Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions var...Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions varies significantly from one farmer to another, making it challenging to accurately estimate crop production through crop models. This limitation has implications for the reliability of using crop models as agricultural decision-making support tools. To support decision making in agriculture, an approach combining a genetic algorithm (GA) with the crop model AquaCrop is proposed for a location-specific calibration of maize cropping. In this approach, AquaCrop is used to simulate maize crop yield while the GA is used to derive optimal parameters set at grid cell resolution from various combinations of cultivar parameters and crop management in the process of crop and management options calibration. Statistics on pairwise simulated and observed yields indicate that the coefficient of determination varies from 0.20 to 0.65, with a yield deviation ranging from 8% to 36% across Burkina Faso (BF). An analysis of the optimal parameter sets shows that regardless of the climatic zone, a base temperature of 10˚C and an upper temperature of 32˚C is observed in at least 50% of grid cells. The growing season length and the harvest index vary significantly across BF, with the highest values found in the Soudanian zone and the lowest values in the Sahelian zone. Regarding management strategies, the fertility mean rate is approximately 35%, 39%, and 49% for the Sahelian, Soudano-sahelian, and Soudanian zones, respectively. The mean weed cover is around 36%, with the Sahelian and Soudano-sahelian zones showing the highest variability. The proposed approach can be an alternative to the conventional one-size-fits-all approach commonly used for regional crop modeling. Moreover, it has the potential to explore the performance of cropping strategies to adapt to changing climate conditions.展开更多
In this study,a completely different approach to optimization is introduced through the development of a novel metaheuristic algorithm called the Barber Optimization Algorithm(BaOA).Inspired by the human interactions ...In this study,a completely different approach to optimization is introduced through the development of a novel metaheuristic algorithm called the Barber Optimization Algorithm(BaOA).Inspired by the human interactions between barbers and customers,BaOA captures two key processes:the customer’s selection of a hairstyle and the detailed refinement during the haircut.These processes are translated into a mathematical framework that forms the foundation of BaOA,consisting of two critical phases:exploration,representing the creative selection process,and exploitation,which focuses on refining details for optimization.The performance of BaOA is evaluated using 52 standard benchmark functions,including unimodal,high-dimensional multimodal,fixed-dimensional multimodal,and the Congress on Evolutionary Computation(CEC)2017 test suite.This comprehensive assessment highlights BaOA’s ability to balance exploration and exploitation effectively,resulting in high-quality solutions.A comparative analysis against twelve widely known metaheuristic algorithms further demonstrates BaOA’s superior performance,as it consistently delivers better results across most benchmark functions.To validate its real-world applicability,BaOA is tested on four engineering design problems,illustrating its capability to address practical challenges with remarkable efficiency.The results confirm BaOA’s versatility and reliability as an optimization tool.This study not only introduces an innovative algorithm but also establishes its effectiveness in solving complex problems,providing a foundation for future research and applications in diverse scientific and engineering domains.展开更多
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion...Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.展开更多
DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we presen...DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we present Fs-LSA (F-score based Learning Search Algorithm), a novel gene selection algorithm designed to enhance the precision and efficiency of target gene identification from microarray data for cancer classification. This algorithm is divided into two phases: the first leverages F-score values to prioritize and select feature genes with the most significant differential expression;the second phase introduces our Learning Search Algorithm (LSA), which harnesses swarm intelligence to identify the optimal subset among the remaining genes. Inspired by human social learning, LSA integrates historical data and collective intelligence for a thorough search, with a dynamic control mechanism that balances exploration and refinement, thereby enhancing the gene selection process. We conducted a rigorous validation of Fs-LSA’s performance using eight publicly available cancer microarray expression datasets. Fs-LSA achieved accuracy, precision, sensitivity, and F1-score values of 0.9932, 0.9923, 0.9962, and 0.994, respectively. Comparative analyses with state-of-the-art algorithms revealed Fs-LSA’s superior performance in terms of simplicity and efficiency. Additionally, we validated the algorithm’s efficacy independently using glioblastoma data from GEO and TCGA databases. It was significantly superior to those of the comparison algorithms. Importantly, the driver genes identified by Fs-LSA were instrumental in developing a predictive model as an independent prognostic indicator for glioblastoma, underscoring Fs-LSA’s transformative potential in genomics and personalized medicine.展开更多
