems. 展开更多
关键词 Structural dynamics DEFORMATION material point method sparse polynomial chaos expansion adaptive randomized greedy algorithm sensitivity analysis
在线阅读 下载PDF
Vehicle and onboard UAV collaborative delivery route planning:considering energy function with wind and payload
19
作者 GUO Jingfeng SONG Rui HE Shiwei 《Journal of Systems Engineering and Electronics》 2025年第1期194-208,共15页
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove... The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted. 展开更多
关键词 vehicle and onboard unmanned aerial vehicle(UAV)collaborative delivery energy consumption function route planning mixed integer linear programming model adaptive large neighborhood search(ALNS)algorithm
在线阅读 下载PDF
Weighted adaptive filtering algorithm for carrier tracking of deep space signal 被引量:8
20
作者 Song Qingping Liu Rongke 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1236-1244,共9页
Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is aut... Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is automatic when the signal to noise ratio(SNR) is unknown.If the frequency-locked loop(FLL) or the phase-locked loop(PLL) with fixed loop bandwidth, or Kalman filter with fixed noise variance is adopted, the accretion of estimation error and filter divergence may be caused.Therefore, the Kalman filter algorithm with adaptive capability is adopted to suppress filter divergence.Through analyzing the inadequacies of Sage–Husa adaptive filtering algorithm, this paper introduces a weighted adaptive filtering algorithm for autonomous radio.The introduced algorithm may resolve the defect of Sage–Husa adaptive filtering algorithm that the noise covariance matrix is negative definite in filtering process.In addition, the upper diagonal(UD) factorization and innovation adaptive control are used to reduce model estimation errors,suppress filter divergence and improve filtering accuracy.The simulation results indicate that compared with the Sage–Husa adaptive filtering algorithm, this algorithm has better capability to adapt to the loop, convergence performance and tracking accuracy, which contributes to the effective and accurate carrier tracking in low SNR environment, showing a better application prospect. 展开更多
关键词 Adaptive algorithms Carrier tracking Deep space communicationKalman filters Tracking accuracy WEIGHTED
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部