期刊文献+
共找到283,844篇文章
< 1 2 250 >
每页显示 20 50 100
NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization
1
作者 Hui Lv Yuer Yang Yifeng Lin 《Computers, Materials & Continua》 2025年第10期925-953,共29页
It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional ... It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional Sparrow Search Algorithm(SSA)suffers from limited global search capability,insufficient population diversity,and slow convergence,which often leads to premature stagnation in local optima.Despite the proposal of various enhanced versions,the effective balancing of exploration and exploitation remains an unsolved challenge.To address the previously mentioned problems,this study proposes a multi-strategy collaborative improved SSA,which systematically integrates four complementary strategies:(1)the Northern Goshawk Optimization(NGO)mechanism enhances global exploration through guided prey-attacking dynamics;(2)an adaptive t-distribution mutation strategy balances the transition between exploration and exploitation via dynamic adjustment of the degrees of freedom;(3)a dual chaotic initialization method(Bernoulli and Sinusoidal maps)increases population diversity and distribution uniformity;and(4)an elite retention strategy maintains solution quality and prevents degradation during iterations.These strategies cooperate synergistically,forming a tightly coupled optimization framework that significantly improves search efficiency and robustness.Therefore,this paper names it NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization.Extensive experiments on the CEC2005 benchmark set demonstrate that NTSSA achieves theoretical optimal accuracy on unimodal functions and significantly enhances global optimum discovery for multimodal functions by 2–5 orders of magnitude.Compared with SSA,GWO,ISSA,and CSSOA,NTSSA improves solution accuracy by up to 14.3%(F8)and 99.8%(F12),while accelerating convergence by approximately 1.5–2×.The Wilcoxon rank-sum test(p<0.05)indicates that NTSSA demonstrates a statistically substantial performance advantage.Theoretical analysis demonstrates that the collaborative synergy among adaptive mutation,chaos-based diversification,and elite preservation ensures both high convergence accuracy and global stability.This work bridges a key research gap in SSA by realizing a coordinated optimization mechanism between exploration and exploitation,offering a robust and efficient solution framework for complex high-dimensional problems in intelligent computation and engineering design. 展开更多
