期刊文献+
共找到288,954篇文章
< 1 2 250 >
每页显示 20 50 100
基于IMLZC和SOA-ELM的轴承损伤识别方法 被引量:1
1
作者 龙有强 姜峰 《机电工程》 北大核心 2025年第4期726-734,共9页
现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测... 现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测量指标对信号复杂度变化敏感的特点,将其用于提取滚动轴承振动信号的故障特征以构造特征矩阵;然后,利用海鸥优化算法对极限学习机(ELM)的关键参数进行了优化,建立了参数自适应优化的ELM分类模型;最后,将故障特征输入至SOA-ELM分类模型中进行了训练和测试,完成了滚动轴承不同故障状态的智能诊断和故障程度评估,利用滚动轴承和自吸式离心泵损伤振动信号对IMLZC-SOA-ELM模型的实用性和泛化性开展了研究,并将其与其他特征提取模型开展了对比。研究结果表明:基于IMLZC-SOA-ELM的故障诊断方法不仅能够准确识别滚动轴承的故障,而且能判断故障的严重程度,该故障诊断模型在诊断滚动轴承的故障时分别取得了100%和98.4%的识别准确率,平均识别准确率达到了99.9%,能够有效识别滚动轴承的故障类型和故障程度。与其他特征提取方法相比,IMLZC-SOA-ELM模型具有更高的识别准确率,更适合于滚动轴承的故障识别。 展开更多
关键词 滚动轴承 自吸式离心泵 故障诊断 故障程度和损伤程度 改进多尺度Lempel-Ziv复杂度 海鸥优化算法 参数最优极限学习机
在线阅读 下载PDF
基于SOA边界组件的地球物理正反演软件平台 被引量:1
2
作者 曹礼刚 施明智 罗耀华 《计算机应用与软件》 北大核心 2025年第2期29-34,71,共7页
基于SOA边界组件模式,构建模块化、跨环境的地球物理电法勘探正反演通用软件平台。该平台依托地球物理正反演计算流程和基本业务逻辑,通过构建兼容C#、Python、MATLAB、Surfer及C++等不同语言和环境的接口,实现跨开发环境调用已有的算... 基于SOA边界组件模式,构建模块化、跨环境的地球物理电法勘探正反演通用软件平台。该平台依托地球物理正反演计算流程和基本业务逻辑,通过构建兼容C#、Python、MATLAB、Surfer及C++等不同语言和环境的接口,实现跨开发环境调用已有的算法模块,高效地提高地球物理软件开发效率。为了演示平台的电法勘探正反演计算流程,以直流电阻率法为例进行正反演计算演示,并给出平台的结果展示界面。 展开更多
关键词 soa 地球物理 软件平台
在线阅读 下载PDF
济南典型钢铁企业VOCs排放及对区域O_(3)和SOA的贡献
3
作者 张桂芹 李一凡 +6 位作者 郭腾飞 孙语睫 张俊骁 毛书帅 张淼 高翠玲 魏小锋 《环境科学与技术》 北大核心 2025年第10期200-207,共8页
为探讨钢铁企业不同工序VOCs排放及其对区域臭氧和二次有机气溶胶(SOA)的贡献,文章选择山东大学莱芜区某典型钢铁企业焦化、烧结和炼钢工序进行VOCs采样,无组织废气和经稀释的有组织废气均经大气预浓缩仪除水热脱附系统后,采用气相色谱质... 为探讨钢铁企业不同工序VOCs排放及其对区域臭氧和二次有机气溶胶(SOA)的贡献,文章选择山东大学莱芜区某典型钢铁企业焦化、烧结和炼钢工序进行VOCs采样,无组织废气和经稀释的有组织废气均经大气预浓缩仪除水热脱附系统后,采用气相色谱质谱联用仪进行了105种VOCs分析。结果表明:焦化有组织排放VOCs浓度最高,其中烯烃浓度占比最高为49.03%,主要组分为乙烯和乙烷;其次为烧结工序,主要组分为炔烃和芳香烃;炼钢工序排放浓度最低,以卤代烃为主。焦化、烧结和炼钢VOCs排放因子分别为0.1031、0.0064和0.0015 g/kg,经估算采样企业焦化工序VOCs排放量最大。焦化工序烯烃、烷烃和芳香烃臭氧生成潜势(OFP)较高,具体物种为乙烯、丙烯、乙烷和苯,二次有机气溶胶(SOA)生成潜势最高的物种为苯。研究成果可为山东大学环境空气质量改善提供技术支撑,建议重点加强钢铁行业焦化工序VOCs尤其是活性较强的烯烃及芳香烃等的治理与控制。 展开更多
关键词 VOCS 钢铁企业 排放特征 排放因子 OFP soa
原文传递
基于SOA架构的虚拟仿真护理训练软件开发与应用
4
作者 刘印 王麒深 高宋梅婷 《软件》 2025年第5期1-3,共3页