The optimization of turbine blades is crucial in improving the efficiency of wind energy systems and developing clean energy production models.This paper presented a novel approach to the structural design of smallsca...The optimization of turbine blades is crucial in improving the efficiency of wind energy systems and developing clean energy production models.This paper presented a novel approach to the structural design of smallscale turbine blades using the Artificial Bee Colony(ABC)Algorithm based on the stochastic method to optimize both mass and cost(objective functions).The study used computational fluid dynamics(CFD)and structural analysis to consider the fluid-structure interaction.The optimization algorithm defined several variables:structural constraints,the type of composite material,and the number of composite layers to form a mathematical model.The numerical modeling was performed using the Ansys Fluent software and its Fluid-Structure Interaction(FSI)module.The ANSYS Composite PrePost(ACP)advanced composite modeling method was utilized in the structural design of composite materials.This study showed that the structurally optimized small-scale turbine blades provided a sustainable solution with improved efficiency compared to traditional designs.Furthermore,using CFD,structural analysis,and material characterization techniques first considered in this study highlights the importance of considering structural behavior when optimizing turbine blade designs.展开更多
The exponential growth in the scale of power systems has led to a significant increase in the complexity of dispatch problem resolution,particularly within multi-area interconnected power grids.This complexity necessi...The exponential growth in the scale of power systems has led to a significant increase in the complexity of dispatch problem resolution,particularly within multi-area interconnected power grids.This complexity necessitates the employment of distributed solution methodologies,which are not only essential but also highly desirable.In the realm of computational modelling,the multi-area economic dispatch problem(MAED)can be formulated as a linearly constrained separable convex optimization problem.The proximal point algorithm(PPA)is particularly adept at addressing such mathematical constructs effectively.This study introduces parallel(PPPA)and serial(SPPA)variants of the PPA as distributed algorithms,specifically designed for the computational modelling of the MAED.The PPA introduces a quadratic term into the objective function,which,while potentially complicating the iterative updates of the algorithm,serves to dampen oscillations near the optimal solution,thereby enhancing the convergence characteristics.Furthermore,the convergence efficiency of the PPA is significantly influenced by the parameter c.To address this parameter sensitivity,this research draws on trend theory from stock market analysis to propose trend theory-driven distributed PPPA and SPPA,thereby enhancing the robustness of the computational models.The computational models proposed in this study are anticipated to exhibit superior performance in terms of convergence behaviour,stability,and robustness with respect to parameter selection,potentially outperforming existing methods such as the alternating direction method of multipliers(ADMM)and Auxiliary Problem Principle(APP)in the computational simulation of power system dispatch problems.The simulation results demonstrate that the trend theory-based PPPA,SPPA,ADMM and APP exhibit significant robustness to the initial value of parameter c,and show superior convergence characteristics compared to the residual balancing ADMM.展开更多
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource...The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.展开更多
Airports around the world commonly face challenges in managing airport slot allocation.Effective management of limited slot resources by civil aviation authority often requires redistributing requested slots among air...Airports around the world commonly face challenges in managing airport slot allocation.Effective management of limited slot resources by civil aviation authority often requires redistributing requested slots among airlines.The allocation process must operate within the prescribed capacity limits of the airport while adhering to established priorities and regulations.Additionally,ensuring market fairness is a key objective,as the value of airport slots plays a significant role in the adjustment process.This transforms the traditional time-shift-based problem into a complex multi-objective optimization problem.Addressing such complications is of significant importance to airlines,airports,and passengers alike.Due to the complexity of fairness metrics,traditional integer programming models encounter difficulties in finding effective solutions.This study proposes a neighborhood search strategy to tackle the single airport slot allocation,making it adaptable to both static and rolling capacity scenarios.Two Genetic Algorithms(GAs)are introduced,corresponding to time adjustment and sequence adjustment strategies,respectively.The GA based on the time adjustment strategy demonstrates high robustness,while the sequence adjustment strategy builds upon this GA to develop a simple heuristic algorithm that offers rapid convergence.Case studies conducted at seven airports in China confirm that all three algorithms yield high-quality adjustment solutions suitable for the majority of applications.Further,Pareto analysis reveals that these algorithms effectively balance the adjustment shifts and fairness metrics,demonstrating high practical value and broad applicability.展开更多
This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D n...This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications.展开更多
The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This pape...The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.展开更多
Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and v...Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials.展开更多
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting...Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.展开更多
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl...This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.展开更多
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from...Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