关键词 Sparrow search algorithm multi-strategy fusion T-DISTRIBUTION elite retention strategy wilcoxon rank-sum test
在线阅读 下载PDF
基于SSA-ELM神经网络的室内可见光定位系统 被引量:1
2
作者 贾科军 牛振 +3 位作者 于凯 张志聪 彭铎 曹明华 《光通信研究》 北大核心 2025年第1期13-17,共5页
【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定... 【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。 展开更多
关键词 可见光通信 室内定位 极限学习机神经网络 麻雀搜索算法
在线阅读 下载PDF
基于RCMFFDE和SSA-RVM的旋转机械损伤检测模型 被引量:2
3
作者 王显彬 孙阳 《机电工程》 北大核心 2025年第3期510-519,共10页
针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机... 针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机械损伤检测模型。首先,进行了基于RCMFFDE方法的特征提取,生成了特征样本,以定量反映旋转机械的不同损伤情况;然后,采用t-SNE方法,将原始高维故障特征映射至低维空间,获得了对故障更敏感的低维特征;最后,将敏感的低维故障特征向量输入至SSA-RVM多分类器中,进行了训练和测试,实现了旋转机械样本的故障识别目的;采用两种旋转机械数据集进行了实验,并从准确率、效率和抗噪性方面,将RCMFFDE-SSA-SVM方法与多种特征提取方法进行了对比。研究结果表明:RCMFFDE能用于有效提取旋转机械的故障特征,分别取得99.2%和100%的识别精度;而对敏感特征进行分类所获得的精度优于对原始特征进行分类的情形,前者比后者提高了4%;在模式识别中,SSA-RVM优于其他分类器;自制数据集的诊断精度达到了97%,特征提取的时间为16.05 s。 展开更多
关键词 非线性振动信号 特征提取时间 故障识别精度(诊断精度) 精细复合多尺度分数波动散布熵 t-分布随机邻域嵌入 麻雀搜索算法优化相关向量机
在线阅读 下载PDF
基于ISSA-XGBoost的数字孪生变电站故障监测
4
作者 何锐 梁智 +2 位作者 戈一航 凌行龙 王应宇 《科技和产业》 2025年第17期100-107,共8页
随着智能电网的快速发展,传统变电站的监控方式已难以满足现代电网对高效、准确监控的需求。针对传统变电站监控信息准确率较低的问题,提出基于ISSA-XGBoost(改进麻雀搜索算法-极端梯度提升树)的数字孪生变电站故障监测。首先基于八叉... 随着智能电网的快速发展,传统变电站的监控方式已难以满足现代电网对高效、准确监控的需求。针对传统变电站监控信息准确率较低的问题,提出基于ISSA-XGBoost(改进麻雀搜索算法-极端梯度提升树)的数字孪生变电站故障监测。首先基于八叉树空间分割和NURBS(非均匀有理B样条)三维数字孪生(DT)体建模技术,建立数字孪生变电站模型。通过主成分分析提取关键数据特征,降低数据集的复杂性。结合变电站的运行模式,建立XGBoost的状态监测模型,通过改进的麻雀搜索算法寻找XGBoost的超参数,弥补传统XGBoost人工设定超参数的不足。变电站状态监测正确率达到96.45%,相较传统XGBoost监测正确率提高了8.11%,训练时间缩短了4.8%,ISSA-XGBoost模型故障监测精度更高、速度更快。实践表明,该方法能够更精确地对变电站电气设备的故障进行监测。 展开更多
关键词 变电站 数字孪生(DT) 主成分分析(PCA) 麻雀搜索算法(ssa) 极端梯度提升树(XGBoost)
在线阅读 下载PDF
基于SSA-VMD-LSTM的架空输电线路动态载流量预测方法
5
作者 王帅 申杰文 +1 位作者 徐彬 朱振东 《电子测量技术》 北大核心 2025年第19期115-125,共11页
