The sampling problem for input-queued (IQ) randomized scheduling algorithms is analyzed.We observe that if the current scheduling decision is a maximum weighted matching (MWM),the MWM for the next slot mostly falls in...The sampling problem for input-queued (IQ) randomized scheduling algorithms is analyzed.We observe that if the current scheduling decision is a maximum weighted matching (MWM),the MWM for the next slot mostly falls in those matchings whose weight is closed to the current MWM.Using this heuristic,a novel randomized algorithm for IQ scheduling,named genetic algorithm-like scheduling algorithm (GALSA),is proposed.Evolutionary strategy is used for choosing sampling points in GALSA.GALSA works with only O(N) samples which means that GALSA has lower complexity than the famous randomized scheduling algorithm,APSARA.Simulation results show that the delay performance of GALSA is quite competitive with respect to that of APSARA.展开更多
The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanc...The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanced data.This limitation results in poor production quality and efficiency,leading to increased production costs.Thus,a novel strip crown prediction model that uses the Boruta and extremely randomized trees(Boruta-ERT)algorithms to address this issue was proposed.To improve the accuracy of our model,we utilized the synthetic minority over-sampling technique to balance the imbalance data sets.The Boruta-ERT prediction model was then used to select features and predict the strip crown.With the 2160 mm hot rolling production lines of a steel plant serving as the research object,the experimental results showed that 97.01% of prediction data have an absolute error of less than 8 lm.This level of accuracy met the control requirements for strip crown and demonstrated significant benefits for the improvement in production quality of steel strip.展开更多
Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach wa...Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.展开更多
The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ...The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.展开更多
The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proof...The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proofs are given.Thomas Strohmer and Roman Vershynin introduced a randomized version of the Kaczmarz method for consistent,and over-determined linear systems and proved whose rate does not depend on the number of equations in the systems in 2009.In this paper,we apply this method to computed tomography(CT)image reconstruction and compared images generated by the sequential Kaczmarz method and the randomized Kaczmarz method.Experiments demonstrates the feasibility of the randomized Kaczmarz algorithm in CT image reconstruction and its exponential curve convergence.展开更多
This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transfo...This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transform. The experimental results denote that this algorithm can locate the circular mark of Printed Circuit Board (PCB).展开更多
Computational efficiency has become a key issue in genomic prediction(GP) owing to the massive historical datasets accumulated. We developed hereby a new super-fast GP approach(SHEAPY) combining randomized Haseman-Els...Computational efficiency has become a key issue in genomic prediction(GP) owing to the massive historical datasets accumulated. We developed hereby a new super-fast GP approach(SHEAPY) combining randomized Haseman-Elston regression(RHE-reg) with a modified Algorithm for Proven and Young(APY) in an additive-effect model, using the former to estimate heritability and then the latter to invert a large genomic relationship matrix for best linear prediction. In simulation results with varied sizes of training population, GBLUP, HEAPY|A and SHEAPY showed similar predictive performance when the size of a core population was half that of a large training population and the heritability was a fixed value, and the computational speed of SHEAPY was faster than that of GBLUP and HEAPY|A. In simulation results with varied heritability, SHEAPY showed better predictive ability than GBLUP in all cases and than HEAPY|A in most cases when the size of a core population was 4/5 that of a small training population and the training population size was a fixed value. As a proof of concept, SHEAPY was applied to the analysis of two real datasets. In an Arabidopsis thaliana F2 population, the predictive performance of SHEAPY was similar to or better than that of GBLUP and HEAPY|A in most cases when the size of a core population(2 0 0) was 2/3 of that of a small training population(3 0 0). In a sorghum multiparental population,SHEAPY showed higher predictive accuracy than HEAPY|A for all of three traits, and than GBLUP for two traits. SHEAPY may become the GP method of choice for large-scale genomic data.展开更多
A new randomized parallel B & B algorithm is presented based on the similarity between heuristic search and statistics, and tested on a transputer network. The test result proves that the algorithm has a high spee...A new randomized parallel B & B algorithm is presented based on the similarity between heuristic search and statistics, and tested on a transputer network. The test result proves that the algorithm has a high speedup ratio, reliability, flexibility and fault tolerance.展开更多