To curb the worsening tropospheric ozone(O_(3))pollution problem in China,a rapid and accurate identification of O_(3)-precursor sensitivity(OPS)is a crucial prerequisite for formulating effective contingency O_(3) po...To curb the worsening tropospheric ozone(O_(3))pollution problem in China,a rapid and accurate identification of O_(3)-precursor sensitivity(OPS)is a crucial prerequisite for formulating effective contingency O_(3) pollution control strategies.However,currently widely-used methods,such as statistical models and numerical models,exhibit inherent limitations in identifying OPS in a timely and accurate manner.In this study,we developed a novel approach to identify OPS based on eXtreme Gradient Boosting model,Shapley additive explanation(SHAP)al-gorithm,and volatile organic compound(VOC)photochemical decay adjustment,using the meteorology and speciated pollutant monitoring data as the input.By comparing the difference in SHAP values between base sce-nario and precursor reduction scenario for nitrogen oxides(NO_(x))and VOCs,OPS was divided into NO_(x)-limited,VOCs-limited and transition regime.Using the long-lasting O_(3) pollution episode in the autumn of 2022 at the Guangdong-Hong Kong-Macao Greater Bay Area(GBA)as an example,we demonstrated large spatiotemporal heterogeneities of OPS over the GBA,which were generally shifted from NO_(x)-limited to VOCs-limited from September to October and more inclined to be VOCs-limited at the central and NO_(x)-limited in the peripheral areas.This study developed an innovative OPS identification method by comparing the difference in SHAP value before and after precursor emission reduction.Our method enables the accurate identification of OPS in the time scale of seconds,thereby providing a state-of-the-art tool for the rapid guidance of spatial-specific O_(3) control strategies.展开更多
A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional an...A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional and single-line style,a road is no longer a linkage of road nodes but abstracted as a network node.Similarly,a road node is abstracted as the linkage of two ordered single-directional roads.This model can describe turn restrictions,circular roads,and other real scenarios usually described using a super-graph.Then a computing framework for optimal path finding(OPF)is presented.It is proved that classical Dijkstra and A algorithms can be directly used for OPF computing of any real-world road networks by transferring a super-graph to an SLSD network.Finally,using Singapore road network data,the proposed conceptual model and its corresponding optimal path finding algorithms are validated using a two-step optimal path finding algorithm with a pre-computing strategy based on the SLSD road network.展开更多
Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture ...Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture design process. However, the design of a fixture relies heavily on the designerts expertise and experience up to now. Therefore, a new approach to loeator layout determination for workpieces with arbitrary complex surfaces is pro- posed for the first time. Firstly, based on the fuzzy judgment method, the proper locating reference and locator - numbers are determined with consideration of surface type, surface area and position tolerance. Secondly, the lo- cator positions are optimized by genetic algorithm(GA). Finally, a typical example shows that the approach is su- perior to the experiential method and can improve positioning accuracy effectively.展开更多
In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ...In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.展开更多
A hybrid optimal algorithm, named the SAA-PA in brief, based on the simulated annealing algorithm (SAA) and the Powell algorithm (PA) is proposed. The proposed algorithm puts the random search strategy of the SAA ...A hybrid optimal algorithm, named the SAA-PA in brief, based on the simulated annealing algorithm (SAA) and the Powell algorithm (PA) is proposed. The proposed algorithm puts the random search strategy of the SAA into the PA, which can prevent optimizing courses from trapping in local optima. The SAA-PA can effectively solve multimodal optimization in the distributed multi-pump Raman amplifier (DMRA). Optimal results show that, under the conditions of the on-off gain of 10 dB, the gain bandwidth of larger than 80 nm and the fiber length of 80 km, the gain ripple of less than 1.25 dB can be designed from the DMRA with only four backward pumps after the optimization of the proposed SAA-PA. Compared with the pure SAA, the SAA-PA can attain a lower gain ripple with the same number of pumps. Also, the relationship between the optimal signal bandwidth and the number of pumps can be simulated numerically with the SAA-PA.展开更多
文摘Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions varies significantly from one farmer to another, making it challenging to accurately estimate crop production through crop models. This limitation has implications for the reliability of using crop models as agricultural decision-making support tools. To support decision making in agriculture, an approach combining a genetic algorithm (GA) with the crop model AquaCrop is proposed for a location-specific calibration of maize cropping. In this approach, AquaCrop is used to simulate maize crop yield while the GA is used to derive optimal parameters set at grid cell resolution from various combinations of cultivar parameters and crop management in the process of crop and management options calibration. Statistics on pairwise simulated and observed yields indicate that the coefficient of determination varies from 0.20 to 0.65, with a yield deviation ranging from 8% to 36% across Burkina Faso (BF). An analysis of the optimal parameter sets shows that regardless of the climatic zone, a base temperature of 10˚C and an upper temperature of 32˚C is observed in at least 50% of grid cells. The growing season length and the harvest index vary significantly across BF, with the highest values found in the Soudanian zone and the lowest values in the Sahelian zone. Regarding management strategies, the fertility mean rate is approximately 35%, 39%, and 49% for the Sahelian, Soudano-sahelian, and Soudanian zones, respectively. The mean weed cover is around 36%, with the Sahelian and Soudano-sahelian zones showing the highest variability. The proposed approach can be an alternative to the conventional one-size-fits-all approach commonly used for regional crop modeling. Moreover, it has the potential to explore the performance of cropping strategies to adapt to changing climate conditions.