目前,传统护理训练设备与方法在效果和成本方面的局限性日益凸显,在此背景下,虚拟仿真护理训练软件在护理教学、训练中得到了广泛应用。本文提出了一种基于SOA架构的虚拟仿真护理软件开发思路,在满足大规模护理训练需求的基础上,实现多... 目前,传统护理训练设备与方法在效果和成本方面的局限性日益凸显,在此背景下,虚拟仿真护理训练软件在护理教学、训练中得到了广泛应用。本文提出了一种基于SOA架构的虚拟仿真护理软件开发思路,在满足大规模护理训练需求的基础上,实现多人协同训练场景下的数据交互,并持续优化个人护理训练模型。期望该软件能够在提升护理专业人员训练效果方面发挥积极作用。 展开更多
关键词 soa 虚拟仿真 软件 模型
在线阅读 下载PDF
基于SOA架构的智能座舱操作系统分层设计
5
作者 曹尚贵 王文冲 +2 位作者 张强 王川宿 张鸥 《汽车制造业》 2025年第5期25-29,共5页
智能网联汽车高速发展的背景下,智能座舱系统愈发关键,传统操作系统却缺陷频出。基于SOA(面向服务的架构)的智能座舱操作系统分层设计应运而生,采用五层架构,借虚拟化技术等提升灵活性与开发效率。实际应用显示,该系统优化驾驶体验与安... 智能网联汽车高速发展的背景下,智能座舱系统愈发关键,传统操作系统却缺陷频出。基于SOA(面向服务的架构)的智能座舱操作系统分层设计应运而生,采用五层架构,借虚拟化技术等提升灵活性与开发效率。实际应用显示,该系统优化驾驶体验与安全,满足用户个性化需求,验证了SOA架构在智能座舱领域的可行性,为舱驾一体化及车联网发展提供参考。 展开更多
关键词 智能座舱 操作系统 soa 分层设计
在线阅读 下载PDF
基于SOA-SVM模型的光伏阵列故障诊断研究 被引量:1
6
作者 孙培胜 陈堂贤 +1 位作者 程陈 李正 《电源学报》 北大核心 2025年第1期143-150,共8页
针对支持向量机SVM(support vector machine)用于光伏阵列故障诊断时准确率不高、且易受核函数与惩罚因子参数影响的问题,提出1种基于海鸥优化算法SOA(seagull optimization algorithm)支持向量机的光伏阵列故障诊断方法。引入海鸥优化... 针对支持向量机SVM(support vector machine)用于光伏阵列故障诊断时准确率不高、且易受核函数与惩罚因子参数影响的问题,提出1种基于海鸥优化算法SOA(seagull optimization algorithm)支持向量机的光伏阵列故障诊断方法。引入海鸥优化算法对SVM模型进行参数寻优,建立基于最优参数的SOA-SVM故障诊断模型;利用MATLAB软件搭建光伏阵列仿真模型,提取不同故障类型下的特征参数并输入到SOA-SVM模型进行故障诊断。实验结果表明:经SOA优化后的SVM模型故障诊断准确率显著提高,且相比于基于人工蜂群ABC(artificial bee colony)算法的ABC-SVM模型和基于粒子群优化PSO(particle swarm optimization)算法的PSO-SVM模型,SOA-SVM模型具有更快的寻优收敛迭代速度和更高的故障诊断准确率。 展开更多
关键词 光伏阵列 故障诊断 海鸥优化算法 支持向量机
在线阅读 下载PDF
基于周期变异SOA-SVMD爆破振动信号降噪研究
7
作者 李洪超 沈成行 +4 位作者 石玉莲 黄国泉 张继 衣佳欣 王凯 《振动与冲击》 北大核心 2025年第21期172-181,共10页
针对爆破振动信号受环境噪声干扰严重的问题,提出一种基于周期变异海鸥优化算法(seagull optimization algorithm,SOA)逐次变分模态分解(successive variational modal decomposition,SVMD)参数的降噪方法。首先,引入周期变异策略改进SO... 针对爆破振动信号受环境噪声干扰严重的问题,提出一种基于周期变异海鸥优化算法(seagull optimization algorithm,SOA)逐次变分模态分解(successive variational modal decomposition,SVMD)参数的降噪方法。首先,引入周期变异策略改进SOA以克服局部最优缺陷,并用于优化SVMD的maxAlpha参数;其次,基于多尺度排列熵阈值筛选噪声分量,重构有效模态实现降噪。通过仿真信号试验对比经验模态分解、小波阈值法、集合经验模态分解-多尺度排列熵、鲸鱼优化算法-变分模态分解-多尺度排列熵及该研究的方法,以信噪比(signal-to-noise ratio,SNR)和均方根误差为评价指标。结果表明:周期变异SOA-SVMD的SNR(20.588)最高,均方根误差(0.160)最小,性能表现最佳。进一步以江西某地下矿山爆破振动实测信号验证,降噪后信号能量比为0.971,信偏比为12.020,均值曲率为356.480,波形平滑度显著提高。该研究的方法为复杂环境下爆破振动信号的特征提取提供了高精度解决方案。 展开更多
关键词 爆破振动信号 周期变异海鸥优化算法(soa) 逐次变分模态分解(SVMD) 多尺度排列熵 信号降噪