准确预测架空输电线路动态载流量是保障线路安全增容的关键。针对传统预测模型因依赖人工经验选择模型超参数,难以有效降低线路动态载流量波动性而导致的预测精度不佳问题,本研究创新性提出一种基于SSA-VMD-LSTM的预测方法。该方法深度... 准确预测架空输电线路动态载流量是保障线路安全增容的关键。针对传统预测模型因依赖人工经验选择模型超参数,难以有效降低线路动态载流量波动性而导致的预测精度不佳问题,本研究创新性提出一种基于SSA-VMD-LSTM的预测方法。该方法深度融合了SSA的全局优化能力、VMD的多尺度数据分解特性以及LSTM的时序建模优势,构建了一个层次化的人工智能预测模型。首先,利用SSA的强大搜索能力对VMD超参数进行迭代寻优,获取最优超参数;随后,采用VMD对线路动态载流量进行多尺度分解,得到一系列中心频率不同但局部平稳的分量;在此基础上,对多个分量分别建立LSTM进行预测;最后,将分量预测结果叠加得到最终预测结果。实验结果表明,与多个传统预测模型相比,所提方法的预测精度至少提升4.78%,充分验证了该方法在动态载流量预测中的有效性和优越性。 展开更多
关键词 架空输电线路 动态载流量 ssa VMD 超参数寻优
原文传递
基于BP-SSA算法的大学生体质健康水平评价模型研究
6
作者 赵莹 《合肥师范学院学报》 2025年第5期171-174,180,共5页
随着经济和社会的不断发展,大学生体质的培养受到了广泛的关注。然而,传统的身体素质评价方法存在一些不足,如评价指标单一,评价结果不准确等。针对这一问题,研究提出利用误差反向传播算法与麻雀搜索算法,构建一种大学生体质健康水平评... 随着经济和社会的不断发展,大学生体质的培养受到了广泛的关注。然而,传统的身体素质评价方法存在一些不足,如评价指标单一,评价结果不准确等。针对这一问题,研究提出利用误差反向传播算法与麻雀搜索算法,构建一种大学生体质健康水平评价模型。经过对比试验,结果表明,该算法的准确率最高可达到96%,优于对比算法。研究提出的大学生体质健康水平评价模型的F值与G值分别为86%、92%,优于对比模型。综上,研究提出的基于改进麻雀算法的大学生体质健康水平评价模型,能够有效地提高我国大学生体质健康评估的准确率和工作效率。 展开更多
关键词 BP算法 ssa算法 大学生体质 评价模型
在线阅读 下载PDF
基于Elman神经网络和SSA-BP神经网络的空气质量指数预测类比研究
7
作者 尤游 《哈尔滨师范大学自然科学学报》 2025年第4期67-75,共9页
针对空气质量预测中监测数据的动态性以及BP神经网络训练的局限性等问题,依次提出Elman神经网络和SSA-BP神经网络来优化模型.首先基于空气质量数据的动态变化特征,通过构建Elman神经网络来优化BP算法,其优势在于增加的承接层可以作为延... 针对空气质量预测中监测数据的动态性以及BP神经网络训练的局限性等问题,依次提出Elman神经网络和SSA-BP神经网络来优化模型.首先基于空气质量数据的动态变化特征,通过构建Elman神经网络来优化BP算法,其优势在于增加的承接层可以作为延时算子来存储记忆信息,提升了动态数据处理的敏感度.其次利用麻雀搜索算法(SSA)优化BP网络,通过全局寻优获得最佳权阈值,避免了BP网络初始权阈值选取的随机性,解决了其局部极小化问题,并提升了网络收敛速度.最后以合肥市为例进行仿真实验,得出结论:SSA-BP神经网络的MAE、MSE、RMSE和MAPE四个预测评价指标最优,其次是Elman神经网络,最后是BP神经网络.说明上述两种优化模型为空气质量预测提供了新思路,具有一定的可行性. 展开更多
关键词 空气质量指数 ELMAN神经网络 麻雀搜索算法 ssa-BP神经网络 预测精度
在线阅读 下载PDF
基于SSAPSO-PID的白胡椒熟化温度控制系统设计与试验 被引量:1
8
作者 俞国燕 张嘉伟 +3 位作者 张园 韦丽娇 赵振华 沈德战 《农业机械学报》 北大核心 2025年第5期589-596,共8页
为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,... 为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,通过控制算法调节蒸汽流量以确保稳定控制。采用开环阶跃响应法建立并拟合了熟化机内温度与时间的数学模型,通过Simulink仿真试验对比了Ziegler-Nichols整定法、临界比例度法、衰减曲线法以及基于麻雀搜索算法的粒子群优化自整定法(SSAPSO)性能。最终确定PID最佳控制参数为比例系数K_(p)=0.8759,积分系数K_(i)=0.02,微分系数K_(d)=4.3255。系统试验结果表明,在8 min的熟化过程中,每隔1 min采集当前熟化温度,由于熟化机与空气直接对流换热,其温度稳定在(99±1.5)℃范围内,熟化温度平均相对误差小于1.2%、变异系数小于1.3%,基本实现了熟化过程中自动化精准高效控温的目的。 展开更多
关键词 白胡椒初加工生产线 熟化温度 粒子群优化算法 麻雀搜索算法 PID控制
在线阅读 下载PDF
基于DC-CNN-PE-SSA-Informer的电缆缆芯温度预测研究 被引量:2
9
作者 鲍克勤 赵欣妍 +2 位作者 刘擘 王仕博 郝海斌 《昆明理工大学学报(自然科学版)》 北大核心 2025年第2期116-125,共10页