文摘In this study,a completely different approach to optimization is introduced through the development of a novel metaheuristic algorithm called the Barber Optimization Algorithm(BaOA).Inspired by the human interactions between barbers and customers,BaOA captures two key processes:the customer’s selection of a hairstyle and the detailed refinement during the haircut.These processes are translated into a mathematical framework that forms the foundation of BaOA,consisting of two critical phases:exploration,representing the creative selection process,and exploitation,which focuses on refining details for optimization.The performance of BaOA is evaluated using 52 standard benchmark functions,including unimodal,high-dimensional multimodal,fixed-dimensional multimodal,and the Congress on Evolutionary Computation(CEC)2017 test suite.This comprehensive assessment highlights BaOA’s ability to balance exploration and exploitation effectively,resulting in high-quality solutions.A comparative analysis against twelve widely known metaheuristic algorithms further demonstrates BaOA’s superior performance,as it consistently delivers better results across most benchmark functions.To validate its real-world applicability,BaOA is tested on four engineering design problems,illustrating its capability to address practical challenges with remarkable efficiency.The results confirm BaOA’s versatility and reliability as an optimization tool.This study not only introduces an innovative algorithm but also establishes its effectiveness in solving complex problems,providing a foundation for future research and applications in diverse scientific and engineering domains.
文摘Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.
基金supported by the National Natural Science Foundation of China(Grant Number 62341210)Natural Science Foundation of Guangxi Province(Grant Number:2025GXNSFHA069267)Science and Technology Development Plan for Baise City(Grant Number 20233654).
文摘DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we present Fs-LSA (F-score based Learning Search Algorithm), a novel gene selection algorithm designed to enhance the precision and efficiency of target gene identification from microarray data for cancer classification. This algorithm is divided into two phases: the first leverages F-score values to prioritize and select feature genes with the most significant differential expression;the second phase introduces our Learning Search Algorithm (LSA), which harnesses swarm intelligence to identify the optimal subset among the remaining genes. Inspired by human social learning, LSA integrates historical data and collective intelligence for a thorough search, with a dynamic control mechanism that balances exploration and refinement, thereby enhancing the gene selection process. We conducted a rigorous validation of Fs-LSA’s performance using eight publicly available cancer microarray expression datasets. Fs-LSA achieved accuracy, precision, sensitivity, and F1-score values of 0.9932, 0.9923, 0.9962, and 0.994, respectively. Comparative analyses with state-of-the-art algorithms revealed Fs-LSA’s superior performance in terms of simplicity and efficiency. Additionally, we validated the algorithm’s efficacy independently using glioblastoma data from GEO and TCGA databases. It was significantly superior to those of the comparison algorithms. Importantly, the driver genes identified by Fs-LSA were instrumental in developing a predictive model as an independent prognostic indicator for glioblastoma, underscoring Fs-LSA’s transformative potential in genomics and personalized medicine.
基金Scientific Research Projects Unit of Erciyes University under the contract numbers:FDK-2019-8616 and FDK-2025-14774(https://bap.erciyes.edu.tr/,accessed on 12 October 2025)The Scientific and Technological Research Council of Turkey(TUB˙ITAK)for the Doctoral Scholarship for Priority Areas 2211/C for Ramazan OZKAN(https://tubitak.gov.tr,accessed on 12 October 2025).