The existing randomized algorithms need an initial estimation of the tubal rank to compute a tensor singular value decomposition.This paper proposes a new randomized fixed-precision algorithm which for a given third-o...The existing randomized algorithms need an initial estimation of the tubal rank to compute a tensor singular value decomposition.This paper proposes a new randomized fixed-precision algorithm which for a given third-order tensor and a prescribed approximation error bound,it automatically finds the tubal rank and corresponding low tubal rank approximation.The algorithm is based on the random projection technique and equipped with the power iteration method for achieving better accuracy.We conduct simulations on synthetic and real-world datasets to show the efficiency and performance of the proposed algorithm.展开更多
Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective...Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective iterative projection algorithm for solving large linear equations due to its simplicity.We propose a regularized randomized extended Kaczmarz(RREK)algorithm for solving large discrete ill-posed problems via combining the Tikhonov regularization and the randomized Kaczmarz method.The convergence of the algorithm is proved.Numerical experiments illustrate that the proposed algorithm has higher accuracy and better image restoration quality compared with the existing randomized extended Kaczmarz(REK)method.展开更多
This paper proposes a method for determining the stabilizing parameter regions for general delay control systems based on randomized sampling. A delay control system is converted into a unified state-space form. The n...This paper proposes a method for determining the stabilizing parameter regions for general delay control systems based on randomized sampling. A delay control system is converted into a unified state-space form. The numerical stability condition is developed and checked for sample points in the parameter space. These points are separated into stable and unstable regions by the decision function obtained from some learning method. The proposed method is very general and applied to a much wider range of systems than the existing methods in the literature. The proposed method is illustrated with examples.展开更多
A real-valued negative selection algorithm with good mathematical foundation is presented to solve some of the drawbacks of previous approach. Specifically, it can produce a good estimate of the optimal number of dete...A real-valued negative selection algorithm with good mathematical foundation is presented to solve some of the drawbacks of previous approach. Specifically, it can produce a good estimate of the optimal number of detectors needed to cover the non-self space, and the maximization of the non-self coverage is done through an optimization algorithm with proven convergence properties. Experiments are performed to validate the assumptions made while designing the algorithm and to evaluate its performance.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
Objectives:To explore the efficacy and safety of virtual reality(VR)in relieving negative emotions in patients with breast cancer with different personalities.Methods:A randomized controlled trial was conducted.Betwee...Objectives:To explore the efficacy and safety of virtual reality(VR)in relieving negative emotions in patients with breast cancer with different personalities.Methods:A randomized controlled trial was conducted.Between April 2023 and October 2023,we enrolled patients with breast cancer treated in the Department of Breast Cancer and Oncology at Sun Yat-Sen Memorial Hospital,Sun Yat-Sen University,Guangdong Province.The patients were randomly divided into an intervention group(n=118)and a control group(n=119)using block randomization.The intervention group received the VR intervention 3-5 times over 5±2 weeks using natural landscapes with music or relaxation guidance,and the duration of each VR intervention was 15±3 min.The control group received routine nursing care,including disease education and psychological counseling.Patients were assessed using the Type D Scale,Positive and Negative Affect Scale,and Distress Thermometer,and adverse events during the intervention were recorded.Results:Overall,85 patients completed the study(44 in the intervention group and 41 in the control group).Patients with Type D personalities showed more negative emotions[25.0(21.5,27.5)vs.19.0(16.0,24.0),P=0.001]and distressed attitudes[4.0(2.0,5.0)vs.3.0(1.0,4.0),P=0.020]with fewer positive emotions(27.2±5.6 vs.31.0±5.9,P=0.014)than those with non-Type D personalities.Total population analysis revealed no significant differences between the groups.However,in the subgroup analysis,patients with Type D personalities in the intervention group showed greater relief from negative emotions than those in the control group[median difference,-5.0(-9.0,-2.5)vs.-2.0(-4.0,2.0),P=0.046].No significant differences were found between groups of patients with non-Type D personality traits.The proportion of adverse events was not significantly different between groups(P=0.110).Conclusions:Breast cancer patients with Type D personalities suffer more severe negative emotions and distress,and more attention should be paid to them.VR intervention significantly and safely reduced negative emotions in patients with Type D personalities.展开更多
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms...In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.展开更多