针对电缆缆芯温度不易直接测量,且预测精确度不足的问题,本文提出了DC-CNN-PE-SSA-Informer混合预测模型,该模型利用扩展因果卷积网络(DC-CNN)增强对时间序列数据局部特征的捕捉能力,并将提取的特征传递至Informer模块以捕获长期依赖关... 针对电缆缆芯温度不易直接测量,且预测精确度不足的问题,本文提出了DC-CNN-PE-SSA-Informer混合预测模型,该模型利用扩展因果卷积网络(DC-CNN)增强对时间序列数据局部特征的捕捉能力,并将提取的特征传递至Informer模块以捕获长期依赖关系,通过引入相对位置编码(PE)加强Informer模型对时间序列中相对位置信息的捕捉能力,最后由麻雀搜索算法(SSA)进行参数优化。通过对电缆温度场进行有限元分析,求解出不同条件下的缆芯温度作为仿真实验的样本数据。仿真结果表明,DC-CNN-PE-SSA-Informer模型相比常见的预测模型在电缆缆芯温度预测方面具有更高的预测精度,为电力调度的运行方式提供了依据。 展开更多
关键词 电力电缆 温度预测 扩展因果卷积网络(DC-CNN) INFORMER 麻雀搜索算法(ssa) 位置编码(PE)
原文传递
Multi-UAV reconnaissance task allocation for heterogeneous targets using an opposition-based genetic algorithm with double-chromosome encoding 被引量:51
10
作者 Zhu WANG Li LIU +1 位作者 Teng LONG Yonglu WENa 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第2期339-350,共12页
This paper presents a novel multiple Unmanned Aerial Vehicles(UAVs) reconnaissance task allocation model for heterogeneous targets and an effective genetic algorithm to optimize UAVs' task sequence. Heterogeneous t... This paper presents a novel multiple Unmanned Aerial Vehicles(UAVs) reconnaissance task allocation model for heterogeneous targets and an effective genetic algorithm to optimize UAVs' task sequence. Heterogeneous targets are classified into point targets, line targets and area targets according to features of target geometry and sensor's field of view. Each UAV is regarded as a Dubins vehicle to consider the kinematic constraints. And the objective of task allocation is to minimize the task execution time and UAVs' total consumptions. Then, multi-UAV reconnaissance task allocation is formulated as an extended Multiple Dubins Travelling Salesmen Problem(MDTSP), where visit paths to the heterogeneous targets must meet specific constraints due to the targets' feature. As a complex combinatorial optimization problem, the dimensions of MDTSP are further increased due to the heterogeneity of targets. To efficiently solve this computationally expensive problem, the Opposition-based Genetic Algorithm using Double-chromosomes Encoding and Multiple Mutation Operators(OGA-DEMMO) is developed to improve the population variety for enhancing the global exploration capability. The simulation results demonstrate that OGADEMMO outperforms the ordinary genetic algorithm, ant colony optimization and random search in terms of optimality of the allocation results, especially for large scale reconnaissance task allocation problems. 展开更多