文摘The optimization of turbine blades is crucial in improving the efficiency of wind energy systems and developing clean energy production models.This paper presented a novel approach to the structural design of smallscale turbine blades using the Artificial Bee Colony(ABC)Algorithm based on the stochastic method to optimize both mass and cost(objective functions).The study used computational fluid dynamics(CFD)and structural analysis to consider the fluid-structure interaction.The optimization algorithm defined several variables:structural constraints,the type of composite material,and the number of composite layers to form a mathematical model.The numerical modeling was performed using the Ansys Fluent software and its Fluid-Structure Interaction(FSI)module.The ANSYS Composite PrePost(ACP)advanced composite modeling method was utilized in the structural design of composite materials.This study showed that the structurally optimized small-scale turbine blades provided a sustainable solution with improved efficiency compared to traditional designs.Furthermore,using CFD,structural analysis,and material characterization techniques first considered in this study highlights the importance of considering structural behavior when optimizing turbine blade designs.
基金funded by Guangxi Science and Technology Base and Talent Special Project,grant number GuiKeAD20159077Foundation of Guilin University of Technology,grant number GLUTQD2018001.
文摘The exponential growth in the scale of power systems has led to a significant increase in the complexity of dispatch problem resolution,particularly within multi-area interconnected power grids.This complexity necessitates the employment of distributed solution methodologies,which are not only essential but also highly desirable.In the realm of computational modelling,the multi-area economic dispatch problem(MAED)can be formulated as a linearly constrained separable convex optimization problem.The proximal point algorithm(PPA)is particularly adept at addressing such mathematical constructs effectively.This study introduces parallel(PPPA)and serial(SPPA)variants of the PPA as distributed algorithms,specifically designed for the computational modelling of the MAED.The PPA introduces a quadratic term into the objective function,which,while potentially complicating the iterative updates of the algorithm,serves to dampen oscillations near the optimal solution,thereby enhancing the convergence characteristics.Furthermore,the convergence efficiency of the PPA is significantly influenced by the parameter c.To address this parameter sensitivity,this research draws on trend theory from stock market analysis to propose trend theory-driven distributed PPPA and SPPA,thereby enhancing the robustness of the computational models.The computational models proposed in this study are anticipated to exhibit superior performance in terms of convergence behaviour,stability,and robustness with respect to parameter selection,potentially outperforming existing methods such as the alternating direction method of multipliers(ADMM)and Auxiliary Problem Principle(APP)in the computational simulation of power system dispatch problems.The simulation results demonstrate that the trend theory-based PPPA,SPPA,ADMM and APP exhibit significant robustness to the initial value of parameter c,and show superior convergence characteristics compared to the residual balancing ADMM.
文摘The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.
基金supported in part by the National Natural Science Foundation of China(Nos.62167003,52302421)in part by the Diversified Investment Fund of Tianjin,China(No.23JCQNJC00210)。
文摘Airports around the world commonly face challenges in managing airport slot allocation.Effective management of limited slot resources by civil aviation authority often requires redistributing requested slots among airlines.The allocation process must operate within the prescribed capacity limits of the airport while adhering to established priorities and regulations.Additionally,ensuring market fairness is a key objective,as the value of airport slots plays a significant role in the adjustment process.This transforms the traditional time-shift-based problem into a complex multi-objective optimization problem.Addressing such complications is of significant importance to airlines,airports,and passengers alike.Due to the complexity of fairness metrics,traditional integer programming models encounter difficulties in finding effective solutions.This study proposes a neighborhood search strategy to tackle the single airport slot allocation,making it adaptable to both static and rolling capacity scenarios.Two Genetic Algorithms(GAs)are introduced,corresponding to time adjustment and sequence adjustment strategies,respectively.The GA based on the time adjustment strategy demonstrates high robustness,while the sequence adjustment strategy builds upon this GA to develop a simple heuristic algorithm that offers rapid convergence.Case studies conducted at seven airports in China confirm that all three algorithms yield high-quality adjustment solutions suitable for the majority of applications.Further,Pareto analysis reveals that these algorithms effectively balance the adjustment shifts and fairness metrics,demonstrating high practical value and broad applicability.
文摘This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications.
文摘The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.
基金supported by the Major Project for the Integration of ScienceEducation and Industry (Grant No.2025ZDZX02)。
文摘Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials.
基金National Key Research and Development Program of China,No.2023YFC3006704National Natural Science Foundation of China,No.42171047CAS-CSIRO Partnership Joint Project of 2024,No.177GJHZ2023097MI。
文摘Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.
基金supported by the Research Project of China Southern Power Grid(No.056200KK52222031).
文摘This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.
基金supported by the Major Science and Technology Programs in Henan Province(No.241100210100)Henan Provincial Science and Technology Research Project(No.252102211085,No.252102211105)+3 种基金Endogenous Security Cloud Network Convergence R&D Center(No.602431011PQ1)The Special Project for Research and Development in Key Areas of Guangdong Province(No.2021ZDZX1098)The Stabilization Support Program of Science,Technology and Innovation Commission of Shenzhen Municipality(No.20231128083944001)The Key scientific research projects of Henan higher education institutions(No.24A520042).