在线阅读 下载PDF
基于特征评估与改进SOA-DELM的变压器状态预测方法 被引量:4
8
作者 刘学芳 于鲜莉 +3 位作者 陈波 温欣 王英杰 王磊 《内蒙古电力技术》 2025年第1期80-89,共10页
为实现变压器油绝缘状态的准确预警与智能监测,以内蒙古地区部分电厂历年送检变压器油中溶解气体数据为检测样本展开分析,提出了一种基于特征评估与改进海鸥优化算法(Seagull Optimization Algorithm,SOA)优化深度强化学习机(Deep Extre... 为实现变压器油绝缘状态的准确预警与智能监测,以内蒙古地区部分电厂历年送检变压器油中溶解气体数据为检测样本展开分析,提出了一种基于特征评估与改进海鸥优化算法(Seagull Optimization Algorithm,SOA)优化深度强化学习机(Deep Extreme Learning Machine,DELM)模型的变压器油绝缘状态预测方法,对运行变压器油中溶解氢气与总烃含量进行准确预测。特征提取方面,通过计算输入向量与预测输出的互信息,评估特征间的关联程度,由关联度最高的特征构成最简输入向量;预测输出方面,通过增加附加变量,改进SOA参数选取方式,使算法快速收敛、避免陷入局部最优,实现DELM模型网络权重与隐藏层偏置的优化。最后,对比多种预测模型,依次分析7个电厂历史实测样本,验证该方法的适用性。 展开更多
关键词 变压器油 溶解气体 特征评估 海鸥优化算法 深度极限学习机 绝缘状态预测
在线阅读 下载PDF
SBAS-InSAR技术融合SOA-BP模型的矿区地表大范围沉降预测模型 被引量:1
9
作者 朱董 徐良骥 +1 位作者 刘潇鹏 曹宗友 《矿业研究与开发》 北大核心 2025年第6期94-102,共9页
针对传统预测模型易陷入局部最优解等问题,通过海鸥优化算法(SOA)对BP神经网络的权值和阈值进行优化,构建了SOA-BP预测模型,该模型基于多个高相干性点的时序沉降值,可实现对矿区地表沉降的大范围精准预测。采用SBAS-InSAR技术处理59幅... 针对传统预测模型易陷入局部最优解等问题,通过海鸥优化算法(SOA)对BP神经网络的权值和阈值进行优化,构建了SOA-BP预测模型,该模型基于多个高相干性点的时序沉降值,可实现对矿区地表沉降的大范围精准预测。采用SBAS-InSAR技术处理59幅研究区SAR影像,并提取了该区域6997个高相干性点的时序沉降值,基于监测数据,采用SOA-BP预测模型对研究区开展地表时序沉降预测,并计算了预测精度。研究结果表明:SOA-BP模型相较于BP模型的最大均方根误差降低了82.77%,最大平均绝对值误差降低了81.13%;随着时间推移,SOA-BP模型残差分布在±5 mm范围内的样本占比从79.59%提升至91.91%,最大残差极值从16.7224 mm缩小至9.4219 mm。SOA-BP模型预测精度较高,能够准确预测地表沉降规律。 展开更多
关键词 SBAS-InSAR 大范围沉降 soa-BP预测模型 时序沉降预测
原文传递
基于SOA的软件服务可靠性测试平台设计与应用研究 被引量:1
10
作者 马梦杰 徒伟 《长江信息通信》 2025年第2期100-102,共3页
传统的软件测试方法往往侧重于单个模块或功能的测试,难以全面评估SOA架构下软件服务的整体可靠性。因此,提出设计基于SOA的软件服务可靠性测试平台显得尤为重要。针对软件服务可靠性测试平台设计SOA架构,明确设计目标与功能要求,其中,... 传统的软件测试方法往往侧重于单个模块或功能的测试,难以全面评估SOA架构下软件服务的整体可靠性。因此,提出设计基于SOA的软件服务可靠性测试平台显得尤为重要。针对软件服务可靠性测试平台设计SOA架构,明确设计目标与功能要求,其中,平台软件设计围绕WEB数据库、服务接入与数据处理三大模块展开。最后,通过实验验证了该平台的稳定性,实验结果表明:该平台能够准确接收服务数据,减少用户在使用过程中遇到的问题和故障,从而增强用户对软件的信任感和满意度。 展开更多
关键词 软件服务 soa架构 测试平台 平台设计 可靠性
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
11
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
12
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
基于SOA的铁路应急通信中视频压缩算法
13
作者 张瑞 包文艳 《兵工自动化》 北大核心 2025年第9期18-22,38,共6页