关键词 Unmanned aerial vehicles Task allocation Genetic algorithm Travelling salesman problems Dubins vehicles
原文传递
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
11
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 BP神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
SSA-XGBoost模型的资源型城市热环境非线性影响因素分析
12
作者 范强 刘凯泽 张兵 《测绘科学》 北大核心 2025年第8期80-91,共12页
针对资源型城市热环境成因机制的复杂性以及高温挑战日益加剧问题,该文选择4个典型资源型城市为研究区,选取自然因素和人文因素作为影响因子,构建了基于麻雀搜索算法(SSA)优化的XGBoost回归模型,并结合SHAP解释机制量化各驱动因子对城... 针对资源型城市热环境成因机制的复杂性以及高温挑战日益加剧问题,该文选择4个典型资源型城市为研究区,选取自然因素和人文因素作为影响因子,构建了基于麻雀搜索算法(SSA)优化的XGBoost回归模型,并结合SHAP解释机制量化各驱动因子对城市热环境的影响。研究发现,所选因子对热环境的作用效果和贡献程度因城市的阶段性发展特征存在显著差异,这与城市化过程中地表覆被类型的空间差异具有密切关联;SHAP可解释性分析进一步揭示了各变量对热环境的具体影响,展现了模型在解释变量作用机制上的可靠性和透明性;SSA能够有效的对模型进行优化,构建的SSA-XGBoost模型的R^(2)均在0.9以上,表现出良好的稳定性和回归能力。该模型更精确地分析了资源型城市热环境非线性因素影响,为典型资源城市的建设和管理提供参考。 展开更多
关键词 热环境 地表温度 ssa-XGBoost 资源型城市 非线性回归 SHAP可解释
原文传递
基于CNN-SSA-GRU的位置指纹定位方法研究
13
作者 吴兰 胡家傲 《计算机仿真》 2025年第1期323-328,366,共7页
针对现有位置指纹定位方法不能充分利用指纹数据中的特征信息以及训练过程中关键参数需要人为确定导致定位精度不高的问题,利用卷积神经网络(CNN)提取指纹数据中的空间特征信息并构造成特征向量,再利用门控循环神经网络(GRU)提取特征向... 针对现有位置指纹定位方法不能充分利用指纹数据中的特征信息以及训练过程中关键参数需要人为确定导致定位精度不高的问题,利用卷积神经网络(CNN)提取指纹数据中的空间特征信息并构造成特征向量,再利用门控循环神经网络(GRU)提取特征向量中的时间特征,建立特征融合的位置指纹定位模型进行定位,以提高定位精度。同时利用麻雀搜索算法(SSA)对GRU网络训练过程中的关键参数进行最佳寻优,降低人为设置训练参数对模型定位效果的影响,进一步提高模型的定位精度。实验分析表明,提出的CNN-SSA-GRU指纹定位方法平均误差在1.351m,与传统指纹定位方法相比定位精度更高,能够满足实际定位需求。 展开更多
关键词 指纹定位 卷积神经网络 麻雀搜索算法 门控循环神经网络
在线阅读 下载PDF
基于SSA优化的变论域模糊PID控制器及其污水处理过程应用 被引量:1
14
作者 李志峰 熊伟丽 《计算机工程》 北大核心 2025年第7期339-347,共9页
由于复杂多变的生化反应、进水流量和浓度的不断变化,污水处理过程表现出强非线性和时变性等特征,从而导致其过程变量难以精确控制。设计一种麻雀搜索算法(SSA)优化的变论域模糊比例、积分和微分(PID)控制器,对溶解氧和硝态氮浓度进行... 由于复杂多变的生化反应、进水流量和浓度的不断变化,污水处理过程表现出强非线性和时变性等特征,从而导致其过程变量难以精确控制。设计一种麻雀搜索算法(SSA)优化的变论域模糊比例、积分和微分(PID)控制器,对溶解氧和硝态氮浓度进行跟踪控制。首先利用SSA优化第5单元和第2单元的变论域模糊PID控制器的PID初始参数值;然后进行二次寻优,即对量化因子和比例因子进行优化,并设计基于模糊规则的论域自适应调整策略在线整定控制器参数,以提高控制器的跟踪精度;最后应用污水处理过程国际基准仿真平台进行恒值和动态变值跟踪控制的实验验证。实验结果表明,与基于自适应伸缩因子变论域模糊PID控制器、模糊PID控制器、常规PID控制器相比,所设计控制器的绝对误差积分指标明显降低,在有效降低能耗的同时提升了出水水质。 展开更多
关键词 污水处理过程 麻雀搜索算法 变论域模糊 比例、积分、微分控制器 参数优化
在线阅读 下载PDF
融合SBAS-InSAR与SSA-BiGRU-ATT的排土场边坡形变监测与预测——以吉林郭勒某露天矿排土场为例
15
作者 李如仁 王跃 +1 位作者 黄二东 肖大勇 《东华理工大学学报(自然科学版)》 北大核心 2025年第5期473-484,共12页