文摘Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2020B1111360003)the National Natural Science Foundation of China(Nos.42465008 and 42105164)+2 种基金Yunnan Science and Technology Department Project(No.202501AT070239)Yunnan Science and Technology Department Youth Project(No.202401AU070202)Xianyang Rapid Response Decision Support Project for Ozone(No.YZ2024-ZB019).
文摘To curb the worsening tropospheric ozone(O_(3))pollution problem in China,a rapid and accurate identification of O_(3)-precursor sensitivity(OPS)is a crucial prerequisite for formulating effective contingency O_(3) pollution control strategies.However,currently widely-used methods,such as statistical models and numerical models,exhibit inherent limitations in identifying OPS in a timely and accurate manner.In this study,we developed a novel approach to identify OPS based on eXtreme Gradient Boosting model,Shapley additive explanation(SHAP)al-gorithm,and volatile organic compound(VOC)photochemical decay adjustment,using the meteorology and speciated pollutant monitoring data as the input.By comparing the difference in SHAP values between base sce-nario and precursor reduction scenario for nitrogen oxides(NO_(x))and VOCs,OPS was divided into NO_(x)-limited,VOCs-limited and transition regime.Using the long-lasting O_(3) pollution episode in the autumn of 2022 at the Guangdong-Hong Kong-Macao Greater Bay Area(GBA)as an example,we demonstrated large spatiotemporal heterogeneities of OPS over the GBA,which were generally shifted from NO_(x)-limited to VOCs-limited from September to October and more inclined to be VOCs-limited at the central and NO_(x)-limited in the peripheral areas.This study developed an innovative OPS identification method by comparing the difference in SHAP value before and after precursor emission reduction.Our method enables the accurate identification of OPS in the time scale of seconds,thereby providing a state-of-the-art tool for the rapid guidance of spatial-specific O_(3) control strategies.
基金The National Key Technology R&D Program of China during the 11th Five Year Plan Period(No.2008BAJ11B01)
文摘A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional and single-line style,a road is no longer a linkage of road nodes but abstracted as a network node.Similarly,a road node is abstracted as the linkage of two ordered single-directional roads.This model can describe turn restrictions,circular roads,and other real scenarios usually described using a super-graph.Then a computing framework for optimal path finding(OPF)is presented.It is proved that classical Dijkstra and A algorithms can be directly used for OPF computing of any real-world road networks by transferring a super-graph to an SLSD network.Finally,using Singapore road network data,the proposed conceptual model and its corresponding optimal path finding algorithms are validated using a two-step optimal path finding algorithm with a pre-computing strategy based on the SLSD road network.
基金Supported by the Natural Science Foundation of Jiangxi Province(2009GZC0104)the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ10521)~~
文摘Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture design process. However, the design of a fixture relies heavily on the designerts expertise and experience up to now. Therefore, a new approach to loeator layout determination for workpieces with arbitrary complex surfaces is pro- posed for the first time. Firstly, based on the fuzzy judgment method, the proper locating reference and locator - numbers are determined with consideration of surface type, surface area and position tolerance. Secondly, the lo- cator positions are optimized by genetic algorithm(GA). Finally, a typical example shows that the approach is su- perior to the experiential method and can improve positioning accuracy effectively.
基金The National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)the Cultivatable Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (No.706028)
文摘In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.
基金The Start-Up Research Foundation of Nanjing Uni-versity of Information Science and Technology (No.QD60)
文摘A hybrid optimal algorithm, named the SAA-PA in brief, based on the simulated annealing algorithm (SAA) and the Powell algorithm (PA) is proposed. The proposed algorithm puts the random search strategy of the SAA into the PA, which can prevent optimizing courses from trapping in local optima. The SAA-PA can effectively solve multimodal optimization in the distributed multi-pump Raman amplifier (DMRA). Optimal results show that, under the conditions of the on-off gain of 10 dB, the gain bandwidth of larger than 80 nm and the fiber length of 80 km, the gain ripple of less than 1.25 dB can be designed from the DMRA with only four backward pumps after the optimization of the proposed SAA-PA. Compared with the pure SAA, the SAA-PA can attain a lower gain ripple with the same number of pumps. Also, the relationship between the optimal signal bandwidth and the number of pumps can be simulated numerically with the SAA-PA.