Adaptor signature,a new primitive that alleviates the scalability issue of blockchain to some extent,has been widely adopted in the off-chain payment channel and atomic swap.As an extension of standard digital signatu...Adaptor signature,a new primitive that alleviates the scalability issue of blockchain to some extent,has been widely adopted in the off-chain payment channel and atomic swap.As an extension of standard digital signature,adaptor signature can bind the release of a complete digital signature with the exchange of a secret value.Existing constructions of adaptor signatures are mainly based on Schnorr or ECDSA signature algorithms,which suffer low signing efficiency and long signature length.In this paper,to address these issues,we propose a new construction of adaptor signature using randomized EdDSA,which has Schnorr-like structure with higher signing efficiency and shorter signature length.We prove the required security properties,including unforgeability,witness extractability and pre-signature adaptability,of the new adaptor signature scheme in the random oracle model.We conduct a comparative analysis with an ECDSA-based adaptor signature scheme to demonstrate the effectiveness and feasibility of our new proposal.展开更多
Acupuncture is an ancient treatment method used in traditional Chinese medicine and has been popularized worldwide.Over the past decade,there has been an increase in the amount of acupuncture research,mostly comprised...Acupuncture is an ancient treatment method used in traditional Chinese medicine and has been popularized worldwide.Over the past decade,there has been an increase in the amount of acupuncture research,mostly comprised of randomized controlled trials(RCTs)that aimed to answer the question on the efficacy of acupuncture.However,poor methodology and low replicability in these acupuncture RCTs have resulted in uncertainty about the efficacy of acupuncture.In this review,current advancements and challenges in acupuncture RCTs,regarding the methodological aspects of randomization,blinding,sham acupuncture and quality of reporting,were discussed.While there have been advancements in various aspects,current acupuncture RCTs still face pressing issues such as inadequate randomization and blinding,unviable sham acupuncture controls,and poor reporting quality.Given these limitations,this review seeks to identify the methodological problems that are responsible for these problems and to suggest solutions that could help to overcome them so as to improve the quality of future studies evaluating the efficacy of acupuncture.展开更多
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t...In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.展开更多
文摘The sampling problem for input-queued (IQ) randomized scheduling algorithms is analyzed.We observe that if the current scheduling decision is a maximum weighted matching (MWM),the MWM for the next slot mostly falls in those matchings whose weight is closed to the current MWM.Using this heuristic,a novel randomized algorithm for IQ scheduling,named genetic algorithm-like scheduling algorithm (GALSA),is proposed.Evolutionary strategy is used for choosing sampling points in GALSA.GALSA works with only O(N) samples which means that GALSA has lower complexity than the famous randomized scheduling algorithm,APSARA.Simulation results show that the delay performance of GALSA is quite competitive with respect to that of APSARA.
基金supported by the National Natural Science Foundation of China(Grant Nos.52074085,U21A20117 and U21A20475)the Fundamental Research Funds for the Central Universities(Grant No.N2004010)the Liaoning Revitalization Talents Program(XLYC1907065).
文摘The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanced data.This limitation results in poor production quality and efficiency,leading to increased production costs.Thus,a novel strip crown prediction model that uses the Boruta and extremely randomized trees(Boruta-ERT)algorithms to address this issue was proposed.To improve the accuracy of our model,we utilized the synthetic minority over-sampling technique to balance the imbalance data sets.The Boruta-ERT prediction model was then used to select features and predict the strip crown.With the 2160 mm hot rolling production lines of a steel plant serving as the research object,the experimental results showed that 97.01% of prediction data have an absolute error of less than 8 lm.This level of accuracy met the control requirements for strip crown and demonstrated significant benefits for the improvement in production quality of steel strip.
文摘Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.
基金the National Natural Science Foundation of China(51909136)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education,Grant No.2022KDZ21Fund of National Major Water Conservancy Project Construction(0001212022CC60001)。
文摘The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.
基金National Natural Science Foundation of China(No.61171179,No.61171178)Natural Science Foundation of Shanxi Province(No.2010011002-1,No.2010011002-2and No.2012021011-2)
文摘The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proofs are given.Thomas Strohmer and Roman Vershynin introduced a randomized version of the Kaczmarz method for consistent,and over-determined linear systems and proved whose rate does not depend on the number of equations in the systems in 2009.In this paper,we apply this method to computed tomography(CT)image reconstruction and compared images generated by the sequential Kaczmarz method and the randomized Kaczmarz method.Experiments demonstrates the feasibility of the randomized Kaczmarz algorithm in CT image reconstruction and its exponential curve convergence.
基金supported by Science and Technology Project of Fujian Provincial Department of Education under contract JAT170917Youth Science and Research Foundation of Chengyi College Jimei University under contract C16005.