露天矿区排土场边坡内部作用机理复杂,以吉林郭勒某露天矿排土场为例,进行边坡形变监测与预测,预防滑坡等地质灾害的发生,进而保障矿山安全生产。首先,借助短基线集干涉测量(SBAS-InSAR)技术提取2 a时序形变信息,拾取特征点累计形变量与... 露天矿区排土场边坡内部作用机理复杂,以吉林郭勒某露天矿排土场为例,进行边坡形变监测与预测,预防滑坡等地质灾害的发生,进而保障矿山安全生产。首先,借助短基线集干涉测量(SBAS-InSAR)技术提取2 a时序形变信息,拾取特征点累计形变量与GPS监测结果比对,初步甄别排土场滑坡隐患体;其次,将降雨量与沉降量关联,通过周期项位移曲线分析两者波动关联特性;最后,构建注意力机制下麻雀搜索算法双向门控循环单元神经网络(SSA-BiGRU-ATT)预测模型,同时引入意力机制下双向门控循环单元神经网络模型(BiGRU-ATT)、双向门控循环单元神经网络模型(BiGRU)和长短期记忆模型(LSTM)验证模型适用性。结果表明,SBAS-InSAR技术对排土场边坡形变监测满足精度要求,误差棒指标揭示出其与GPS实测数据间最大绝对误差为6.03 mm,均方根误差为2.87 mm;排土场中部和南部共出现3处明显沉降区域,最大累计形变量分别为100.68、97.46、91.74 mm;降雨量为排土场边坡形变主要诱因,两者呈正相关周期性波动;4类模型中,SSA-BiGRU-ATT模型训练集与测试集拟合度高,收敛速度快,预测精度较优,3个特征点预测结果最大值的均方根误差小于2.76 mm,平均绝对误差小于1.63 mm,平均绝对百分比误差小于2.75%。预测结果可准确反映沉降特性和波动趋势,为排土场边坡形变监测及灾害预警提供技术支撑。 展开更多
关键词 排土场滑坡 短基线集干涉测量 动态形变监测 沉降预测 ssa-BiGRU-ATT
在线阅读 下载PDF
基于ICEEMDAN和SSA-LSTM组合模型的电离层TEC预测 被引量:1
16
作者 张振国 孙希延 +1 位作者 纪元法 贾茜子 《全球定位系统》 2025年第1期48-59,共12页
针对电离层总电子含量(total electron content,TEC)具有非线性和非平稳性的特性及单一长短期记忆神经网络(long short-term memory,LSTM)模型在预测中存在精度不高且易陷入局部最优等问题,在改进的自适应噪声完备集合经验模态分解(impr... 针对电离层总电子含量(total electron content,TEC)具有非线性和非平稳性的特性及单一长短期记忆神经网络(long short-term memory,LSTM)模型在预测中存在精度不高且易陷入局部最优等问题,在改进的自适应噪声完备集合经验模态分解(improved complete ensemble EMD with adaptive noise,ICEEMDAN)和样本熵(sample entropy,SE)算法的基础上,结合麻雀搜索算法(sparrow search algorithm,SSA)和LSTM构建电离层TEC组合预测模型,并对太阳活动低年平静期和太阳活动高年扰动期电离层TEC连续5 d的预测精度分析.实验结果表明,本文组合模型相较于单一LSTM模型和SSA-LSTM模型在低太阳活动平静期和高太阳活动扰动期的不同经纬度下,均方根误差(root mean square error,RMSE)分别最大降低1.06 TECU和2.25 TECU,平均绝对误差(mean absolute error,MAE)分别最大降低了0.74 TECU和1.68 TECU,平均相对精度分别最大提升了7.63%和8.97%,组合模型的预测效果要明显优于单一LSTM模型和SSA-LSTM模型. 展开更多
关键词 电离层 总电子含量(TEC)预测 改进的自适应噪声完备集合经验模态分解(ICEEMDAN) 样本熵(SE) 麻雀搜索算法(ssa) 长短期记忆神经网络(LSTM)
在线阅读 下载PDF
基于SSA-ELM的SCH运行状态预测研究
17
作者 陈远玲 石浩 +1 位作者 陈浩楠 欧阳崇钦 《计算机仿真》 2025年第3期332-337,共6页
甘蔗联合收割机发生堵塞主要是在切割-输送-切断流程中,是引起甘蔗收割机工作效率低的主要因素,对甘蔗联合收割机运行状态进行预测是防止堵塞的有效方法。以甘蔗联合收割机刀盘转速、压力及切段辊转速、压力信号为输入,以甘蔗联合收割... 甘蔗联合收割机发生堵塞主要是在切割-输送-切断流程中,是引起甘蔗收割机工作效率低的主要因素,对甘蔗联合收割机运行状态进行预测是防止堵塞的有效方法。以甘蔗联合收割机刀盘转速、压力及切段辊转速、压力信号为输入,以甘蔗联合收割机运行状态为输出建立极限学习机(ELM)预测模型,采用麻雀搜索算法(SSA)对预测模型进行优化,并与GA-ELM、PSO-ELM算法进行对比。研究表明:预测效果最好的是基于麻雀搜索算法优化的极限学习机预测模型(SSA-ELM),训练时间最短,为4.5s,调用训练模型时间为0.2s,准确率达98.33%。研究结果可为甘蔗联合收割机电液控制系统的防堵控制设计提供支持。 展开更多
关键词 甘蔗联合收割机 运行状态预测 极限学习机 麻雀搜索算法
在线阅读 下载PDF
基于SSA-LSTM-Attention的日光温室环境预测模型 被引量:3
18
作者 孟繁佳 许瑞峰 +3 位作者 赵维娟 宋文臻 高艺璇 李莉 《农业工程学报》 北大核心 2025年第11期256-263,共8页