为提升铁路应急通信中的视频压缩能力,提出一种基于面向服务架构(service oriented architecture,SOA)的铁路应急通信中视频压缩算法。构建SOA的铁路应急通信模型,通过主成分分析(principal component analysis,PCA)算法初次压缩AI视频... 为提升铁路应急通信中的视频压缩能力,提出一种基于面向服务架构(service oriented architecture,SOA)的铁路应急通信中视频压缩算法。构建SOA的铁路应急通信模型,通过主成分分析(principal component analysis,PCA)算法初次压缩AI视频原始数据,保留有价值的特征向量后,采用多级树集合分裂(set partitioning in hierarchical trees,SPIHT)压缩算法将初次压缩后AI视频图像分解成多个小波系数,经小波系数压缩后,通过哈夫曼编码输出压缩后AI视频比特流,经逆哈夫曼编码和逆SPIHT压缩算法完成压缩后AI视频图像重建,在信息服务层和SOA架构层支持下,通过应用层查看压缩后AI视频。实验结果表明:该算法的平均视频压缩比为48.34,在不同压缩比下,该算法压缩后AI视频图像的SSIM值均在0.955以上、PSNR值均高于37.13,可有效提升AI视频图像质量且压缩能力较强。 展开更多
关键词 soa架构 铁路应急通信 视频压缩算法 AI视频 PCA分析 SPIHT压缩算法
在线阅读 下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
14
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于KPCA-SOA-KELM的海底油气管道内腐蚀速率预测
15
作者 范蓬勃 张新生 《热加工工艺》 北大核心 2025年第19期64-68,73,共6页
为提高海底油气管道内腐蚀速率预测的精度,选取南海某油田混输管段腐蚀数据为例,建立基于核主成分分析(KPCA)、海鸥优化算法(SOA)和核极限学习机(KELM)的内腐蚀速率预测模型。首先利用KPCA对影响管道内腐蚀的因素进行降维,确定输入变量... 为提高海底油气管道内腐蚀速率预测的精度,选取南海某油田混输管段腐蚀数据为例,建立基于核主成分分析(KPCA)、海鸥优化算法(SOA)和核极限学习机(KELM)的内腐蚀速率预测模型。首先利用KPCA对影响管道内腐蚀的因素进行降维,确定输入变量;然后利用KELM对内腐蚀速率进行建模预测,并利用SOA对KELM模型中的核参数和正则化系数进行寻优。结果表明:KPCA-SOA-KELM预测模型的平均绝对百分比误差仅为1.8310%,均方根误差为0.05。针对海底油气管道内腐蚀速率的预测问题,相比于其他模型,该模型的预测结果更加准确。 展开更多
关键词 海底油气管道 内腐蚀速率 核主成分分析 海鸥优化算法 核极限学习机
原文传递
基于改进SOA和岭回归赋权的风电负荷组合预测
16
作者 张树国 张俊炜 《华北电力大学学报(自然科学版)》 北大核心 2025年第6期60-68,79,共10页
为促进可再生能源应用和提高电力系统的可靠性,以风力发电负荷数据为研究对象,基于改进海鸥优化算法和岭回归权重赋值对风电负荷变化进行预测。首先,利用互补集合经验模态分解和经验小波变换构成的二次分解方法对原始数据进行去噪处理,... 为促进可再生能源应用和提高电力系统的可靠性,以风力发电负荷数据为研究对象,基于改进海鸥优化算法和岭回归权重赋值对风电负荷变化进行预测。首先,利用互补集合经验模态分解和经验小波变换构成的二次分解方法对原始数据进行去噪处理,以降低原始序列的波动性。然后,使用多策略改进的海鸥优化算法对BP神经网络和最小二乘支持向量机两种模型进行优化,并用优化后的模型分别对分解结果进行建模。最后,基于岭回归权重赋值,融合两个预测模型的输出分量,获得总的负荷值。实验证明:相较于其他预测模型,该模型具有更高的预测精度,能够准确捕捉风力发电负荷的变化趋势,可以为风力发电负荷预测研究提供参考,有望在可再生能源领域的实际应用中发挥积极作用。 展开更多
关键词 风电负荷 CEEMD-EWT二次分解 改进海鸥优化算法 组合预测 岭回归
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
17
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
18
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
19
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
20
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部