文摘This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transform. The experimental results denote that this algorithm can locate the circular mark of Printed Circuit Board (PCB).
基金supported by the National Natural Science Foundation of China to Guo-Bo Chen(31771392)Zhejiang Provincial People’s Hospital Research Startup to Guo-Bo Chen(ZRY2018A004)。
文摘Computational efficiency has become a key issue in genomic prediction(GP) owing to the massive historical datasets accumulated. We developed hereby a new super-fast GP approach(SHEAPY) combining randomized Haseman-Elston regression(RHE-reg) with a modified Algorithm for Proven and Young(APY) in an additive-effect model, using the former to estimate heritability and then the latter to invert a large genomic relationship matrix for best linear prediction. In simulation results with varied sizes of training population, GBLUP, HEAPY|A and SHEAPY showed similar predictive performance when the size of a core population was half that of a large training population and the heritability was a fixed value, and the computational speed of SHEAPY was faster than that of GBLUP and HEAPY|A. In simulation results with varied heritability, SHEAPY showed better predictive ability than GBLUP in all cases and than HEAPY|A in most cases when the size of a core population was 4/5 that of a small training population and the training population size was a fixed value. As a proof of concept, SHEAPY was applied to the analysis of two real datasets. In an Arabidopsis thaliana F2 population, the predictive performance of SHEAPY was similar to or better than that of GBLUP and HEAPY|A in most cases when the size of a core population(2 0 0) was 2/3 of that of a small training population(3 0 0). In a sorghum multiparental population,SHEAPY showed higher predictive accuracy than HEAPY|A for all of three traits, and than GBLUP for two traits. SHEAPY may become the GP method of choice for large-scale genomic data.
文摘A new randomized parallel B & B algorithm is presented based on the similarity between heuristic search and statistics, and tested on a transputer network. The test result proves that the algorithm has a high speedup ratio, reliability, flexibility and fault tolerance.
基金the Ministry of Education and Science of the Russian Federation(Grant 075.10.2021.068).
文摘The existing randomized algorithms need an initial estimation of the tubal rank to compute a tensor singular value decomposition.This paper proposes a new randomized fixed-precision algorithm which for a given third-order tensor and a prescribed approximation error bound,it automatically finds the tubal rank and corresponding low tubal rank approximation.The algorithm is based on the random projection technique and equipped with the power iteration method for achieving better accuracy.We conduct simulations on synthetic and real-world datasets to show the efficiency and performance of the proposed algorithm.
基金supported by the National Natural Science Foundations of China(Nos.11571171,62073161,and 61473148)。
文摘Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective iterative projection algorithm for solving large linear equations due to its simplicity.We propose a regularized randomized extended Kaczmarz(RREK)algorithm for solving large discrete ill-posed problems via combining the Tikhonov regularization and the randomized Kaczmarz method.The convergence of the algorithm is proved.Numerical experiments illustrate that the proposed algorithm has higher accuracy and better image restoration quality compared with the existing randomized extended Kaczmarz(REK)method.
文摘This paper proposes a method for determining the stabilizing parameter regions for general delay control systems based on randomized sampling. A delay control system is converted into a unified state-space form. The numerical stability condition is developed and checked for sample points in the parameter space. These points are separated into stable and unstable regions by the decision function obtained from some learning method. The proposed method is very general and applied to a much wider range of systems than the existing methods in the literature. The proposed method is illustrated with examples.
基金Sponsored by the National Natural Science Foundation of China ( Grant No. 60671049 ), the Subject Chief Foundation of Harbin ( Grant No.2003AFXXJ013), the Education Department Research Foundation of Heilongjiang Province(Grant No.10541044,1151G012) and the Postdoctor Founda-tion of Heilongjiang(Grant No.LBH-Z05092).
文摘A real-valued negative selection algorithm with good mathematical foundation is presented to solve some of the drawbacks of previous approach. Specifically, it can produce a good estimate of the optimal number of detectors needed to cover the non-self space, and the maximization of the non-self coverage is done through an optimization algorithm with proven convergence properties. Experiments are performed to validate the assumptions made while designing the algorithm and to evaluate its performance.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.
基金supported by a project of the National Natural Science Foundation of China:Research on the integration of artificial intelligence and virtual reality technology to promote psychological rehabilitation of breast cancer patients with different personalities(project approval no.82073408).