建立准确的温室环境预测模型有助于精准调控温室环境促进作物的生长发育,针对温室小气候具有时序性、非线性和强耦合等特点,该研究提出了一种基于SSA-LSTM-Attention(sparrow search algorithm-long short-term memoryattention mechani... 建立准确的温室环境预测模型有助于精准调控温室环境促进作物的生长发育,针对温室小气候具有时序性、非线性和强耦合等特点,该研究提出了一种基于SSA-LSTM-Attention(sparrow search algorithm-long short-term memoryattention mechanism)的日光温室环境预测模型。首先,通过温室物联网数据采集系统获取温室内外环境数据;其次,使用皮尔逊相关性分析法筛选出强相关性因子;最后,构建环境特征时间序列矩阵输入模型进行温室环境预测。对日光温室的室内温度、室内湿度、光照强度和土壤湿度4种环境因子的预测,SSA-LSTM-Attention模型的平均拟合指数达到了97.9%。相较于反向传播神经网络(back propagation neural network,BP)、门控循环单元(gate recurrent unit,GRU)、长短期记忆神经网络(long short term memory,LSTM)和LSTM-Attention(long short-term memory-attention mechanism)模型,分别提高8.1、4.1、3.5、3.0个百分点;平均绝对百分比误差为2.6%,分别降低6.5、3.2、2.8、2.5个百分点。试验结果表明,通过利用SSA自动优化LSTM-Attention模型的超参数,提高了模型预测精度,为日光温室环境超前调控提供了有效的数据支持。 展开更多
关键词 日光温室 麻雀搜索算法 长短期记忆网络 注意力机制 环境预测模型
在线阅读 下载PDF
基于VMD-SSA-LSSVM组合的汽车NOx排放预测研究 被引量:1
19
作者 吐尔逊·买买提 刘亚楼 +2 位作者 成思怡 祖绍彭 赵江涛 《汽车电器》 2025年第7期114-116,共3页
汽车尾气排放是城市大气污染的主要来源之一,为提升排放预测模型精度及鲁棒性,文章提出构建VMD降噪和SSA-LSSVM组合预测模型。首先通过OBEAS1000车载尾气分析系统采集国V轻型汽油车在乌鲁木齐市河滩快速路的排放数据,经预处理后,利用VM... 汽车尾气排放是城市大气污染的主要来源之一,为提升排放预测模型精度及鲁棒性,文章提出构建VMD降噪和SSA-LSSVM组合预测模型。首先通过OBEAS1000车载尾气分析系统采集国V轻型汽油车在乌鲁木齐市河滩快速路的排放数据,经预处理后,利用VMD算法对排放序列降噪,结合SSA优化LSSVM模型参数,构建VMD-SSA-LSSVM组合模型,并与LSSVM、SSA-LSSVM、VMD-LSSVM模型对比。结果表明,组合模型在NOx预测上RMSE为0.00220、MAE为0.00172、MAPE为2.25%,较单一模型精度显著提升,能有效解析排放瞬态波动特征。 展开更多
关键词 VMD算法 ssa-LSSVM 组合预测模型 排放预测 NOx 鲁棒性
在线阅读 下载PDF
变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法 被引量:4
20
作者 李嘉波 王志璇 +1 位作者 田迪 孙中麟 《储能科学与技术》 北大核心 2025年第2期659-670,共12页
锂离子电池在电动汽车、可再生能源等领域广泛应用,对其剩余使用寿命(remaining useful life,RUL)进行精确预测,能够实时把握电池的内在性能退化状态,降低电池使用风险。本工作提出了一种基于变模态分解(variational mode decomposition... 锂离子电池在电动汽车、可再生能源等领域广泛应用,对其剩余使用寿命(remaining useful life,RUL)进行精确预测,能够实时把握电池的内在性能退化状态,降低电池使用风险。本工作提出了一种基于变模态分解(variational mode decomposition,VMD)、麻雀优化算法(sparrow search algorithm,SSA)和长短期记忆网络(long short-term memory,LSTM)的组合预测算法对锂离子电池剩余寿命进行预测。首先,基于锂离子电池电流、电压以及温度曲线,提取等压差充电时间、等压差充电能量、放电温度峰值和恒流充电时间作为预测RUL的间接健康因子。其次,采用变模态分解法分解容量以避免容量回升的局部波动和测试噪声对RUL预测结果造成干扰。针对传统LSTM模型超参数设置易受到经验和随机性的影响,提出了麻雀优化算法对LSTM模型参数进行优化,以提升模型的预测能力。最后,应用NASA和CALCE数据集,将所提模型与其他模型进行对比。实验结果表明,锂离子电池RUL预测均方根误差控制在2%以内,所提方法具有较高的预测性能。 展开更多
关键词 锂离子电池 剩余使用寿命 变模态分解 麻雀优化算法 长短期记忆网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部