文摘Objectives:To explore the efficacy and safety of virtual reality(VR)in relieving negative emotions in patients with breast cancer with different personalities.Methods:A randomized controlled trial was conducted.Between April 2023 and October 2023,we enrolled patients with breast cancer treated in the Department of Breast Cancer and Oncology at Sun Yat-Sen Memorial Hospital,Sun Yat-Sen University,Guangdong Province.The patients were randomly divided into an intervention group(n=118)and a control group(n=119)using block randomization.The intervention group received the VR intervention 3-5 times over 5±2 weeks using natural landscapes with music or relaxation guidance,and the duration of each VR intervention was 15±3 min.The control group received routine nursing care,including disease education and psychological counseling.Patients were assessed using the Type D Scale,Positive and Negative Affect Scale,and Distress Thermometer,and adverse events during the intervention were recorded.Results:Overall,85 patients completed the study(44 in the intervention group and 41 in the control group).Patients with Type D personalities showed more negative emotions[25.0(21.5,27.5)vs.19.0(16.0,24.0),P=0.001]and distressed attitudes[4.0(2.0,5.0)vs.3.0(1.0,4.0),P=0.020]with fewer positive emotions(27.2±5.6 vs.31.0±5.9,P=0.014)than those with non-Type D personalities.Total population analysis revealed no significant differences between the groups.However,in the subgroup analysis,patients with Type D personalities in the intervention group showed greater relief from negative emotions than those in the control group[median difference,-5.0(-9.0,-2.5)vs.-2.0(-4.0,2.0),P=0.046].No significant differences were found between groups of patients with non-Type D personality traits.The proportion of adverse events was not significantly different between groups(P=0.110).Conclusions:Breast cancer patients with Type D personalities suffer more severe negative emotions and distress,and more attention should be paid to them.VR intervention significantly and safely reduced negative emotions in patients with Type D personalities.
基金supported by the National Natural Science Foundation of China(No.62373027).
文摘In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.
基金supported by the National Key R&D Program of China(2022YFB2701500)the National Natural Science Foundation of China(62272385,62311540156)+2 种基金Shaanxi Distinguished Youth Project(2022JC-47)the Key Research and Development Program of Shaanxi(2021ZDLGY06-04)Major Program of Shandong Provincial Natural Science Foundation for the Fundamental Research(ZR2022ZD03).
文摘Adaptor signature,a new primitive that alleviates the scalability issue of blockchain to some extent,has been widely adopted in the off-chain payment channel and atomic swap.As an extension of standard digital signature,adaptor signature can bind the release of a complete digital signature with the exchange of a secret value.Existing constructions of adaptor signatures are mainly based on Schnorr or ECDSA signature algorithms,which suffer low signing efficiency and long signature length.In this paper,to address these issues,we propose a new construction of adaptor signature using randomized EdDSA,which has Schnorr-like structure with higher signing efficiency and shorter signature length.We prove the required security properties,including unforgeability,witness extractability and pre-signature adaptability,of the new adaptor signature scheme in the random oracle model.We conduct a comparative analysis with an ECDSA-based adaptor signature scheme to demonstrate the effectiveness and feasibility of our new proposal.
基金supported by the National High-Level Chinese Medicine Hospital Clinical Research Funding(No.DFGZRB-2024GJRC015)。
文摘Acupuncture is an ancient treatment method used in traditional Chinese medicine and has been popularized worldwide.Over the past decade,there has been an increase in the amount of acupuncture research,mostly comprised of randomized controlled trials(RCTs)that aimed to answer the question on the efficacy of acupuncture.However,poor methodology and low replicability in these acupuncture RCTs have resulted in uncertainty about the efficacy of acupuncture.In this review,current advancements and challenges in acupuncture RCTs,regarding the methodological aspects of randomization,blinding,sham acupuncture and quality of reporting,were discussed.While there have been advancements in various aspects,current acupuncture RCTs still face pressing issues such as inadequate randomization and blinding,unviable sham acupuncture controls,and poor reporting quality.Given these limitations,this review seeks to identify the methodological problems that are responsible for these problems and to suggest solutions that could help to overcome them so as to improve the quality of future studies evaluating the efficacy of acupuncture.
基金Supported by the Natural Science Foundation of Chongqing(General Program,NO.CSTB2022NSCQ-MSX0884)Discipline Teaching Special Project of Yangtze Normal University(csxkjx14)。
文摘In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.